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On the Norlund summability of orthogonal series

by J. MEDER (Szezecin)

1. Let
uo+ul+-.- +un+...

be a given series with partial sums s, and let {p,} be a sequence of non-
negative real numbers.
The series Yu, is said to be (N, p,)-summable to s, if

tn =Pi”,§pn_ksk—>s as n-—>oo,
where Py =po+p;+...+Pny, Po>0, pan=>0. We then write (N, pn)-
lims, = 8 or (N, pa)-Yun = 8. The transforms ¢, are called the Norlund
means of the sequence {s8,} or of the series Y u, (cf. [3], p. 65).
Cesaro’s method of summapbility (C, a), a > 0, is a special case of
the method (N, p,) if we write

_[(r+a—-1\  I'(n4a)
p”_( a—1 )h—]’(n+1)1"(a)'

The sequence {pp} will be said to belong to the class M*® for a certain
real a > 0 if

0 <pa<Pnyn for =»-=0,1,2,..,

() or 0<ppyi<pn for n=0,1,2,..,
(ii) po+P1+'ot+p” =Pn/00’
L
(m) fR—>00 PB “
Let
n
8= N P

n =5 .
P, e kE+1

The sequence {p»} will be said to beolong to the class BVM®, if {pn} e M*
and if {8,} is a sequence of bounded variation, i.e.

D) 18a—8ps| <oo.

n=1

16*
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In the case of the methods (C,a), a>0, it is easily seen that
{pn} e BV M".

It is well known that the method (N, p,) is regular if and only if

Pn
lim - =0.
n—>00 P n ’
Obviously, if {ps} ¢ M", the method (N, ps) is regular.
In this paper we shall deal with (N, ps)-summability of orthogonal
geries, restricting ourselves to the case where {p,}e M" or {ps} e BVM*
with « > } and in some theorems with a > 0.

2. We now give a number of lemmas concerning the classes M*®
and the Norlund summability of numerical series.

LEMMA 1 (Stolz). Let {As} be an arbitrary sequence of real (or complex)
numbers and let {Bn} be a sequence of positive numbers monotonically in-
creasing to oo. If

. An— A,
Iim ———
n—>00 B‘n—Bn—l

where A_, =B_; =0.
LEMMA 2 (Pati). If v > 0 and Pp /oo as n—>oo, then

oo

A
_n'=97

n—=00 Bn

=g, then

DPn 1

PP,y P,

nmpd-1

This is easily seen, for p, = Pp— P,—, and P, oo as n —>oo.

LEMMA 3. If {pa}e M®? a> %, then there is an N such that the
sequence {Pi/n} is increasing for n > N and tends to oo. Moreover,
lj.mpnPn = O0Q.

Proof. Applying Stolz’s lemma we may write for » > 2, P, =1,

2
log 5 lo Pn Pz

,1;1_?; logn =,1£2 logn—log(n—l)

log (1 + —) + log( 1’;")
= —lim = id

n—oo 1
1 n —Pqlpa] —2npalPa
log (1 + o} 1) + log [( —%:) ]

— —(1'—24) = 2¢—F.
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Hence
log(Pa/n) _
lm gzt = 1 for a>1%,
i.e.
log % s logn%-1,

Finally,

lim _If'& =o0 for a>1%.

n—sco N

Now we show the sequence {Pj/n) to be increasing beginning with
a certain N. We may write

P, P 1

n  n—1 nn—1)

__ Ph [nop o\ | __ Pn [2nps  mpa
'n(n—l)[Pi‘zP" Pe) Il—n(n—l) Pn P 1]'

Since the expression in the square brackets tends to 2a—1 > 0 for a > §,
we have Pi/n > P;_,/(n—1) for n > N.
2
Moreover, since p,P, = % . 7%, we have lim paPp =oo for a > §.
n

n—00

[(n—1)Pp—nPp1]

LEMMA 4. If {ps} e M°, a > %, then

EIANAD S
now Pp & (k+12 2a—1"

Proof. Let {ps}eM° a>4. If 0 <p,, then the sequence
{Pn/(n+1)} is increasing and the series _S;Pi/(k-i-l)’ is divergent. If
0 < pa\, then the sequence {Pj/(n +1)} ki_so decreasing and the series
EZZ Pﬁg/v(k+1)2 is also divergent, for otherwise, by a well-known theorem,

the sequence {P}/(k+1)} would tend to zero, in contradiction to Lemma 3.
Now, applying Stolz’s lemma, we obtain

lim _Ealr+2) L Pr(n+2)—Poj(n+1)
PR <(CE 3V Pacafn?
i n? 2(n+1)paPn  (n+1)pn o
fﬂ(n+1)(n+2)[ Pro P 1] 2a—1.
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Thus,
n—1 0

im2+2 NP 1
no Py &= (k+1P 2a¢—1

Lemma 4 now follows immediately from the formulae

n~1

nnPi_n.'n+2“P?, n

Po&d (k+1p n+2 P & (k+1p (n+12

LEMMA 5. Let {pa}e M®, a> L. If the series 2 U 18 (N, pa)-8ummable

and if the series 2 kuy, i8 convergent, then the series Z ur 18 convergent.
Jomm1 k=1

