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Scalar and density concomitants of tensor
with the valence (1,2) in a 2-dimensional space

by S. WEGRZYNOWSKI (Szczecin)

1. Introduction. Supposé we are given an abstract special purely
differential geometric object [9] with a fibre 9 and with the transformation
+ formula:

(1.1) o =Flow,L); weM,Le#r.
The subset M of the fibre M is called an allowable set [8] if the implication
(1.2) A A (016 M= w, = F(w,, L)e M)

wleﬁ Le.?g’
holds.
An allowable set is the union sum of transitive fibres.
Suppose we are given the geometric object (1.1). Let us take the

subobject @ of the object w with respect to the allowable set M < M
[10]. Every concomitant of the subobject w is called the relative concoms-

tant of the object w with respect to the allowable set IR [8].

The purpose of this paper is to determine all scalar concomitants
of a tensor #;, in the 2-dimensional space. The fibre of the tensor #;, has
been divided into allowable sets in which the relative scalar concomitants
have been determined. In Section 7 there are given some remarks con-
cerning the density concomitants of the temsor #,.

2. The allowable sets of a tensor ?;, in a two-dimensional space.
Suppose we are given the tensor ?;, at some point z, of the two-dimen-
sional manifold of class C* with the transformation formula:

(2.1) Gy = ALARATE, (A, p,y =1,2; X, 4,y =1,2).

The whole space E® is the fibre 9t of ¢;,. The group #? acting in our problem
is a group of non-singular square matrices of the second order.

In the sequel we introduce some division of the fibre I of #;, into
allowable sets. In these sets we shall determine the relative scalar con-
comitants of #,.
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Let us consider two covariant vectors formed by the contraction of
the tensor #;,:

1 at 2

daf
(2.2) 'UA = tf,u’ 'U;l == tﬁl’

Now let us introduce the following notation:

(2.3) W, — {Gys e M, detlioy] 0},
(2.4) My — {2 12,e M, b # 0, b = ml)},
(2.5) W = {£,: Luc M, » =0, v % 0},
(2.6) Dy — {5 Loe M, v — v = 0}

The subsets IM,, M,;, M, and M,, are the allowable sets of the fibre M
of #;,. On the basis of [4] and [6] it is known that all transitive fibres of
1 2

the pair of vectors v, and v, are M,, M,,, M,, and M,,. Hence it follows
that the fibre IR is the sum of the allowable sets:

(2.7) ml = 9)?2U m,,lU mtlou wtoo.

3. The scalar concomitants of ¢;, in 9M,. In the case of the scalar
concomitants of the tensor ?j, the functional equation for the required
concomitant takes the form:

(3.1) () =f(t, Ay ALAY),  1,e M, AT« £5.

Solving equation (3.1) when t;,¢ I,, we determine all relative scalar
concomitants of ?;, in M,. As A in equation (3.1) we take the matrix:

at p e ,
(3.2) A=|A7) =|vll (A e=1,2);0=0¢-

-1

Then the elements of the inverse matrix »* are determined by the relations
e —1 ’

(3.3) v,0* = 82,

o

where 62 are Kronecker symbols. After the substitution (3.2) equation
(3.1) takes the form

(3.4) £ =Flw),

where o are scalars
oo
a —1—-1a
(3.5) o = t;,,'v"v“'v, (0,0,a =1,2).

ea e o
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After the transformation of the coordinate system determined by (3.2)
1 2

the components of the vectors v, and v; become

1 1 2 2
(3.6) /Ul' — 1’ ?’2' - O; Q)ll == 0, '021 — l.
1 2 1
On account of (3.6) among eight scalars of the form (3.5) only four v, v, o
2 11 11 22

and o are essentially different. Thus we have proved the following
22

THEOREM 1. The most gencral scalar concomitant of t;, in M, is a

function of the form
1 2 1 2

f(ti,,) = @0, v, v, n),
111 22 22
a

where o are defined in (3.5) and ¢ is arbitrary.
4

4. The scalar concomitants of 7}, in 9t,,. In M,; we first of all de-
termine some density g formed from the tensor #;, and later we divide
M, with the aid of g into the sets My, and MZ,. We determine the most
general form of the scalar concomitant in I.,. Next we divide the set

2 into two allowable subsets in which we determine the relative scalar
concomitants of 7.
With this aim we define the following objects:

1
(4.1) o= ey,

where &*¢ are Riceci symbols.

