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for differentiable multivalued maps
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0. Introduction. In this paper we study the solution set of an inclusion
of the form xe F (4, x) where F(4, x) is a multivalued a-contraction. In the
proof we use a new concept of differentiability of multivalued maps intro-
duced in [6]-[8], in Section 1 we collect the notations to be used in the
sequel and the main properties of the fixed point index introduced in [5].

In Section 2 we introduce the concept of multivalued differentiability
along P for multivalued maps, and in Section 3 we prove a fixed point
theorem for this type of maps.

In Section 4 we prove that the solution set of an inclusion of the form
xeF(A, x) contains a non-empty closed connected subset which is un-
bounded in R, xP.

Section 5 is devoted to the study of the case when F (4, 0) = O for every
AeR,, and we proof that bifurcation from the line of trivial solutions
R, x {0} occurs.

Finally 1n Section 6 we discuss the. situation where bifurcation from
infinity takes place.

We would like to mentione that results of Section 3 to Section 6
contains as particular cases some results of H. Amann [3].

1. Notation and Preliminaries. Let E be a real Banach space. A subset P
is called a Cone if P+P< P, R, Pc P, Pn(—P) = {0}, P =P, where R,
:= [0, +o0) and P denotes the closure of P. Each cone P induces an ordering
< by setting x<y iff y—xeP. The relation < is reflexive, transitive,
antisymmetric and compatible with the linear structure and the topology of
E. By an ordered Banach space (OBS), usually denoted by (E, P), we mean
a Banach space E together with an ordering < induced by a cone P, the
positive cone of E. We write x <y iff y—xe P:= P\{0}. The elements of P
are called positive. The norm of an OBS is called monotone if 0 < x <y
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implies ||x|| < ||yll. The positive cone is called total if P— P = E and gener-
ating if P— P = E. In the sequel the cone P is considered total.

Given two real Banach spaces E and F, a multivalued map T: A4
c E —oF is called upper-semicontinuous (us.c.) at xe A if for any neigh-
bourhood U of T(x) there exists a neighbourhood V of x such that T(y) = U
for any yeAn V.

Denoting by K (F) the family of all non-empty compact convex subset of
E, the multivalued map T: A < E — K(F) is upper-semicontinuous on A if T
is upper-semicontinuous at each point of A4.
"~ A multivalued us.c. map T: E - K(F) is called homogeneous if T(tx)
=tT(x) for any xeE and teR,. Let L(E, F) denote the space of linear
continuous mappings from E in to F; then a multivalued us.c. map L: E
— K (F) is said to be linear from E into F, if there exists a maximal set
¥ < L(E, F) such that

Lx:=%x=|)Ix for xeE.

lew
Let (E, P) be an ordered Banach space with total positive cone P;
then a multivalued map T: P— K(E) is positive 'if T(P) = P, where
T(P):= I(;JP T (x).
For any acE, X and Y non-empty, r > 0, we denote:
d(a, X) :=inf {|la—x||, xe X},
d(X, Y):=inf{|[x—y||, xe X and yeY},
d*(X, Y):=supld(x, Y), xe X},
H(X, Y):=max {d*(X, Y), a*(Y, X)},
|X]:=d*(X, [C]) =sup {[Ix]|, xe X},
B(X,r):={xeE| d(x, X)<r}; B:={xckE ||x|| <1};
S:={xekE, ||x|j = 1}.
We recall that if X and Y are compact subset of E
d*(X,Y)=inf{t >0 X < Y+B}
and consequently
H(X,Y)=inf{t > 0] X < Y+tB, Yc X +tB}.
We recall following known result.

ProrosiTiON 1.1. Let X, Y < E be bounded. Then for every ze E we have
d(z, X) <d(z, Y)+d*(Y, X).

Proof. For every xe X and yeY we have

llx—zll < lly—zli+llx—yll



Differentiable multivalued maps 285

and

d(z, X) < |ly—zll+4d(y, X)
<|ly-zl+d*(Y, X) <d(z, Y)+d*(Y, X). Q.ED.

Let E be real Banach space. If Q = E is any bounded set we define the
measure of non-compactness of Q, a(Q), to be the inf {¢ > 0| Q can be covered

by a finite number of sets, each of which has diameter less than ¢}
(Kuratowski [9]).

This measure of non-compactness satisfies a number of properties [9]
among which are the following:

AcBcE implies a(A)<a(B),
0<a(A4) <d(A4), where 6(A4) is the diameter of A4,
a(A)=a(4) and a(4uU B) < maxx(A4), a(B)!,

a(A+B) < a(A)+a(B),
a(coA) = a(A),

where co A denotes the closed convex hull of A.