Proof. Let {pp} e M° a > 4. We write

1
LSt S S

k-o kmo y=k

g S S

r=0

Hence

In order to prove the Lemma it is sufficient to prove that the
expression on the right side of the last formula tends to zero. Since

a«©
D kuj, < oo, for any ¢ > 0 we may find an integer N such that
k=1
a©

1
Zkui<s for n>=DN.
kmN+1

Moreover, we have lim p,/P, = 0. Now we may write
n—>oo

n k-1 1 l% k—1 n
\ | j Y
2 an—ruk = Z Pu—-uk“i' o Z Pn—vUr = A + B.
k=1 ypmQ ” k=1 y=0 =N+1 =0

If 0 < pa 7, then applying Schwartz’s inequality we obtain for n > N

A2<( Z] k‘ZPu -)\& j’mk \jk— 0(e?) ,

B fm] r=0 B fenl k=1
‘whence

(2.1) A=0(1) as mn—>oo.
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Since
»n n 2 2
mel Dk D mi<iir o),
P'zlk-NH k=N+1 Pf'
we have
(2.2) B =0(1) a mn-—>co.
Now let 0 < ppx. Then for n > 2N
N
1
A
Py k=1
Z kpn_kauk <Npan P"‘” Z kul — O(s3) ,
"'k=1 k=1 Py k=1
whence
(2.3) A=0(1]) a8 n-o>oo.
By Lemmsa 4 we obtain
n n
k= =
Pf'k=o Piké: B k=0 P?‘ (B-+1)°
21
—0(1) = Pi = 0(1)-0(1) = 0(1).
P =t (k+1)
Hence
1
B Z kDL 2, — 0(1)-0(e) = O(e)
N k=N+1 =N+
and consequently,
(2.4) B, =0(1) a8 mn-—>co.
It follows from (2.1), (2.2), (2.3) and (2.4) that
A+B=0(1) as n->oo, *

if {pn} e M° a> 3}, and we conclude the lemma.

Remark. Lemma 5 belongs to the Tauberian theorems; it is an
analogon in the case of Norlund’s methods of a well-known theorem
of Fejér on Abel’s method (cf. [1], p. 71). However, (N, ps)-Jun =38
does not imply in general A-Yu, = s, for the series Y u,z" is not nec-
essarily convergent for 0 <z <1 at all (cf. [3], p. 66).

LEMMA 6. If an increasing sequence of indices {n;} s lacunary, then
the sequence {P,} where Py =p,+...+Pn, {Pn}e M?, a>0, is also
lacunary.
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Proof. Assuming

Ng4a
N

=2q>1 for k=0,1,2,..

we shall prove the existence of a constant ¢, > 1 such that
P, Br+1
Py,

Since {ps}e M® a>0, for any 0 <& < a there is an integer %,
such that '

=>q¢>1 for k=0,1,2,..

ﬁk Pﬂg
g

>a—e¢ for k>=k,.

If 0 < pn,, then we have

Py,., Py M1 —Ng) Ni Py (nk+1 )
1 =1 -1 1 — -1
P + P + P \ s >1+(a—e)(g—1)

for k> k,. If 0 <%k < k,, then

P e Pn,
— > =2
P, - TP,

Hence we may take ¢, = min{l+(a—¢)(¢—1), 1+ Pn,/Pn, ).
Now, if 0 < pa\, then we have

P“k-n =1+ pﬂk+1+ coe +pﬂt+1
Pﬂg P"k

1 n 1 n
~14 Dn,. (Mars— 1) > 1+ k+1DPngy (1_ k )
Pﬁk Pﬂtﬂ

>1+4(a—e)(1—1/q)
for k> k,. If 0 < k < k,, then

i1

P fria

Py

Hence we may take ¢, =1+ (a—e)(1—1/q) > 1. Then, in both cases
there exists such a number ¢, that
P i+
Py,

8. Let ON {¢a(x)} be an orthonormal system of real functions defined
in the.interval @, ¢ L*0,1). We shall denote by

2P R o

P Reatl

>1+

>1+(a—¢)(1—1/q).

>¢u>1 for k=0,1,2,..

(3.1) D) eapal2)

n=0
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orthogonal series corresponding to the system ON {g,(z)} with real coef-
ficients ¢, satisfying the condition {e¢:} ¢ I?, i.e.

(3.2) Vet < oo

nm=o

In order to formulate further lemmas we introduce the following
notation:

3K(T) = Co@o(T) + 1 y(X) + ... + Crpr(Z)
81(Z) = ColoPo(T) + 1A 1(T) + ... + CrArpi(T),

(3.3) tn(T) = o5 2 Pn—ksk(-’v) ’
™ o

t3(2) = - 2 Pa-istia),
k-O

where {1,} is a sequence (dependent on {c,}), increasing to oo and satisfy-
ing the condition

(3.4) Dt < oo,

n=0

As is well known, such a sequence {4,} exists.
LEMMA 7. If 0 < w(n) oo, {pr} e M° a> 0, and if

ta(w) = O[w(n)] a8 n-—>oo(),
then
t(z) = o[w(n)] a8 n->oo0.