The sign ““ —” in definition (4.1) is used for the simplification of the
further calculations.
The object a* is a non-vanishing contravariant vector density

(4.2) a¥' = JtAY
‘where
J = det[4}] - 0.

We now define the object §:
(4.3) b < 4,0%a%,

which, as can easily be verified, is a contravariant vector density of
weight 2:

(4.4) b =J2AlY.
Now, analogically to (4.1), we define the object b,:

(4.5) P )



108 S. Wegrzynowski

The object b, is a covariant vector density of weight 1:

(4.6) ryo= J_lAi'I)z-
Finally we define three objects, g, f and w:
1
at _,
(4'7) g = b ”aa
1
a ,
(4'8) f = tlyblb“'vv’
a ,
(4.9) w = 1,5 5", .

It is easy to see that the objects g and f are W-densities and w is a G-density,
their weights being two, four and five, respectively:

(4.10) g =J7%, {=J7% w =J w.

Now we divide the allowable set 9M,, into two allowable subsets I,
and M2;:

(4.11) My = {thu e My, g # 0},

(4.12) M2, = {t.: ue My, g = 0}.

We shall determine the relative scalar concomitants of the tensor #;, in
these sets.

We consider the case #j,e M,,. Let us take the transformation of
the coordinate system, the parameters of which are determined as follows:

1 1
|
(4.13) A = Ay & =)™ %,
b b
The inverse matrix is of the form
1 al
(414 a7 —qay = |7 ¢
bz aE

After such a change of the coordinate system the components of vectors
1 2

v, and v;. take the form

1 1 2 2
(4.15) Vy =@y, Vp=0; v,=mnug, vy =0.

On the basis of (4.15) we infer as a corollary that after the transformation
of the coordinate system determined by (4.13) four components of ?},,
namely tl,,1%,, 4. and ti., are expressed by the components i},
and 3.
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So the functional equation of the required scalar concomitants in
M., can be written in the form

, f w
(4.16) ft) = 9’(";9:;7? ’
where
L1,
t}'l’ = Etl;‘blb”vv = E’
’ 1 p m
t"l"l’ = Etlpblbybv = _9_7
(4.17) 1 .
1y =Et§“a‘a”ﬂ, =1,

’ 1
tcf,lzl =Et;“a2a“by = Oo

Let us now examine two cases: w #* 0 and w = 0. When w 0, let us

take the transformation of the coordinate system of the form & = &' (&)
for which

(4.18) det| 4% = sgnw|g|"~

holds.

After such a change of the coordinate system the right-hand side of
(4.16) is of the form

fsgng |w|sgng
(4.19) qa(x,sgng, e e )

and it represents the general scalar’ concomitants.

In the case w = 0 it is enough to take the transformation of the
coordinate system for which

(4.20) det|l 47| = Ig**
holds.
After such a change of the coordinate system we have
sgn
(4.21) .,,(x,g,%) =¢(x,sgng,f§—29)-

We state a posteriori that (4.21) is a particular case of formula (4.13).
Thus we have proved the following

THEOREM 2. The most general scalar concomitant of 1, in M., is an
arbitrary function of the form

fsgng Imlsgng)
?

f(t;p):(p(xYSgng’ g | la"
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where %, q, f and w are defined in (2.4), (4.7), (4.8) and (4.9).
In the case t;,¢ M, we have the following relation:

1
(4.22) g = 8;,.a*a%y, = 0.
If we write

1
(4.23) Gy = 1,0,
then relation (4.22) becomes:
(4.24) 0% " = 0.