Let T D < E— K(E) be a us.c. mapping called condensing (resp. a-
Lipschitz with constant k > 0) provided that a(T(Q)) < ka(Q) for each
Q <= D with a(Q) # 0. In particular, if k <1, then T is called a-contraction
(Darbo [4]).

Let X and D be subset of E and set Dy:= D X. We denote by dx D
the boundary and the closure of Dy relative to X.

If X cE is closed and convex, D cE is open and T: Dy — K(X) is
condensing and such that x¢ T'(x) if xe dy D, then it has been shown by
Fitzpatrick and Petryshyn [5] that there exists an integer i(T, Dy), the fixed
point index of T on Dy, which has the following properties:

(P,) SovvaBiuiry. If i(T, Dy) # 0, then T has a fixed point in Dy.

(P,) NORMALIZATION. If xo€ Dy, then i(Xxq, Dy) = 1, where %o denotes the
mapping whose constant value is xg.

(P3) Apprrivity. i(T, Dy) = i(T, D,x)+i(T, D,x) for every pair of disjoint
open subset D,, D, of D such that T has no fixed point in D\(D, v D,).

(Py) Homotory. If H: [0, 1}xDy— K(X) is wus.c. and such that
a(H([0, 11xQ)) <a(Q) for Q =Dy with a(Q)+#0 and if x¢H(t, x) for
te[0, 1] and xe dx D, then i(H(t, "), D) is independent of te[0, 1].

These properties were established in [5] in the more general setting
where E is a Frechét space.

Let us use properties (P,)—(P,) to deduce some further properties of the
fixed point index.
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(Ps) ExcisioN. Let V < U be open and x¢ T(x) on D\V. Then i(T, Dy)
=i(T, Vy).

Proof. The additivity gives (T, Dy) =i(T, Dx)+i(T, ®) hence
i(T, »)=0. Again by additivity we get i(T, Dy) =i(T, Vy)+i(T, Q)
=i(T, Vy) Q.E.D.

Let A = R be an arbitrary interval and let A be a subset of 4 x E. Then
for every Ae A, we denote by A, the slice at A, that is

A; = {xeE] (4, x)e 4}.

Observe that 4, is open in E if A is open in A xE.

(P¢) GENERAL HOMOTOPY INVARIANCE. Let U < Rx X be bounded and
open. H: U —» K(X) us.c. condensing and such that x¢ H(t, x) for every
(t, x)e 8U. Then i(H(t, -), U,) is independent of te[0, 1].

Proof. Note that the index is well defined since d(U,) = (6U),. From
[5], Proposition 3.1, it follows that I—H is proper and the set

@:={(t, x)eU| Oex—H{(t, x)}

1S a compact, possibly empty, subset of U. Hence &£:=d(Z, ¢U) > 0. For
te[0, 1] define :

V:={xeUJ} d((t, x), 0U) > 3¢}, I,:={t'e[0, 1] It, | <}e}.
It is not difficult to check that
NI, xE)yclyxV,cU.
Now, by excision, for t'e I, we obtain

i(H(, ), U) = i(H(, ), V).

By the homotopy invariance the last index is independent of t'el,. Since
[0, 1] can be covered by finitely many I,’s the statement follows. Q.E.D.

2. Differential for multivalued maps. In [6] we introduce a definiton of
differentiability for multivalued maps, T, acting between Banach spaces. In
[7] we extended this concept to the case when T is single-valued and the
domain is a cone. In this section we give the above definition for multivalued
maps defined in a cone. Let (E, P) be an ordered Banach space with total
positive cone and F: P— K(E). A homogeneous map usc. Txq,: E— K(E)
is called an upper-H-Differential of F at xy,e P along P if there exists é > 0
such that

F(xo+h) = F(xg)+ Txo(h)+R(xo, h) whenever ||h| <d.

Here R(x,, ‘) is a multivalued map from P into E such that |R(xg, h)|
=o(||h) as h—0.
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A homogeneous map T_: E — K(E) is called an upper-H-Differential of
F at infinity along P if there exist § > 0 such that

F(x) =« T,(x)+R(x) whenever ||x]| > 6.

Here R is a multivalued map from P into E such that |R(x)| =o(||x|]) as ||x]|
— + 0.