Proof. Applying Abel’s transformation twice and omitting the
argument = for the sake of brevity, we obtain

tﬂ:’l;z‘f’n— 2 r‘P-;L

k=0 r=0

=%ﬂ- n—kl +P ZPn-:% L
= 7.7, an—kz Cohy @y +

=0

(*) If the sequence {f,(z)/g.(x)} tends to zero, resp. is bounded in the interval
<0, 1) a.e. (almost everywhere), we shall write f,(z) = 0[g,(x)], resp. [ (z) = O[g.(x)]-
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;l(g:p"“")"””r P, 21’"- ._2:3*4 7
AaPnZP”‘*8“+'_S(2P°—- ) o P”an- Z "A—.

r=0

Hence
n—1 k k-1

88) =gt 2 Ypt) a7+ Zp.._kz‘sml-
(L]

If 0<pa, then p,_, < pn for 0 < » < n. However, it is easily seen
that the series
ao

MIH

is convergent a.e. Hence

\ P L ('203 p,,_.s.) |

k=0

(an--ls.l)él

r=0

pnv 1 o _(PF1)ps 1 1
4-- ZI-I— P, (”H);Alkgls.l—o(l)

v-O

Now, if 0 < py 7, then the second term on the right side of (3.5) tends
to zero a.e. We now show the same to be true if 0 << p,. Namely, we
then have 0 < p,—, < pr—, for 0 << » < k < n. Hence

5 (St S St
g%;g;ﬂ( ZPk-.Is.)

!‘0

But the last expression tends to zero a.e., for the series

ZP (44 pu-.ls-l)

p=0

is convergent a.e.

Finally, the third term on the right side of (3.5) converges a.e., for

the series
[s =]
! 1
&
)0 sl

1s convergent a.e.
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Now, dividing both sides of (3.5) by w(n) and taking into account
the assumptions of the Lemma and the properties of the sequence {i,},
we conclude the proof of Lemma 7.

Applying the results of T. Pati (cf. [6], p. 155), we now prove

LEMMA 8. (3) Let t5(x) denote the n-th (N, ps)-means of the orthogonal
series (3.1) with coefficients e, satisfying condition (3.2) and let {p,} ¢ BV M°,
a > %. Then the series

o0
D) nlta(@) — ta_y(2)T°
n=1
18 convergent a.e.
Proof. Writing p_, = P_, =0, we have

n-—1

1 % 1 \!
tn— lpn—1 —Ek - Pn—u8k— P, ’ k/—OJ Pr—1-k8k
n—1

p°8n+PnP Z Su(Pn—tPrn—1—DPa-t-1Ps)

P"Pn_ ch?’LZ(pn_, n—1— Pn—y—1Pn)

r=k

1
=P-nP -1 Z ckq)k[ "#p")Pn-k—Pn'—k—IPﬂ]

PnPn— v ck¢k(Pﬂpn—k _PnPn k)

— ; \,’ Cn—kPrn—k{PiPn— PaPlk).
PnPn—l kéOJ

Thus, writing ¢, ¢ = €4—r@n-r, We get

tn—tay = L vcnk(PkPn —paPr) .

The last expression may be written in the form

tn - tn_

n+1 ‘—10 (kPn_PﬂPk+PnPk_PnPk)
P,.P,,-,AJ"' n+l k+1  k+1 w41

n+1 NYV(piPn puPi P \ Py — 5
p,,Pn_l—x(nJrl ZESTRCR v epp = Ll

(®) Lemma 8 is a generalization of the theorem known as the Kaczmarz-Zygmund
lemma (see e.g. [5], p. 184-185).
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Since
. P,
n+1 —Pp 1841 = — Ppy A48, +Pn8n ’
where
1 P
8y =— Y Lk
Py k=0 k+1
we have
1
n n
o
+ P Z Pk-lASk—lcn,k—Pn Zpkskcn,k]
k=0 k=0
1
=: n+ [Pnz Py A8k—10n, k_-Pn—lASn—1 Zpkcnk—
P, e
—Pn Z (Zpkcn.k) AS.] .
=0 k=0
Similarly,

2= p”_p”_l Zpksk('n k)eno— 55— PuPn_1 24 Py 1A8a(n—Ek)enr .

Since

(n+1) D) prcns = O Puln—E)ea+ D, Pulk+1)0ns

k=0 k=0 k=0

for 0 < » < n, we obtain after reduction

542, = P,P,._ [—P»Z 48, Zpk(n k)enx—,

y=0 k=0
n—1 n
—pn ), 45, Z (k+1)pioni— PacsA8ncs D piln—k)Coi—
y=0 k=0 k=0

' n n
—Pos A8y ) Db+ 1) 0kt Pn D, Prca Sucalb+1)0ni+

k=0 k=0

+Pn Zpk'sk(n_ k)cn.k] .

k=0
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Replacing the first term in the square brackets by

n—-1 n—1

—Pn ZPk(n_k)on.kz a8,
k=0 o=k
n—1 '"'T‘l
=—Ps 2 PrSi(n—E)enk+ DPaSn 2, Prln—k)enx
k='° k=0

and noticing that the last but one term in the last formula may be re-
duced with the last term in the square brackets and then changing the

order of summation, we may finally write

n-1
tr—tn—1 = Pn n—1 [pnsn,% prn = b ona—
n—1 n
Y
—pn ) (bt 1)pucs (2 As) PoosA8ncs >, puin—k)ons—
k=0 - k=0

n n
n
— Pos 880y D pull+ 1ot D) Prms A8iilk+1ens

k=0 k=0

Hence we find

o 1 2 n 1
2 ] ety [Z S N Kiph st
n=1 0 n=1 7"_1 k=1

\ 'nPn s 2
+ \ ('n k— 1) ,,_k( |AS )c
_ S n(A8n-1)% Vg2 2
——r=7 k*p,_iC
*2 P Z Prk k¥
m’ AS p— 2 nj 2] D 9
DI e N U R
n=1 n k=1
W : 5 5 ;
+ Z npn Pk i(A8p—i=1) (0 —k + 1)2"‘?:]
n=1 —1 k=1
= 0(1)[I+II+III +IV+V].