After a set of elementary but long calculations [12] it can be shown that
if a* (see (4.1)) fulfils (4.24), then the tensor a,, is a symmetric one:

(4.25) a#;. = ar;.“.

Now we divide the set MZ, into two allowable subsets, M2 and M*:
(426) :i = {t;u: t;ye il7 det[aly] # 0}7

(4.27) ML = {5, B, My, det[a,,] = 0).

Au

In 9MZ we can construct the tensor a'* inverse to the tensor a;,, i.e.

satisfying the relations ([2], p. 107):

(4.28) a*a,5 = 9.
Let us consider the following tensor in INZ):
df
(4.29) by, = 2651,
The tensor b,, is also a symmetric one. Let us form the transvection of b,,
and a*:
(4.30) ct < b, a0,

As can easily be verified, the trace of tensor ¢4 vanishes on the whole I].
Let us write :

(4.31) v & det[c].

THEOREM 3. The most general scalar concomitant of ty, in M3} is an
arbitrary fumction of the form

Ft) = ¢(x, ),
where T 18 defined by (4.13) and = by (2.4).

Proof. Since MZ < ME, = N,,, the relations

2 i
i
U, = xV;, a’lya o = 07

(4.32)
det[a;ﬂu] 7é 0, a,uJ. = a;_”.

hold.
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Let us consider a coordinate system in which the components of the
1

non-vanishing covariant vector v; have the following values:

1 1 *

(4.33) 0, =1, 0,=0

(the sign ~ means that the equality does not hold in each allowable
1 2
coordinate system). Expressing the components of vectors v, and w,,

the vector density a* and the components of tensor a;, occurring in (4.32)
by the components of tensor #;,, we can write relations (4.32) using the
coordinate system determined by (4.33) in the form

sk * *
tfz = _tin t;l = tiza tiz # 0’

(4.34)

% * *
z * 1 1 X 2 ¥ 1
th=x—1tn, lp=0, 1Hp= —t,.

Let us now take into consideration a transformation of the coordinate
system which preserves relations (4.33) and (4.37) [13]. Let us denote
the parameters of such a transformation by

) 0
(4.35) 1A% = 5 \, 8 #£0.

4
Substituting in (4.35) the values of y and 4,
(4.36) y = L}

_a
z by 0 = 1,
we get
o 2 v v
iy = 0, iy = —1, try = 1, tiy =1,

1y 2’ Y 2’
by =1, lyy = %, tyg =0, lpp = —1.

(4.37)

Thus our theorem has been proved.

In the set M.} (i.e. in the case where det[a,,] = 0) we can show
11 1
[12] that the tensor a,, is proportional to the product »,v,, where v, is

the non-vanishing vector determined by (2.2),

1 1
(4-38) a/l,‘ - 17".7,1'?)#,

where 5 is the scalar.
Analogically to the proof of Theorem 3 we can prove [12] the following

THEOREM 4. The most general scalar concomitant of t;, in IMZ is an
arbitrary function of the form

f(t;p) = (%, 1),

where x» is defined by (2.4) and 7 is determined by (4.38).
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1

5. The scalar concomitants of #;, in 9, . Besides the vectors v; = 0
2

and v, # 0 determined in (2.2), we form from the tensor ¢;, the following
auxiliary concomitants:

2

(5.1) ’ o & — &',
(5.2) I; & t;,,é‘fﬂ‘,
(5.3) B < — e,
(5.4) 5 &b,
(5.5) T2,
(5.6) o = 4,55,

The transformation formulas of objects (5.1)-(5.6) are the same as
the transformation formulas of the suitable objects determined in Section 4
in (4.1), (4.3), (4.3), (4.7), (4.8) and (4.9) and denoted there by the same
letters without the index 2 above.

