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1. Introduction. On the unit interval I = [0, 1] we consider a weight w,
i.e. a Lebesgue integrable nonnegative and nontrivial function. The space
of all functions integrable with exponent p, 1 < p < oo, with respect to the
weight w is denoted by L% (I). Also, let a continuous convex function $ on
the real line R = (—00,00) be given. For later convenience we introduce the
functional

(1.1) 2u(f) = [o(f(t))w(t)dt.
I

Our first goal is to construct, for f € L1 (I) with (1.1) finite, a sequence
(Pn(f)) such that

Qn(f)SQn-i'l(f)SQw(f) for n=0,1,...,

where the @,(f) are easily computable for a reasonable class of weights w.
Moreover, the construction should be such that #,(f) — @,(f) as n — oo.
For later use the space of all algebraic polynomials of one variable of degree
at most n is denoted by IT,. The second goal can now be formulated as
follows: for g € IT,, construct (®},(g)) such that

Pu(9) < Pry1(9) < Ph(g) forn=mm+1,...,

where &;,(g) should again be easily computable and #2,(g) should approach
®.,(g) as n — oo for the same class of weights.

The construction of &,(f) will be given in terms of the Bernstein basis
in II,,, and the construction. of &;,(g) in terms of its dual basis.

The basic Bernstein polynomials are given by the formula

(1.2) N;a(t) = ('i’)t‘(l -t)*f,  i=0,...,n.
These basic polynomials are nonnegative on I and
(1.3) Y Nia(t)=1.

=0
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For each n = 0,1,... we assign to the weight w the discrete weight

(1.4) Win= [ Nia(®)w(t)dt, i=0,...,n.
I
Clearly, (1.3) implies
(1.5) f w(t)dt = Z Wi n-
i=0
In the space L2,(I) we have
(1.6) (£,9)w= [ f(H)g()w(t)dt,
I
and in IT,, the corresponding scalar product
n
(1.7) (8, 0)wn = Y u()v()wi,n.
=0
The dual to the Bernstein basis in IT, with respect to (1.6) is denoted by
(Nfn, i=0,...,n) and is uniquely determined by
(1.8) (Ni.mN;,n)w = 6,"1', i,j:O,...,n.
It is a consequence of (1.3) that
(1.9) f ra(Dw(t)dt = 1.
Moreover, we need the polynomials
(1.10) Mjn = Njn/wjn,
for which we have
(1.11) [ Mja(t)w(t)dt = 1.
I

Now, define

n
(1.12) &, (f) =Y &((f, Misn)w)tim,

i=0
(1.13) 2:.(9)= ) _ #((9, Nin)uw)win.

i=0
The Durrmeyer type operators are important in our construction:
(1.14) Da(f) = Y_(f, Min)wNin.

=0
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This definition implies that the operator Dy, : I, — II,, is a linear isomor-
phism and

(1.15) Du(N{,)=M;, fori=0,...,n.

Moreover, the following known formula for the artificial lifting of degree of
the basic Bernstein polynomials is also important. Namely, for n = 1,...,
we have

(1.16)  Njn_y = 31 n_t

n Ni-l-l,n +

Nin fori=0,...,n-1.

2. Main inequalities. In this section some inequalities for the function-
als #,,, #,, and &}, without any restrictions on the weight w, are established.

LEMMA 2.1. Let &#(t), —oo < t < 00, be a continuous convez functibn
and let f € L} (I). Then

(2.2) Dy(Dn-1(f)) £ Bnz1(f) L Pu(f) S Pu(f) for n=1,2,...

Proof. The first inequality in (2.2) is obtained by using (1.14), (1.3),
(1.11) and Jensen’s inequality. Now, (1.16) implies

Mi,n-l = A; Mi+l,n + B; Mi.m

where
i+ 1w n-—-1 w;
Aj= ——2Fn and B, = —
n Win-1 n Win-1

Since A; + B; = 1 it follows by Jensen’s inequality that ¢,,_; < &,. The
third inequality in (2.2) is obtained by using once more (1.11) and Jensen’s
inequality.

LEMMA 2.3. Let #(t), —oo < t < oo, be a continuous convez function
and let g € Il,,. Then

(2.4) P,(9) < P5(9) < D5_1(9) < Pu(D;11(9)) for n>m.

Proof. Application of Lemma 2.1 with n—1 replaced by n, f = D;(g)
and (1.15) give

$.(9) < Pn(D7'(9)) = 1(9) < Pu(D;(9))-
It remains to prove the middle inequality in (2.4). Since

n-1 n
9= E(g, Ni',n—l)w Nin1 = E(ga N::n)w Nin,
=0 i=0
it follows by (1.16) that
» t » n—i »
(2:5) (9, Ni,'n)w = ;(9, i—l,n—l)w + " (g’Nt',n-l)w'
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Now, the definition of &}, (2.5) and Jensen’s inequality give
n
1(9) < D (Aia®((9, Ny n1)w) + Bi®((9, Niin_1)uw))Wisn-1,
i=0

where the A; and B; are as in the previous proof. Since A; + B; = 1 the
inequality in question follows.