For m = xy, o0 a map F is said be H-Differentiable at m along P, if
there exist an upper-H-differential T,: E — K(E) of F at m along P such that
for any upper-H-differential T,, of F at m along P, we have T, (h) < T,,(h) for
all he P. In this case the multivalued map 7,, is called the H-Differential of T
at m along P. T, is called the Differential (resp. upper-Differential) of F at m
along P if T, is a linear multivalued map.

Assume that F is a-Lipschitz with constant k; then the multivalued map
T, is called (upper-) aH-Differential (resp. (upper) a-Differential) of F at m
along P, if is an (upper-) H-Differential (resp. (upper-) Differential) of F at m
along P and it is a-Lipschitz with constant h < k.

Let F: Rx P - K(E) for every A€ R we denote with a%F (4, xo) (called
2

upper-H-Diflerential respect the second variable) a upper-H-Differential of
F(4,-) at x, along P. In the sequel we denote by (E, P) an OBS with total
cone P. Given ¢ > 0 we set P,:= B P. The closure P, of P, in P coincides
with ¢B N P. Hence we have that the boundary S, coincides with ¢S~ P.
Finally we put S* =8/ .

3. Fixed point of differentiable multivalued maps. In this section we
obtain results regarding the existence of positive fixed points for multivalued
maps by imposing conditions for the upper-Differentials at 0 and at co.

LemMa 3.1. Let (E, P) be an OBS, g a positive number and let F: P, — k(P)
be an a-contraction.

(a) Suppose that F(0) = 0 and assume that there exists a positive upper-

aH-Differential Fy at O along P such that Ax ¢ Fy(x) for every x > 0.and every
Az 1

Then there exists go > 0 such that for every ge(0, go]
i(F, P)=1.

(b) Suppose that F(0) = 0 and assume that there exists a positive upper-a-
Differential Fg at 0 along P such that x¢ Fo x for every x > 0, and for some
A > 1, there is an element x > 0 such that Axe Fyx. Then there exists g, > 0
such that for every ge(0, go)-

i(F, P) =0.

Proof. The homogeneous map Fg is an a-contraction and ({ — Fg)(S™)
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is closed. Consequently, since 0¢ (I — F,)(S™) there exists y, > 0 such that for
all xeP

(1) d(x, Fo(x)) = yollx|.

According to the assumptions, there exists y, > 0 such that F(x) c Fy(x)+
+ B(0, yo|x]]) for every ||x|| <y, and

(2 d*(F (x), Fo(x)) < yollxIl.

We claim that the homotopy: (1 —21)Fg(x)+4AF(x) is us.c. a-contractive
and has no fixed points on S, , where g€ (0, g,]. Indeed, suppose that there
exists XeS, such that xe(l—2A)F,(X)+AF(X). From (2) it follows that
(1= Fo(x)+AF (X) < Birym.yohxiy and X€ Bryis,yo 2 (%o, Fo(X)) < volIxll,
contradicting (1). Therefore

i(F, P)) = i(Fo, Py)-

In case (a) the homotopy f- Fg(x) is u.s.c. a-contraction and fixed point free
on S¥, since x¢ fFgy(x) for every x > 0 and for [0, 1] according to our
assumptions hence

i(F, P)=i(Fo, P) =i(0, P)=1.

In case (b) from the linearity of Fy, there exists /,, e L(E, E) and for some
Ao > 1 there is an element hy > 0 such that A5 hy = Iy hy. We claim that the
equation

(3) x = Iy x+yh,

has no positive solutions for every real y > 0. In fact, suppose that there
exists Xo > 0 and a > 0 such that x, = I, X, +ah,. Let 1, = 0 be such that
Xo = loX+ahy. Let 1o > 0 be such that X, * th, for all T > t,. Then X,
=y Xo+ahy 2 lgtohg+ahy = 19 Ag hg+ahg > (1o+a)hy which contradicts
the maximality of 7,. Hence for every real y >0 and ¢ >0

i(ly+7ho, P)=0.

Now, the homotopy (1 —1)lyx+t(lo x+yhy) 1s us.c. a-contractive and has
no fixed points on S, . Indeed, suppose that there exists XeS, such that
x=(1-0lyx+t(ly+7vho) = lo X+1tyh, and equation (3) has positive solu-
tions in contrast with the previsions result. Hence i(ly, P,) = i(lg+yho. P,).
Obviously, F,, is a positive upper a-Differential of I, and there exists g, such
that for all ge (0, go]

0 =i(l, P) =i(Fy, P)=i(F, P). QED.