1
The index 2 above denotes that instead of the vector v, we take the
2

vector v,.
Now we divide the allowable set IM;, into two allowable subsets
1 2
10 and I,

2

(6.7) io = {ti,ﬁ t;“e Moy g # 0}’
2

(5°8) g‘RiO = {t;.,u: t;.ye S[Rm’ g = 0}'

Then we can prove the following

THEOREM 5. The most general scalar concomitant of 8, in M, is an
arbitrary function of the form

2 2 2

2
. 2 {sgng |w|sgn
f(ti,) = ¢|sgng, f 2 g’ 3

2
g? lal

’
5/2

2 2 2
where g, | and w are defined by (5.4), (5.5) and (5.6).
The proof of this theorem is analogous to that of Theorem 2.
In the allowable set IMZ, the following relation holds:

2 2 2 2
(5.9) g = #j,.0'a*y, = 0.
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Let us WI'itQ

2 2
(5.10) a,, = 6,0,

It is easy to show that from condition (5.9) follows the symmetric
2 2

(5.11) G = Qe

Now we divide the allowable set 9, into two further allowable
subsets M3 and M3,

2
(5.12) 30 = {thu: e My, det[a,,] # 0},

2
(5.13) o= {th.: ti.e M3, detla,,] = 0}.

2 2
In the set M we can form the tensor o™ inverse to the tensor a,,.
Still, let us consider in this set the tensor b;, defined by (4.29). Let us
2
form the transvection of b;, and a*.

2 2
(5.15) ¢ < b,,a%,
Let us put, further,

2 ar 2
(5.16) T = det[c¢}].

THEOREM 6. The most general scalar concomitant of t;, in M3 is an
arbitrary function of the form
2

f(t2.) = o(7),

2
where T i8 defined by (5.15).

We omit the proof, which is analogous to that of Theorem 3.
In the allowable set i the relation

2 22 2
(5.16) A1y = N0;0,

2 2
holds, where v, is the vector defined in (2.2), a,, the tensor defined in
2

(5.11) and % some scalar.

THEOREM 7. The most general scalar concomitant of t;, in Wi is an

arbitrary function of the form
2

() = ¢(n),

where 7 is determined by (5.16).

8 — Annales Polonici Mathematici XXVII.1
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6. The scalar concomitants of #;, in M,,. We shall reduce the deter-
mination of the scalar concomitants of ¢, in the set M, to the determina-
tion of the so-called transitive domains [3]. It will be shown that the
allowable set IM,, falls into five transitive domains. On the basis of (2.2)
and (2.6) the tensor ¢, belonging to the allowable set I, has only four
essential components, i, {3, {;; and 7,; the remaining components can
be expressed by ¢,, and ?,. We have namely:

(6.1) ty, = —thy, = —1, Ily= —1,, B =—1.
For brevity we adopt the following notation:

(6.2) 2y =11, @ =1, 25 =1y, 2, =1

Let us consider the tensor b,, defined by (4.29):

(6.3) by, = 26163,

Now we will express the components of b,, by the essential components
of tensor t;, taken from the allowable sel iy,

by = 2,8, —2,
(6.4) by = by = 1 (212, —2,2;),
by, = 2123— 7.
The transitive domains of the symmetric tensor b;, determine the
allowable subsets of M.
The transivity domains for an arbitrary twice covariant tensor in
the two-dimensional space have been determined by E. Siwek in the
paper [11]. Denoting the coordinates of the symmetric twice covariant

tensor by x; (i, k = 1,2), we have the following transitive domains
for it:

Ni: Ty = Trp = Ty = 0,

Nyt 2,20, 2,20, ah423,>0, a,2,—a7, =0,
My: 2, <0, 2,<0, afi+a;,>0, z,0,—2} =0,
Ryt 2, >0, 23>0, 0,8 —2f >0,

N2 0, <0, <0, &,8,—a5>0,

N: 24 Tgp — Top < 0.