Since
hm Sn = lim P_"/M

N—>00 Pn

1
a?
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we have by lemma 4

kA N \
1’L—§ Ko Z P "“"*é"z PRt
kei \ Y ED
—om[ S 38 Sea 1) -0n.

Similarly, we estimate the next two expressions, II and III, taking into
account the relation 48, = 0(1/n) and Lemma 3:

11—0<1>[2,k2 \!l’iu+y 2:—3]=0(1>,
n=k

k=1 n-k+1 "Pi-l 1 4
11 —0(1)[2 k“ \ Ph-i 2 \ 1% P"‘ ] o).
k=1 Pz n-=2k+l

We estimate the last two expressions, IV and V, applying the additional
assupmtion {pn} e BV MY a > }:

= 0(1)[20k / ‘n k—'l)gpi-kn——f—-(d‘g"rl)zl

k=1 n-k+1 Pi

1)ch 2 k|48, = O(1),

k=0 ne=k+1 ﬂ

~ow[ Y VP%,ok 5 +2, 2, 148uiaal| = 001).
k=0 n—k+1 Bla-1 (0 nezkhr

Thus we have proved the series given in Lemma 8 to be convergent a.e.

LEMMA 9. (3) Let ta(z) be the n-th (N, ps)-means of the orthogonal
series (3.1) with coefficients c, satisfying condition (3.2) and let {p,} ¢ M%,
a> 0. Finally, let {ni} be an arbitrary increasing sequence of indices
salisfying the condition

N2

1<¢g< e

for - k=1,2,..., ¢ =a constant,

of lacunarity. Then the series
D) [80y(@) — try(@)]"

k=0
i8 convergent a.e.

(*) Lemma 9 is a generalization of a theorem of Kolmogoroff (see e.g. [1],
p. 111-113, 2.7.1).
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Proof. We have

Sa—1la = 2‘ 0k?’k"‘_ Z Pn—r8k

k=0 ? k=0
= chwk—_ Z Gk‘PkZ, DPn—»>
k=0 r=k
i.e.
weiy S| 3 2
k=0 i=n—k+1
Hence
1 n (]
. 1 ° 2
(3.6) | (sf.mt,.)zdm=—2-20k( D p;) .
(1) P"’ k=0 i=n—k+1

If 0 <par, then p; < pn for n—k+1 <% < n, whence

1 n

(3.7) of (82— ta)2dz < %;hﬁ .

Replacing » by 7, in the last formula, we obtain after summation from
k=1 to oo

2 f(snk—t,,.) de = anpm, - 1,20?

k=1 0 k=1 Pf,, '"'k
0w 3L Zm_om Siea
k=1 ng}i

= 0(1)

7 120. =0(1).

i=1
If 0 < paN, we decompose the sum in formula (3.6) into two sums,
writing
[n/2)

f(s,.—t,.)’dw< 20( Z p,,) + cf (%) .
0

B y=0 t=n—r+1 v=[nl2]+1

Since n—v+1>=v+1 for » <[n/2] and p; < Pn—vir < Pogr < P, fOr n—y -+
+1 <1< n, we have

[»/2) n
(3.8) f (00—t < 35 L Megtar D 4.
B §=1 i=[n/2]+1

(*) The symbol [z] denotes the greatest integer not greater than =z.
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Now let & be the least positive integer satisfying the inequality ¢° > 2.
Then we may assume that the inequality ni/ng—s > 2 holds for every
positive integer k > s. Replacing » by %, in inequality (3.8), we obtain
by Lemma 6, after the summation of both sides from k¥ =8 to oo,

Zf(sn,,—tn,)dm<2 Zzzpfc?ﬂj i‘ &

k=8 © k=3 "k i=1 k=8 {=np_1+1
< E;zzp?c? E —+s E ¢ (%)
i=1 m;?l =1
2 2 2 2
'b c
< q‘ ;;‘ Eo,—O(l)Ec.—O
q 1-] t=1 =1

Hence, the series

D) [3n(@) — tay(@) P

k=g
is convergent a.e., which completes the proof of Lemma 9.

4. THEOREM 1. (%) Let 8s(z) be the n-th partial sum of the orthogonal
series (3.1) with coefficients c, satisfying condilion (3.2), and let {n;} be
an arbitrary increasing sequence of indices satisfying the condition

(4.1) 1<q<%":—1<r for k=0,1,2,..,

where r and q are constants. Finally, let {pn} e BVM®, a > %. Then the
orthogonal series (3.1) is (N, pa)-summable a.e. if and only if the sequence
{8n,(%)} ©8 convergent a.e.

Proof. Necessity. Suppose that the orthogonal series (3.1) satisfy-
ing condition (3.2) is (N, ps)-summable a.e., where {ps} e BVM* a > }.
Hence the sequence {t,(x)} converges a.e. for an arbitrary increasing
sequence of indices satisfying condition (4.1), and by Lemma 9 so does
the sequence {s,(x)}.

Sufficiency. Assuming the sequence {3,(x)} to be convergent
a.e. for an increasing sequence of indices satisfying condition (4.1), the
sequence {{(x)} is also convergent a.e., by Lemma 9.

