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§ 1. Introduction

Let M be a Kidhlerian manifold with Kahlerian metric g and almost complex struc-
ture J, dimM = n (= 2m). Denote by X(M) the Lie algebra of vector fields on M
and by V the Riemannian connection of M. If W, X € X(M), then Ryx stands for the
curvature operator [Vy, Vx]—Viw, x;. Let Ryxyz indicate the value of the curvature
tensor of M on vector fields W, X, Y, Z € X(M). We choose the sign convention
so that Ryxyz = g(RwxY, Z). Denote by Q, ¢ and 7 the Ricci operator, the Ricci

tensor and the scalar curvature of M. So we have g(QX, ¥) = o(X, Y) = Y. Re e,
1
and T = ZQ(E,,E;), if {E, ..., E,} is an orthonormal frame of M.
i
The Bochner curvature tensor of M is defined by (see [2], [9] and [6])

() Buwrz = Ruxez— (8, Ne(W, 2)-g(W, Ne(X, 2)+

_g(‘,W’ Y)Q(JX’ Z)+g(JW! Z)Q(JX: Y)_g(JXs Z)Q(JW! Y)_
—28UW, X)e(JY, Z)—-2g(JY, Z)o(JW, X)}+

T
+ n+D(+4) {g(X, V)g(W, Z)—g(W, Y)g(X, Z)+

+8UX, V)g(UW, Z)—-g(UW, Y)gUUX, Z)-2g(JW, X)g(JY, Z)}
for any W, X, Y, Z € X(M). Certain aspects of the geometric meaning of this tensor
are discussed by Blair [1] and Yano [8].

The Kahlerian manifold M is said to be Bochner flat if B vanishes identically.
This is always so for n = 2,

Any Kihlerian manifold which is either of constant holomorphic sectional
curvature or, locally, a product of two Kihlerian manifolds of constant holomorphic
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sectional curvature H > 0 and — H, has vanishing Bochner curvature tensor and
constant scalar curvature. And conversely (see Matsumoto and Tanno [4], Theorem
3), any Bochner flat Kéhlerian manifold with T = constant is one of the above
type.

In [7] Tachibana and Liu gave examples of non-compact Bochner flat Kédhlerian
manifolds with non-constant scalar curvature. It seems to be that examples of
Bochner flat Kihlerian manifolds being compact and having r # constant are not
known. Concerning the existence of such manifolds, we shall prove the following
two theorems, which is the aim of the presented paper.

THEOREM 1. Let M be a 4-dimensional compact Bochner flat Kdhlerian manifold.
If the scalar curvature v of M is non-positive, then T = constant and consequently
either

(@) M is of constant non-positive holomorphic sectional curvature, or

(b) M is locally a product of a 2-sphere of constant curvature K and a hyperbolic
2-space of constant curvature — K, with the natural Kdhlerian structures.

THEOREM 2. Let M be a compact Bochner flat Kahlerian manifold of dimension
n 2 6. If the scalar curvature T of M is non-positive and the square of the length of the
Ricci tensor satisfies the inequality

, 1 2(n—2)(n+4)2} R
o] QTI— 1+ (n+2)z(n_4)z L

then T = constant and consequently either

(a) M is of constant non-positive holomorphic sectional curvature, or

(b) M is locally a product of two Kdhlerian manifolds of constant holomorphic
sectional curvature H > 0 and — H.

§ 2. Preliminary result

As it is well known, the Ricci tensor and the Ricci operator of a Kihlerian manifold
have the properties

for any Y, X € X(M).

In [3] it is shown that the covariant derivative of the Ricci tensor of a Bochner
flat Kdhlerian manifold is given by the formula

()  (@n+)(Vxo) (¥, Z) = g(X, NZt+g(X, Z)Yr+28(Y, Z) X7~
—g(UX, NIZ)t—-g(JX, Z)(JY) 7.