(6.5)

If can be proved that the symmetric tensor b,, defined by (6.3) for
the tensor #j, taken from the allowable set 9, cannot belong to the tran-
gitive domains 9, and N,.

If only b;,¢ N,, then, according to (6.5), the components of the tensor
b,, ought to satisfy the following relations:

(6.6) by=0, byp>0, bi;+b5>0, byby—b3=0.
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It follows from (6.6) that the tensor b,, can be put in the canonical form.
Let

% * * *
(6.7) by=1, by,=0, b,=0, by,=0.
Then on the basis of (6.4) we get the following system of equations:
(68) 2224—25 ; 1) 212, —.222'3 ; 0, zlza—z: ; 0.

It can easily be shown that this system is contradictory. Analogically
we can show that the tensor b,, cannot fulfil the conditions which deter-
mine the transitive domains Ni,.

In the case where b,,¢ N, we get, according to (6.3) and (6 4), the
following system of equations:

(6-9) 2224_'21 == O, 2'124—-22Z3 == 0’ 2123—ZZ = Oo
If 22 122 = 0, then the only solution of system (6.9) is the vanishing one:
(6.10) B =2y =2 =%, =0.

Hence it follows that all components of the tensor #;, vanish. Of course
it represents a transitive domain for the tensor f;, taken from the allow-
able set M.

In the case where 2;+ 23 > 0 we get another solution of system (6.9).
If ’

(6.11) 2% # 0,

then on the basis of the second equation of (6.9) we have

(6.12) 2, = kzy, 2, = kaz,,

where % is an arbitrary real number. On the basis of (6.12) and of the
third equation of (6.9) we get

(6.13) 2, = K2y, 2, = K2y, 2z, = ke,.

Let us take into consideration the transformation of the coordinate system
determined by the matrix
1

(6.14) €] 2
—k 1
Then on the basis of (2.1) and of (6.1) we get
(6.15) 21 =0, 2,=0, z=1, =z =0.

The cases z; = 0 or z; = 0 do not give anything new. In such cases it
is easy to show the effective transformation of the coordinate system,
after which the essential components of ¢}, taken from the allowable set
Moo have the values (6.15).



116 : S. Wegrzynowsk:

Thus we have proved
THEOREM 8. For the tensor t;, from WMy, for which the tensor b,, deter-
mined by (6.3) belongs to the transitive domain M, we have two transitive
domains determined by the conditions
m;o: zl =Zz =z3 =24 =0,
22, —2 =0,  212,—2,2 =0,

22— =0, 4 423 =0,

where z; (¢ =1, 2,3, 4) are the essential components of the tensor t;, in
Mo, defined by (6.2). An arbitrary constant function on the domains My,
and N, is a sclar concomitant.

In the case where b;,¢ M, the components of tensor b;, must satisfy
in consequence of (6.5) the following relations:
(6.16) bn <0, bzz <90, bfl T bgz >0, bubzz— biz = 0.
In this case we can put the tensor b,, in the canonical form [11]. Let

. % 3 *

(6.17) by = —1, by = b, =0, boy = 0.
On the basis of (6.4) and of (6.17) we get the following system of equations:
(6.18) ity —2 = —1, 212, — 292, 20, 22—2=0.

Solving this system we obtain the solutions
* o * *
(6.19) =41, z=¢, 2,=0, 2,=0,
where ¢ is an arbitrary real number.
Let us take the transformation of the coordinate system defined by
the matrix

e 0

(6.20) lad) =|| [, e==x1,8 0.

y 0

This transformation preserves the canonical form (6.17) of the tensor b,,
[13]. Substituting in the matrix (6.20) the values

€2,
(6.21) € = 8gnz,, ¥ =3

we get in the new coordinate system the following values for the com-
ponents of tensor ?;, taken from the allowable set iy,:

(6.22) =1, 2 =0, 2z=0, 2 =0,

So we have got the third transitive domain IR}, for the tensor #;, taken
from the allowable set M.
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Thus we have proved the following

TunoreEM 9. For the tensor t;, from My, for which the tensor b,,, de-
termined by (6.3), belongs to the transitive domain N, we have the transitive
domain determined by the conditions

22, —21 <0, 22,—2<0,
imgo: (3234‘zi)2+ (2123—23)° >0,
4(3254—2%)(%23—'32) = (219’4—2’233)2’

where z; (i =1, 2, 3, 4) are the essential components of the tensor 13, in My,.
An arbitrary constant function is a scalar concomitant in this domain.