Lemmas 2.1 and 2.3 now yield

THEOREM 2.6. Let w be a weight as in Section1. Let $(t), —oo < t < oo,
be a continuous convez function and let g € II,,. Then for n > m we have

¢w(Dn—l(g)) S Qn-l(g) S ¢n(g) S ¢w(g)
< 85(9) < B;_1(9) < Pu(D;11(9))-

3. The case of Jacobi weights. From now on it is assumed that w is
a Jacobi weight, i.e. w(t) = t*(1 — t)? with some @ > —1 and 8 > —1. The
definition of the beta function gives

(3.1) Jw(t)dt = B(a +1,8+1),
I

(3.2) w.-',,=(:l)B(i+a+1,n—i+ﬂ+1) for i =0,...,n.

Moreover, it implies

- 3 i+j+a ()
(33) i[tJM:,n(t)w(t) dt = (n +i+a+8+ 1)

for :=0,...,n, j >0,
where (m)U) = m(m-1)...(m=j+1) and (i/m)(D = i() /m{), In addition
to this we have the known formula
n
(3.4) th = Z(i/n)(j)N.-,,.(t) for j=0,...,n.
i=0

(3.3) and (3.4) together imply

PROPOSITION 3.5. Let w be a Jacobi weight with parametersa > —1 and
B > —1 and let

(3.6) 9(t)= ) g;t’.
J=0
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Then
m : s (5)
. _ _ t+1+a .
(3.7) (Mt,mg)w—;gj (n+j+a+ﬂ+1) for i=0,...41,
m i (5) .
(3.8) (N::mg)w = Zogj (;) for 1=0,...,n, n2>m.
J:

4. Jacobi and Hahn polynomials. In this section we are going to
give formulas for

(4-1) (Mi,m g)w and (N:,mg)tm
provided that we have the Jacobi representation for the polynomial g € IT,,.
Given a > -1 and # > -1 the Jacobi polynomials orthogonal with

respect to (1.6) are denoted by ( PJ( p ), j=0,1,...) and they are normalized
by the formula

a, ; R '+a .
(42)  PP(0) = (-1 ’(1)=(’ j ) j=0,1,...

It should be remembered that these are the standard Jacobi polynomials
transformed from [-1,1] to I = [0,1] by the map = 1 — 2t with ¢t € I.
With this normalization we have

1 B(j+a+1,j+6+1)
4.3 PP PPy, = — - :
@35 i) (2+e+B8+1)B(i+1L,j+a+8+1)
Given a > -1, B > -1 and natural n we define the polynomials

(Hg;’ﬁ), j=0,...,n) by the formula

n
(4.4) PP =N HOP()Nip, 5=0,...,n.
i=0

This, (4.2) and (3.8) imply that

o, j X '+a [« 88
ws) HEOO=(0ELm= (1), mefem,

J
for 7=0,...,n.
For later use we introduce
(avﬂ) H(a’ﬁ)
pled) — J : o(a,8) _ Jm :
J ’ nn ’
I1P{|2, 15 2 m

where

o = ( f15OP0@ )", Sl = (L 1OP0i)’

I =0

/p
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THEOREM 4.6. The polynomials (H; (o, ), j =0,...,n) are orthogonal
with respect to (1.7), i.e. they are the Hahn orthogonal polynomials. More-
over, in addition to (4.4) we have

n
(4.7) PP = 3n S BSP (6ywiaNE, G =0,...,m,
1=0
where
(J) P(a'ﬁ) 2
(4.8) ,\j,n=( __" ) _ MRl
ntjte+f+l 1H P13

Proof. Define on II,, the following two linear operators:
(Tv)(?) = (N{p,v)w fori=0,...,n,

(T*v)(3) = (M n,v)y for i=0,...,n.
It follows by (3.7) and (3.8) that
(4.9) TIl; =1; and T*'IIj=1; for j=0,...,n
In this notation

v =Y (To)()Nin = Y (T*0)()winNin-

i=0 i=0

Therefore,
(4.10) (8, 9)w = (Tu, T*v)y p-
Thus, if u is orthogonal to IT;_, with respect to (-,+),, then by (4.9) and
(4.10) both Tu and T*u are orthogonal to IT;—; with respect to (-,-)y,n-
In particular, since Hg’;p ) = T(P}a’p )), it follows that both H;-;’ﬁ ) and
g= T"‘(PJ(“"B)) are orthogonal to IT;_; and both are in II;. Consequently,

there are numbers A; , such that g = A\;  H (-";’B ), Comparing the coeflicients
at the highest powers with the help of (3.73 and (3.8) gives (4.8).