Now let p be an arbitrary positive integer satisfying the condition

e <p<ngpyxw for k=0,1,2,.
(*) We have 1+({n,/2] > n,_,, for otherwise we should have n., << [n./2]+
+1 < ng,, i.6. n/ny_, < 2, a contradiction.
(*) Theorem 1 is a generalization of the Kaczmarz-Zygmund theorem concerning
the method (C, a), a > 0, in the case a > }.
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Then
P 2 41 fk+1 1
(tp—1ta)* = [ Z (ta— n—l)] < Z Nt —tp-1)? 2 %
n=nx+1 n=qr+1 n=np+1

The expression on the right side of this inequality tends to zero a.e.,
as follows from Lemma 8 and from the estimation

nk+1 1 1
Ng41
— < — (g1 — Mp) = —
n ng "y
n=ng+1

1<r—1.

The sequence {ts,} being convergent a.e., it follows that {t,} is also con-
vergent a.e.

In order to formulate further theorems, we extend the sequence {n;}
satisfying the condition of lacunarity (4.1) to a continuous and strictly
increasing function =(z), assuming the value n(k) =n; at @« =k for
k=0,1,2,.., by means of linear interpolation. We denole the inverse
of the function n(z) by l(z). Evidently, the function Il(x) is continuous
and strictly increasing.

THEOREM 2. () Ij
(4.2) 2, dulogi(m)] < oo,

then the orthogonal series (3.1) is (N, pas)-summable a.e. for every
{pn} e BVM®, a > }.

Proof. Let us write

k41 nE+L

' 1
Ax =V D&, o) T D o).
y=np+1 r=ngp+1
Obviously, the system {@.(x)} is orthonormal and
k-1
Sml®@) = 8n@)+ D A,D().
v=no+1

Condition (4.1) and the definition of the function I(z) imply

E‘Ailogzk = S‘logzk El ¢t
k=2 k=2 s=qg+1

nk+1

= D logltn(k)] D) < D clogill(»)] <oo.

k=2 r=ng+1 r=ng+1

(") Theorems 2 and 3 constitute a generalization of the Kaczmarz-Menchoff theorem
concerning the method (C, a), a > 0, in the case a > § (see o.g. [1], p. 114-116, 2.8.1-2.8.2).

Annales Polonici Mathematicl XII 17
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By the theorem of Rademacher and Menchoff, the series Q> A;®y(x) is
k=1

convergent a.e. Hence the sequence {s,(z)} is convergent a.e. Moreover,
we obviously have {c,} € I*. Thus by Theorem 1 the series (3.1) is (N, pa)-
summable a.e. if {p,} e BVM", a> }.

THEOREM 3. Let {v(n)} be an arbitrary sequence of numbers satisfying
the conditions v(n) = o{log?[l(n)]}, 0 < v(n) < v(n+1)—>oco. Moreover, let
{pn} e BVM®, a > }. Then there exists a system ON {yy(x)} and a sequence
of numbers {b,} such that

1° 3 bio(n) <oo,
n=0

2° the series D, baya(®) is not (N, pn)-summable at any point of the
n=0
interval <0, 1)>.

Proof. We shall base ourselves here on the following theorem of
D. Menchoff.

If w(n) = o(log*n), 0 < w(n) < w(n-+1)—>oo, then there exist a system
ON {gn(z)} and a sequence of numbers {a,} such that

(2) Soaiw(n) <o,

o0
(b) the series D anpa(x) is divergent at every point of the interval
n=0

<0, 1>.

Proceeding to the proof of Theorem 3, we write w(k) = v(n;), where
{ny} is an arbitrary sequence of indices satisfying the condition of lacu-
narity (4.1). Hence

0 < w(k) = v(nx) = o {log*[l(nk)]} = o(logk),

and by Menchoff’s theorem there exist an orthonormal system {g,(z)} and

a sequence of numbers {a,} such that conditions (a) and (b) are satisfied.
Let {N)} be the increasing sequence of indices defined in Menchoff’s

proof (cf. [4], p. 195). We define the sequence {y.(x)} as follows:

an(x) = ‘P»(w) ’ ) bnm = Am fOI' Nk—l < m << _ATk ’
'P’n(m) =¢Nk(m) ’ b'n - 0 fOI‘ n # m .

Evidently, the sequence {ys(x)} is orthonormal in <0,1). Obviously,
we have

ibi'v(n) = jbﬁmv(nm) = Z”‘ai.w(m) <oo.

n=0 m=0
Thus condition 1° is satisfied. We now prove that the series D baya()
n=0

ist not (N, px)-summable at any point of the interval (0, 1>. Denoting
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by 8.(x), resp. 3a(x), the n-th partial sums of the series (b), resp. the
series 2°, we may write 3,,(2) = sm(z). Since the sequence {sn(x)} is diver-
gent at every point of the interval (0, 1), the sequence {3, (z)} is also
divergent at every point of this interval.

If {to(x)} is the sequence of (N, p.)-means of the series 2° then by
Lemma 9 the sequence {i, (x)} is divergent a.e. in the interval <0, 1),
l.e. in a set (0,1)— F, where E is a set of measure zero. Now, defining
Yon(2Z) = 1/bs, for z e E, we conclude that the sequence {i,,(r)} is diver-
gent at every point of the interval <0,1). Hence the sequence {I.(x)}
is divergent in the whole interval {0, 1).