LeEmMA 3.2. Let (E, P) be an OBS and let F: P—> K(P) be an a-
contraction.

(a) Suppose that there exists a positive aH-Differential F', at o« along P
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such that Ax¢ F', (x) for every x > 0 and every A > 1. Then there exists go > 0
such that for every ¢ > g

i(F, P)=1.

(b) Suppose that there exists a positive upper-a-Differential F', at oo along
P such that x¢ F', x for every x > 0, and for some . > 1, there is an element
x > O such that Axe F', x. Then there exists go > 0 such that for every ¢ = g,

i(F, P)=0.

The proof is, with obvious modifications, the same as that of
Lemma 3.1.

THeorewm 3.1. Let (E, P) be an OBS and let F:R, xP — K(P) be a map
such that F (4, ). P— K(P) is a-contractive for every Ac R, and F(A,0 =0
for all Ae R, , suppose that for m =0, o0 there exists a multivalued linear
map F,: E— K(E) and a map r,,: R, x P — K(P), such that

F(A, x) c AT, x+r,(A, x), (A, x)eR, xP

with |r, (4, x)) = O(||x]]) as ||x|]| = m in P for all Ac R, . Finally, suppose that
T,, has exactly one positive eigenvalue u,, with a positive eigenvector. Then for
every A€ R, satisfying

min {1/po, 1/p15,} <2 < max{1/pg, /1)

the map F (A, ') possesses a positive fixed point.

Proof. From Theorem 3.1 and Lemma 3.2 it follows that there exists
two real numbers ¢ and 4 with 0 < g <& such that i(F(4, ), P)=1 and
i(F(4,), P)=0 or i(F(4,"),P)=0 and i(F(4,-), P) = 1. Hence, in both
cases, from the Additivity property of the fixed point index it follows that

i(F, P;\P) = i(F, P)—i(F, P,) # 0.

From the solution property of the fixed point index there exists x such that
o0 <||xll <é and xeF(4, x). Q.E.D.

4. Global of positive fixed points. Let (E, P) be an OBS such that
P # {0} and let F: R, x P —» K(P) be a-contractive. In this section we study
inclusions of the from:

(1) xe F (4, x).

In other words, we study fixed point of one-parameter families of multi-
valued maps. In what follows we denote by X the solution set of inclusion (1)
that is, '

Z:={(4, x)eR, xP| xeF(4, x)}
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and we set
A:={AeR,| xeP and (4, x)e X},

Recall that a non-empty closed connected subset of a topological space X is
called a subcontinuum of X. Finally, denote by X* the set of positive
solutions of inclusion (1), Z* consist of the union of £ N (R, x P) and the set
{4, 0)e R, x{0}] 4 is a bifurcation point}.

TueoREM 4.1. Let (E, P) be an OBS and let F: R, xP - K(P) be a-
contractive. Suppose that F (0, 0) = 0 and that zero is the only fixed point of
F(0, -). Moreover, assume that there exists a positive number ¢ such that
dx¢ F(0, x) for every xe S, and every & 2 1. Then the solution set X contains
an unbounded subcontinuum containing (0, 0).

Proof. The proof is with slight modifications the same as that of
Theorem 17.1 in [3]. We give it here for the sake of completeness.

Put Q, =[0, u]JxP, for every pu>0. Let C the component of X
containing (0, 0) and suppose that C is bounded. Then there exists a number
p >0 such that CnaQ, = Q.

Set D:=0Q,nZXZ. We have DNnC =@ and D and C are closed subset
of the compact metric space X:=2XnQ,. Then there exist two disjoint
compact sets K, and K, such that Cc K, and D c K, with X =K, uK,. .
Since Q, is a metric space, there exists an open set U of ¢, with K, = U and
Un(K,;ndQ,)=0.

Consequently, U is a bounded open subset ot [0, u] x P such that
x¢ F(4, x) for all xe U and all 1€ [0, u]. Hence, denoting by U; the slice of
U at Ae[0, u], from property (P¢) of the fixed point index, we obtain

i(F(0,), Ug)=i(F(u,-), Uy).
But U, =@ and therefore
i(F(O, .)’ UO) = I(F(#, '), Uy) =0.
By the excision property of the fixed point index,

'(F(()’ ')a UO) = '(F(Os ')’ Po)

Now, the homotopy 7 — tF(0, *), te[0, 1] is us.c., a-contractive and has no
fixed points in P for every te[0, 1]. From the homotopy property of the
fixed point index it follows that

i(F(0,-), P)=1i(0, P)=1.
This contradiction proves the assertion. Q’.E.D.
COROLLARY 4.1. Let (E, P) be an OBS and let F: R, x P — K(P) be a-
contractive. Suppose that F(0, 0) =0 and that zero is the only fixed point of

F (0, '). Assume that there exists a positive number ¢ such that éx¢ F (0, x) for
every xS, and every 8 > 1. Moreover, 1 > 0 such that F(4, -) has non-fixed
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points. Then £ N ([0, 1] x P) contains an unbounded subcontinuum emanating
Sfrom (0, 0).