Analogically to Theorem 9 we can prove the next two theorems,
the proofs of which can be found in [12].

THEOREM 10. For the tensor t,, from M, for which the tensor b,,,
defined by (6.3), belongs to the transitive domain N, we have the transitive
domain determined by the conditions

s 22— 21 <0, 22,—2 <0,
00° 2
4 (2,24 — 21) (2,23 — 21) > (218, — %,25)’,
where z; (¢ =1, 2, 3, 4) are the essential components of the tensor 1), in My,.
An arbitrary constant funclion is a scalar concomitant in this domain.

THEOREM 11. For the tensor t;, from My, for which the tensor b,,,
defined by (6.3), belongs to the transitive domain Mg we have the transitive
domain determined by the conditions

Smgo: 4(3254_Z§)(le3—zi) < (zlz4—zzz3)2,

where z; (1 = 1, 2, 3, 4) are the essential components of the tensor 1y, in My,.
An arbitrary constant fumction is a scalar concomitant in this domain.

7. Remarks concerning the density concomitants of a temsor f;, in
a 2-dimensional space. On the basis of [1] it is known that the general
density concomitant of object (1.1) is the product of a particular non-
vanishing density concomitant and a general scalar concomitant of this
object. So in those allowable sets of the tensor #;, in which we have the
non-vanishing density obtained from the tensor #;, we can determine the

general density concomitant.
1

In the allowable set 9k, the determinant of the components of v,
2

and v, is the particular non-vanishing density concomitant,

e
(7.1) 0 S detjv. (o, 0 =1,2).

-

It is known that v is an ordinary density of weight 1, and {w] is a Weyl
density of the same weight.
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Thus we have the following

THEOREM 12. The most general density concomitant of weight (— p)
of the tensor ty, in the allowable set M, is of the form

1 2 1 2

f(t;p) = SIUIP‘P(“)’ 0, w,0),
i1 11 22 22
where

1  for W-density,
sgny for G-density,

£ =

and ¢ 8 an arbitrary funmction of 4 wvariables.

In the allowable set 9, the object g defined by (4.7) is the particular
non-vanishing W-density concomitant.

Thus we have the following

THEOREM 13. The most general W-density concomitant of weight ( — p)
of the tensor £, in the allowable set M., is of the form

) sgng |w|sgn
f(tﬁ.p) = |Q|pl2‘7’(”’ sgng, fegng 158 Q)’

gt g

where ¢ 18 an arbitrary function.

In the allowable set 92! the determinant of the components of the
tensor a,,, defined by (4.23), is the particular non-vanishin W-density
concomitant.

THEOREM 14. The most general W-density concomitant of weight ( --p)
of the tensor 1, in the allowable set M2 is of the form

f(t;/.‘) = ]det [aly]lplzq)(x) 1)7

where ¢ 18 an arbilrary function.

In the transitive domains M;, and M, the determinant of the com-
ponents of the tensor b,,, defined by (6.3), is the particular non-vanishing
W-density concomitant.

Thus we have the following

TuroreM 15. The most general W-density concomitant of weight ( — p)
of the tensor t, in the transitive domains Mg, and MG, is of the form

f(8,) = C-|det[b,,11"7,

where C 18 an arbitrary real number.

We shall deal with the problem of determination of all density con-
comitants of the tensor ¢;, in the next paper.
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