Thus we have proved that condition (4.2) cannot be improved in
the sense of Menchoff.

THEOREM 4. (®) If {pa} e BVM® a> 1%, and if tx(x) denote (N, pas)-

means of the orthogonal series (3.1) with coefficients ¢, satisfying con-
dition (3.2), then

ta(z) = o {log[l(n)]} a8 n-—>oo.

Proof. Let {u,} be an arbitrary sequence of positive numbers in-
creasing to oo. Let us write

(4.3) o) = O D g — 2 D pacsitia),

p=0 k=0

where {1,} is the sequence defined by condition (3.4). By formula (3.5)
we may write

n—1 k-1
tn . 1 "
4.4) 2 =1 —— n— A——— ( n_,,.)A—
(4.4) i P”k=2,p kv=§0 i E Ep 8

Now, if we take u, = log[l(n)], Theorem 2 shows that the first term on
the right side of (4.4) is bounded a.e. But the second and the third term
are also bounded a.e., for the series

Swmi and 2 (Zpk-.ls)
y=0

r=0

are obviously convergent a.e.
Thus, we have
th =0(us) as mn-—>oco.

Hence it follows by Lemma 7 that

tn =o{log[l(n)]} as mn->oo.

(®) Theorems 4 and 5 generalize theorems VII and VIII of K. Tandori concerning
the method (C, a), a > 0, in the case a > } (see [7], p. 101-111, or [1], p. 118).

17+
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THEOREM 5. Let {v(n)} be an arbitrary sequence of positive numbers
tncreasing monotonically to oo and satisfying the condition
v(n) =o{log[l(n)]} a8 n->oo,

and let {pp} e BVM®, a> }. Then there exist a system ON {®n(x)} and
a sequence of numbers {as} e I* satisfying the condition

n k
1 1 \0
11m o | Ba an k/}J a, D, (x)| =
k=0 r=0

at every point of the interval (0,1).

Proof. Without loss of generality we may assume that v(n) >1
Aa>1, where {4,} is the sequence defined by (3.4). Since v(n) = o {log[l(n)]},
o(n) 7 oo, and {ps} e BV M a > }, from Theorem 4 follows the existence
of a system ON {&,(x)} and of a sequence of numbers {b,} such that

(- -] (- <]
D bav¥(n) < co and that theseries 2 ba@n(z) is not (N, ps)-summable at

n=0 n=0
any point of the interval (0, 1).

Let us choose ¢, = byv(n) and un = A.v(n). By (3.3), (4.3) and (4.4)
we have

n—1 k-1
sy~ [ P2 2 P;(ZP”) -

Arguments analogous to those used in the proof of Theorem 4 lead to
the conclusion that the second and the third term in the square brackets
tend to zero a.e. By Theorem 3, the first term is divergent at every point
of the interval <0,1). Since A, 7 co, we have

(4.5) : 11 Itn(w)i —

n—>00 'U( )
a.e. in {0,1).
We now show that (4.5) holds for every z e (0,1) if we change
in a suitable way the definition of {@,(x)} in a set of measure zero. Let E
be the set of all x € (0, 1) for which (4.5) does not hold and-let {nn} be
a lacunary sequence of indices satisfying the condition

Imil 5 441>1  for m=0,1,2,..

Nm

Further, let {pa(x)}, resp. {N.}, be the orthonormal system, resp. the
sequence of numbers defined in the proof of Menchoff’s theorem (cf.
e.g. [4], p. 195). Now, for z ¢ E, we put

¢”m _I/bﬂm for Nk-1<m<Nk, k=1,2,..
Dp(z) =pn (), bp=0 for =u+#nm.

*?
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Evidently, the system {P,(z)} is orthonormal in {0, 1). Hence we obtain
the inequality

(4.6) vg v(n)PnZ”" "Z D Fanlm),

p=4 N”_l<m<N

where m, is the least positive integer satisfying the inequalities
N8—1<k<nm<Ng.

It follows from the definition of the sequence {N,} that N,_,> 2k for
k > 4. Hence for s > 4,

mo+1 > Uk) > Ng—y > 28.

Denoting by p the number of terms in the inner sum on the right side of
the coefficient p,—; in the formula (4.6), we have

P =my—(8—4) > my+1—8> §(my+1).
The lacunarity of the sequence {n,} implies

. Pmgt1 = (@+1) Ny = (a+1)k for Kk >10,
ie. i > (a4 1)E
mo+1 3 U[(a+1)k] .

P> 3l[(a+1)k].

Now let {ps} e M° a > %}. If 0 < p,\, then we have for sufficiently
large n

Hence

Thus we have

r
@) 1 1 - L (=)L)
v(n) ”(n) ® kmni(a+1]+1 ' 2
1 Il(n) NP _a >_1_‘ a logl(n)
2°9(n) P, a+1 4 a+1 o(n)

If 0 < ps7, then for sufficiently Iérge n ‘we have

n

ta(x) 1 1
o(n) > 2v(n) P, k-['%ll)]l[(a-i-l)k]pﬂ_k

n n—I[nj(a+1)]
ln) 1 Im) 1

onimy | P Pa-k = Px
20(n) Py - 20(n) Ps et

211;82) (1 % 2 1”‘)
n k=n—[n/(a+1)])+1
l(n) nps 1 a logl(n)
>2v('n) (1 Py a+1) 4(a+1) ) v(n)
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Hence it follows that, assuming {p.} ¢ M% a > 4, we have

r— [ta(@)|
(4.7) lim o) —

for z ¢ E, and this together with the first part of the proof implies that
condition (4.7) holds for every z e (0,1>. Now our theorem is obtained
by choosing a, = bainv(n).