Proof. From Theorem 4.1 it follows that X contains an unbounded
subcontinuum C emanating from (0, 0). Denote by P;: R, xP— R, the
projection defined by P, (4, x) = 4, since P, is continuous, P, (C) is a con-
nected subset of R, hence an interval containing 0. Since P,(C) = A and
A¢ A, it follows that Z n([0, 4] x P) contains an unbounded subcontinuum
emanating from (0, 0). Q.E.D.

COROLLARY 4.2. Let (E, P) be an OBS and let F: R, x P - K(P) be a-
contractive. Suppose that F(0, 0) =0 and that zero is the only fixed point of
F(0, -). Assume that there exists a positive number g such that 6x¢ F (0, x) for
every xeS, and every & = 1. Moreover, suppose that F(A, x) = x for every
A >0 and every xeS;. Then A =R,.

Proof. Denote by p,: R, x P — P the natural projection. Let C denote
the unbounded subcontinuum of Z emanating from (0, 0). Then p,(C) is a
connected subset of P which does not intersect S, . Hence, from the
unboundedness of C, we have that A = R,. Q.E.D.

S. Bifurcation from the trivial solution. Let (E, P) be an OBS and let
F: R, x P - K(P) be a-contractive and such that F(-, 0) = 0. Then i,e R,
is called a bifurcation point for the inclusion

xeF(4, x).

With respect to the trivial solution, if for every neighbourhood U of (4,, 0) in
R, x P there exists a point (4, x)eU with xeF(4, x) and x > 0.

Theorems 5.1 and 5.2 contain necessary conditions for 1,e R, to be a
bifurcation point. Theorems 5.3 and 5.4 contain sufficient conditions for the
existence of solutions which bifurcate from the trivial solutions.

THEOREM 5.1. Let (E, P) be an OBS and let F: R, x P - K(P) be an a-
contractive map such that F(-, 0) = 0. Suppose that i,e R, is a bifurcation

point such that there exists a positive upper-a H-Differential G%F (4o, 0). If the
2
map F(-, 0){|x||~!: R. - K(P) is continuous at Ay, uniformly on null se-

0
quences in P, then 1 is an eigenvalue of BTF (Ao, 0) with a positive
2

eigenvector.

Proof. The assumptions imply the existence of a sequence ((4,, x,))
in (R, x P)n X which converges to (4o, 0). Hence, letting y,:= x,/l|xlle $*
we have

) X, i X,
d(ym "__F(AO’ O)}u) = d(\m: F(AO, 0) )

0x, 0x2 l1xall

sd( Xo_ Fldo, ""’)+d*(———”'1°’ x"),a%F(lo, 0) -2 )
2

Jixall” Tl . Al [1xall

N
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However, by hypothesis we have
0
F (4o, xp) = F (4o, 0)+—F(}~o, 0) X, + 01,0y (x4)

and

 (F o, %) i
o ] ’(az “"”")u .u) ~0 asmo oo,

Since x,/||lx.ll€ F(4,, x)/l|x,/| and

. F(lm xn) F('lor xn) _
hm H ( bl " )’0

It follows that

hmd(x F“m“g=o

dbal” il
and
lim d(y,,, iF(lo, O)y,,) =0,
n 7 0x,
1.e.,
Oe (I—i F (4o, 0))(8*).
. 0x,
But
52 F o O,

is a-contractive and, consequently, the set (I—aiF (4o, 0))(8 ") is closed.
X2

It follows that there exists x > 0 such that

0
xea—xz F(4y,0)x. Q.ED.

THEOREM 5.2. Let (E, P) be an OBS and let F: R, x P - K(P) be an a-
contractive map such that F (-, 0) = 0. Assume that there exists a homogeneous
a-contraction Ty: E — K(E) satisfying Ty(P)c P and a multivalued map
Ry: R, xP — P such that

F(A, x) « ATy(x)+ Ry (4, x)  for all (4, x)eR, x P.