PROPOSITION 4.11. Let w be a Jacobi weight with parameters a > —1
and B > —1 and let

m
(4.12) g=> g; P{*.
Jj=0
Then
(4.13)  (Min,9)w = Z XingiH\SPV ) for i=0,...,n,
J—O

(4.14) N @w= Eg,H(a"a)(z) fori=0,...,n, n>m.
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Proof. Use (4.4) and (4.7).

COROLLARY 4.15. For f € L (I) we have the following formula for the
Durrmeyer operators with the Jacobi weight w:

Da(f) = Y Ajmlf, PPy, PP,

Jj=0
Proof. We apply the operator D,, to both sides of (4.7), and use (1.15)
and (4.4) to get Dy (P{™?)) = ;o (P{*).

PROPOSITION 4.16. Let w be a Jacobi weight. Let $(t), —o0 < t < oo,
be a continuous convez function and let g € II,,. Then

®.(9) / Pu(9) / P7(9) as n/ oo.

Proof. Since by (4.8), for fixed j, A;, — 1 as n — oo, the statement
follows by Corollary 4.15 and Theorem 2.6.

COROLLARY 4.17. Leta > -1, 8> -1, 1 < p < oo and let w be the
Jacobi weight on I. Then for n > j we have

Xl HSP N € Xt lH e gt < IPE
Yﬁ 1’
<IEE pmts < NHS g ms

or else

V2in 1B pn <\/_ it IESSD o < NP2

B 0
Ho)) 151,

1
< ——| lpm+1 <
\/’\J'.T J,n+1|P" \/’T

To be able to compute the quantities (4.13) and (4.14) which appear in
the definitions of #,(g) and &},(g) one needs some recurrence relations for
the Hahn polynomials. The first recurrence relation corresponds to (1.16),
and the second one is simply the three term relation for orthogonal polyno-
mials.

PROPOSITION 4.18. The values H("'B)(O) and Hg."’,’;m(l) are given by
(4.5) for0 < j<mn. Forn>1 we have '

(1) (GED)

(4.19) HEP () = (-1) A fori=0,...,n.

Let now n > j. Then

(4.20) B2 (0) = = H(“’m(z 1)+2=2 H("’ﬂ)(z) fori=1,...,n-1.

Jn-1 jn-1
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a’p)

Proof. It is well known that the Rodrigues formula for P,(, gives

i(‘l)i Fla+n+1)I(B+n+1)

(a,8) — .
F n'la+i+DI(B+n—-i+1) "™

1=0

whence by (4.4) formula (4.19) follows. To get (4.20) put g = P}a’p )in (2.5)
and then use (4.4).

The next recurrence relation, the three term relation, gives the possibility
to compute the Hahn polynomials by induction on degree.

PROPOSITION 4.21. For the degrees 0 and 1 we have

(a,ﬁ)(z) =1 fOT 1= 0,...,nm,

a+f+2
n

HP (i) = - i+(a+1) fori=0,...,n

For each j > 1 we have

H}i’{’L()— LB o) - H“'"” i) fori=0,...,n,
where _
__G+o+B+D(-nG+1)
(27 +a+8+2)(2j+a+4+1)
g_i'@r-a+p+j(e+B+1)2r—a+p)+n(a(atB+1)+5)
B (25 +a+B8+2)2j+a+p) ’

(B ta)itntatB+])
(2j+a+B+1)2i+a+p)

5. Comments and bibliographical notes. In bifurcation theory the
degree of a map plays an important role [8]. For some polynomial maps the
degree is equal to the value of an integral of the form

[ max(0, ¢(2))v(z) dz,
Id

where g and v are real polynomials on R%. The value of the integral is an
integer. Thus, numerical approximation of the integral with well controlled
errors could help to solve the problem, i.e. to find its exact value. The ques-
tion in this form, of finding such an algorithm, was explicitly posed to the
author by M. Izydorek and S. Rybicki. It stimulated very much the present
work. The solution presented here is one-dimensional, but its extension to
several variables should cause no essential theoretical difficulties.
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Another example of possible application of the algorithms presented here
comes from the work [1], where it is shown that the integral
1

( [ im@Prd)”

-1

is a norm for a finite-dimensional polynomial operator. Clearly, this norm
can be approximated from both sides by the algorithms presented here. As
usual, 7}, is the Chebyshev polynomial of the first kind.

The dual to the Bernstein basis (N, ) was investigated in [3] in the par-
ticular case of w = 1. For the same special weight w we refer to [6], [5],
and in the Jacobi case to [9], [10], for the fundamental properties of the
Durrmeyer operators. The relation (4.4) between the Jacobi and Hahn or-
thogonal polynomials was established in [5] in the case of w = 1, and in [4] in
the Jacobi case. A part of Theorem 2.6 was established in [2] for the special
#(z) = |z|?, 1 < p < 00, and w = 1. Proposition 4.21 is classical (cf. [7]).
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