5. THEOREM 6. Let {pa} e BVM®, a > }. If {Ts(x)} i3 the sequence
of (N, pan)-means of the orthogonal series (3.1) with coefficients c, satisfying
condition (3.2), and if the limit

1.
lim 2= g, Tu(a)

n—>o00 Qn k=0

exists a.e. for a sequence {qn} ¢ M?, B > %, then the series (3.1) is (N, pa)-
summable a.e.

Proof. Without loss of generality we may assume 7(z) =0. By
the assumption, the series

(5.1) D [Ta(@)— Tuos(@)]
n=1

is then (N,gs)-summable a.e., {qgs) e M?, > }. By Lemma 8, the series

D, Al Ta(@)— Tpes(@)?

n=1

is convergent a.e. Hence, by Lemma 5, series (5.1) is convergent a.e., i.e.
series (3.1) is (N, ps)-summable a.e.

THEOREM 7. If {p,} e M a > }, and if
(N, pn)-lim (@) = s(a) ,

where o5(z) are the n-th Cesiro means of order § > 0 of the orthogonal
series (3.1) with coefficients ¢, satisfying condition (3.2), then series (3.1)
is (C, f)-summable a.e. for every § > 0.

Proof. Without loss of generality we may assume of(z) = 0. Then
the assumption of Theorem 7 implies the series

o0

D) 1dh@) — dh_y(@)]

n=1
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to be (N, ps)-summable a.e., where {p,}e M° a > }. By a lemma of
Kaczmarz-Zygmund (see e.g. [56], p. 184) the series

(=]

D nldh(@) — oh_y(@)]

n=1
is convergent a.e. for > %. Hence and from Lemma 5 it follows that the
orthogonal series (3.1) is (C, f)-summable a.e. for every g > 4. Thus,
by the theorem of Kaczmarz-Zygmund (see e.g. [4], p. 219, 5.8.3) the
orthogonal series (3.1) is (C, f)-summable a.e. for every g > 0.

In order to formulate the next theorem we extend the definition of
the: Norlund transforms (N, gs) to the case where Y g, is a series with
partial sums @, = g+ ¢, +... + ¢» # 0. (Obviously, it may happen that
certain of the values ¢, are negative.)

THEOREM 8. (°) Let Ta(x) and ta(x) denote the (N, pa)-means, resp.
(N, gn)-means of the orthogomal series (3.1) with coefficients ¢, satisfying
condition (3.2), where po > 0, pp = 0, npa/Pr = 0(1) and Qp = ¢o+ ¢, + ... +
+qn # 0, 1im n¢,/Qr = a— 1, where a > 1. If by these assumplions the

a1—>o0

orthogonal series (3.1) is8 (N, pn)-summable to a function s(x) a.e., then

Z:[t,,(a:)~zs'(a:)]2 =o0o(n+1) a8 n->oo.

k=0

Proof. Proceeding as in the proofs of Lemmas 3 and 4, we state
first that

(a) the sequence {nQ3) increases to infinity beginning with a certain N,

n
i 1 = 1
(b) lim — P G =5-—7 (a>}.
Evidently we have
2ngy qn\: N
nQi—(n— 1)@ = @} —+(1—— — =
T w Q,.) Q:

According to our assumptions, the expression in the square brackets
tends to 2a— 1, whence it follows that the sequence {nQ2} is increasing
for sufficiently large ». In order to show that nQ: >oo we observe, in
virtue of Stolz’s lemma, that

2 2 2
lim 1987@n _ y;p, 108(n—1)@n—. —lognQu
n—co 10N noo lOg(n—1)—logn

log[(1—~ ga/@n)*" "™ _, |

=14+1lim
n—»00 log(1— l/n)"

(*) Theorem 8 generalizes a theorem of Zygmund-Borgen (see e.g. [1], p. 102-103,
2.6.2) concerning the strong (C, a)-summability (for ¢ > }) of orthogonal series.
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Hence
log nQ3 ~ logn™*
and therefore

nQr—>c0 a8 Mmoo (a>3}).
Since n@Q; 7 + oo, applying Stolz’s lemma again, we get
ki
2 Qo 1 1

lim =2 = lim
nso nQp 7% 20qn/Qn+ (1 — ¢n/Qn)’ — ngh/Qn T 2a-1

which shows property (b) of the sequence {Qn}.
Passing to the proof of our Theorem, we observe that the second
term on the right side of the inequality

i Z [tu(2) — 3 ()]

k=0
< P k-Eo [tr{z) — Te(z)P + P | k—Eo [(Tw(z)— s (x)]

tends to zero a.e. according to olnr assumptions. Hence it will be enough
to show that the first term of the last inequality also tends to zero a.e.
Changing the order of summation. we may write

n

re= - )
_2%% Z(m- q,._)

v=0

Ta—ta =2ncp% (—1;,“—;" — Q&;").