In the sequel {E,, ..., E,} will always represent a local orthonormal frame
of M. Moreover, for a tensor field T on M, V2T is the tensor field on M defined by
V%y T= VXVy T—vay T for X, Ye I(M).
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PRrOPOSITION. For a Bochner flat Kdhlerian manifold of dimension n > 4, we
have

@  2n(n+2)g(Q*X, Y)—2n1g(QX, Y)=2{(n+2)trQ*— 12 }g(X, Y)
= (n+4){—nViyrt+(d1)gX, Y)},

for any X, Y € X(M), where tr means the trace of the operator and A is the Laplace
operator Y, VE .z,
i
Proof. Firstly from (3) we derive
2n+H(Vixo)(Y, Z) = g(X, V)V v +8(X, Z)Viyv+28(Y, Z)Vixv—

—g(JX, Y)Vfwz T "S(JX, Z)Vﬁf.u' L
Therefore

(5)  @1+4) ) (Re)(Y,E) = @n+4) D {(Vx0)(¥, E)— (Vir,0) (¥, E)}
i i

= —(r=DVir1-Vixyr+ (42X, 1),
where we used the symmetry of ViyT.

"On the other hand, we have in general

(©) D Rea) (Y. E) = ~ D {o(RexY, E)+o(Y, Rex ED}

= - Z-RE,XYQE,+g(Q2X; Y).
But by B = 0, (1) and (2) one gets

(144 D Rexvar, = 460X, V) + 0 70(@X, 1)+
+(tr@2—v2/(n+2))g(X, Y),
which used in (6) gives

(+4) D (Rex) (Y, E) = ng(@°X, V)~ -2 w(0X, V)~
i

—(tr@* — */(n+2)g(X, V).

Comparing the last relation with (5), we obtain

2n(n+2)g(Q%X, Y)—2n1g(QX, Y)=2{(n+2)trQ>*— 7% }g(X, ¥)
= (n+H{—m—-D)Viyr—Viyt+(10glX, 1)},
which with the help of (2) leads to (4), completing the proof.

§ 3. Proof of Theorems 1 and 2

At first we prove that for a compact Bochner flat Kahlerian manifold of dimension
n = 4 it holds good
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) S 4+ D@ —2(n+1)vtrQ? + 13} = % (n+4)(n—2)S lgrad 7)? > 0

where grad denotes the gradient and { the integral with respect to natural volume
element on M.

Indeed, taking X = E;, ¥ = QF; into (4) and summing over i = I,
we obtain

@)  mn+2)trQ®—4(n+1)rirQ2 +27° = (n+4){—nz‘:V§-‘Qg,r+t(Ar)}.

On the other hand, knowing the following facts divX = zg(VE‘X , E;), where
i
div means the divergence, Xt = g(X, grad t), for any X € X(M), and Z (Ve, Q) E;
i

= 4 prad 7, one can find

) Z V2 qe, T = div(Qgradv)— 4 |grad 7|2,
Moreover,
(10) (A1) = + 4(r?)— |grad 7|>.

Now integrating equality (8) on M and using (9), (10) and Green’s theorem, one
gets (7).

In the sequel we shall consider the operator S = Q— t//n instead of the Ricci
operator Q. By (2) it is obvious that S commutes with J. So S has m (= n/2) eigen-
values, say a,, ..., an, each of multiplicity two.

In [5] Okumura proved the following lemma.

LEMMA. Let a; (i = 1, ..., m) be m real numbers satisfying

Za,=0 and Za‘2=k2,

i

Jor certain non-negative k. Then we have

)Z"f' ]/m—(m— .

As trS = 0, taking the eigenvalues of the operator S for a; we find by the above
lemma
—4
(11) [tr53| < ——"E: tr $2)3/2,
V2n(n—2) (S

Because of (11) and
trQ? = trS*+1t2/n,

trQ? = trS3+ (3r/mtrS2 + v3/n?,
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one can derive
(12) n(n+2)tr@?-2(n+1)rtrQ*+ 13 = n(n+2)trS3+ (n+4) rtrS?

. pn+2)(n—4)

2\3/2 2
]/m (tr S22+ (n+4) rtr S2.

To receive the assertion of Theorem 1 let us assume that n = 4 and 7 < 0.
Then by (12) we see that the left-hand side of (7) must be non-positive. Therefore,
(7) gives T = constant. The remaining part of our assertion is obvious in virtue
of the theorem of Matsumoto and Tanno quoted in the Introduction.

In a similar manner, using (12) and (7), one obtains the assertion of The-
orem 2.
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