=0

gf(T’r:-F;n)a “2n+120"( P, ~ 5:)2

Changing the order of summation in the last expression and decomposing
the inner sum into two sums from » = v to » = 2v and from n» = 2v+1
to n = oo, we can write

Tp—tn P, Qi
Sfietlags $ 1 (R oy

[ (L

and therefore

Hence

I e e

v=N n=29+1
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From the properties of the sequences {P,} and {@,} it follows that

oo
22c:+ Z Zok— 1)201,—0(1)
=N ( +1)Qu v=N
To estimate the expressions B we notice that
|¢n-r| = max |@el , Pn-s = max pg,
n—rv+I<k<n n—o+1<k<n

where 0 <r<<v—1, 0 <8 <v—1. (Of course, it may happen that one
or both of the values ¢n—-, prn—s vanish.) Now we can write

(pn—v+1 + +Pn IQn v+1| + +|q1i|)2]
< 2 v
20 2 'n,-i—l[ P:, Qn

=0 n=2v+1

[- ]

2 2
<2 yese 3 [See

=0 n=2v+1

=o(1)5‘(o+1)2c§ g’( —o ¥ 1)20,—0(1)

v=0 n=20+1 =0

Thus we have

DITue)— (@) =o(m+1) as n->oo,
k=0
which completes the proof of our Theorem.

Choosing in Theorem 8 p, = (“+:—l), @n = ("+;—2>, a>}, we get

the theorem of Zygmund-Borgen (see e.g. [1], p- 102, 2.6.2) concerning
the strong (C, a)-summability, for a > 4, of orthogonal series.

Taking ¢, >0, ¢ =0 for n =1, 2, ..., in Theorem 8, we obtain as
a corollary the following theorem:

THECOEM 9. If orthogonal series (3.1) with coefficients ¢, satisfying
condition (3.2) and with partial sums s,(z) i8 (N, ps)-summable to a func-
tion 8(z) a.e., where npy/P, = O(1), then

Z[sk(w)—s(m)]zio(n+l) as mn—>oo.
k=0

This theorem is a generalization of a special case of the theorem of
Zygmund-Borgen.
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THEOREM 10. (°) If the orthogonal series (3.1) with coefficients cq
satisfying condilion (3.2) is (N, ps)-summable to s(x) a.e., where {p,} ¢ M°,
a > 0, then

Z[sﬂk(w 8(z)2P=o0(n) a8 Mmoo,

k=0

for an arbitrary convexr sequence of indices {ny}.

Proof. If 0 < p,_~, then we may apply inequality (3.7). Replacing
in this inequality » by 7, and dividing both sides by ¥+ 1, we obtain
after summation from ¥ =0 to oo (n_, = 0)

Zk-i-lf(sn"—t"” 2dz < 2 P ;z'” nf 2 c .

k=0 B =0 y=njq+1
Since the sequence {n}} is also convex, we have
ng+mnok =20y  for k=1,2,..
Hence there exists a constant ¢ > 1 such that

Nox > an for k=1,2,..
Thus we have

j SRS D VI A H . SR
(E+ 1)ny z+1 q’2 q i41 q—l

whence

W

Z f (8 — tmy)*d 1)2 (z-{-l '_%11

= 0(1)2 2 2 =0(1)

=0 vmuy_y+1

Hence it follows that the series

(5.2) 2% (82— tny)*

k=l

is convergent a.e. when 0 < p, .

Now assume 0 < pyx and ngx/nx =g > 1 for k =1, 2, ... Proceeding
as in the proof of Lemma 6 we may easily show that there is a constant
¢, > 1 such that Py, /Pp,>¢q, >1for £ =1,2,...

(**) Theorem 10 is an analogon of a similar theorem on Abel’s method (cf. [1],
p. 105-108, 2.8.4).
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Applying inequality (3.8), we may write

vlj (8, — tny)2d@ < Z Zr'pfcf 2 Z

k=1 P, v=0 v=[m,l2]-‘-1

Let s be the least positive integer satisfying the inequality ¢° > 2. Then
Nk 2 Qi) = CRG 2 - 2 Pkj2e 2 2hgges)

where k is an arbitrary positive integer > 2°. Writing p = [k/2°] for k > 2°
we have

1 00 26—1 g
N g Moz V21 N1 N e
Ak’ (6m t”")dw<L/vP”c"AJkP +Alk LJ 6”+
Feum1 y=1 nEp=v K k=1 v=[ng/2]+
Np+1 Np+a
1 E . E '
+ “’E Cy + cv‘l' -+ Z cv
k=28 v=np+1 v=npp+1 vangp—1+1

Obviously, the second and the third term on the right side of this
inequality are bounded. We show the first term to be also finite. This
is obtained by applying the following estimation:

v 1 1 1 1

+ +ot
kP:, kP, (k+1)P e ok P3,, 4kP

nk>v

. +) _g 1
q

P’zm 1 Q1 1":l PE
Hence
-y 2 © 2 2 hnd R
Z vpre ) 12 < Z”;” 6 = (1)20:=0(1)-
p==1 nE=v kPnk ql_l =1 P" r=1

Thus we have proved the series (5.2) to be convergent a.e. in the case
0 < pa . This, together with the first part of the proof, shows for every
{pn} € M° a > 0, the convergence of series (5.2) a.e. Now, by Kronecker’s
theorem,

n
1 7 . .
" (8a,—tn,)2 =0(1) as m-—>o00.
k=1

Theorem 9 now follows from the inequalities

n

‘n
1\ 2 L2
2 ) im0 <2 Y (s Z (toy — 8)°

k=1 k=1

and from the assumptions.
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