Moreover, assume that the map Ry(-, x)|ix||"': R, —o P is continuous uni-
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formly on null sequences in P and Ry (2, x) = o(||x|}) for all Ac R, as ||x|| - O.
Suppose that Aoe R, is a bifurcation point. Then Ay, >0 and A;! is an
eigenvalue of T, with a positive eigenvector. In particular T, # 0.

Proof. The hypotheses imply that A,T, is a positive upper-aH-
Differential with respect to the second variable at 0. Consequently, the map
F(, x)|Ix}”*: R, —o P is continuous at A,, uniformly on null sequences in
P. From Theorem 18.1 there exists x >0 such that xed, Tox and this
implies A, # 0, the map T, # 0 and i,' is an eigenvalue of T,. Q.E.D.

THeOREM 5.3. Let (E, P) be an OBS and let F: R, x P - K(P) be an a-
contractive map such that F(-, 0) =0 and F(0, -) = 0. Assume that there exists
a multivalued linear a-contraction Ty: E — K(E) such that Toy(P) < P and a
multivalued map Ry: R, x P —o P satisfying

F(A, x) c ATox+Ry(A, x)  for all (A, x)e R, x P.

Moreover, assume that the map Ry (-, x): R, — P is continuous uniformly on
null sequences in P and Ry (-, x) = o(||x|}) as x — 0. Suppose that there exists
Ao, A€ R, such that 8% (Ty) <[4, A,), where 8% (Tp) is the non-empty set of
all positive eigenvalue of T, with a positive eigenvector. Then bifurcation from
the line of trivial solutions occurs, and £ contains an unbounded subcontinuum
emanating from one of these eigenvalues.

Proof. Denote by C the component of £* U([0, 45 '] x {0}) containing
[0, 15 '] x {0}, we have that C is an unbounded subcontinuum emanating
from one of these eigenvalues. In fact, suppose that C is bounded, then there
exists a positive number u > 15!, and p~'¢8* (Tp), such that

([0, lIxSHU((E} xPY)NC =0.

Let C;, =Cu([0, u]x{0}) and let ¢ be a positive number such that ¢
< min {y, 8y, 6,}, where §, denotes the number g, of Lemma 3.1 with
respect to the map F(4, ). Put

D = ({0} x(P,\ P)) U ([0, p] xSy U ({u} x(P,\P)

we have DN C, = (. Then, as in the proof of Theorem 4.1 we can find an
open subset U of [0, u]xP with 2ndU=Q, C,cU, and UnD =0Q.
Hence the general homotopy invariance property of the fixed point index
imply that:

i(F(0, ), Ug) =i(F(n, ), Uy).
The excision property of the fixed point index yields
i(FO,-), P)=i(F0,-),Uy) and i(F(u "), U,)=i(F(u, "), P,).
From the normalization property we have

(1) 1=i(0, P)=i(FO,"), P) = i(F(n "), P.).
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Since uT, is a positive upper-x-Differential with respect the second variable
at 0, it follows, from the assumptions, that there exist Ae[4o, 4,1,
Aeuxe uTyx for some x>0, 4, u>1, and 1 is not an eigenvalue with a
positive eigenvector. From Lemma 3.1 we obtain i(F(y, -), P,) =0 in con-
trast with (1). Q.E.D.

CoROLLARY 5.1. Let (E, P) be an OBS and let F: R, x P - K(P) be an a-
contractive map such that F(-, 0) =0 and F (0, -} = 0. Assume that there exists
a multivalued linear a-contraction T,: E — K(E) such that T,(P) < P and a
multivalued map R,: R, x P —o P such that

F(A, x) c ATy x+Ry(4, x), (4, x)eR, xP.

Moreover, the map Rqy(-, x): R, — P is continuous uniformly on null sequences
in P and R(:, x) =0(||x|]) as x = 0. Suppose that T, possesses exactly one
positive eigenvalue p, with a positive eigenvector., Then ug' is the unique
bifurcation point. Moreover, L™ (the set of positive solutions) contains an
unbounded component C such that C (R, x {0}) = (15!, 0).

The proof follows trivially from Theorem 5.3. Q.E.D.

6. Bifurcation from the infinity. Let (E, P) be an OBS and let F: R, x P
— K(P) be an a-contractive map. In what follows we say that the solution
set T meets (4., o) for some A eR,, if Zn((A,—¢, A, +e)xP\Py,)# O
for every e > 0, 4, is also said to be a bifurcation point from infinity for the
inclusion xe F(4, x). Theorems 6.1 and 6.2 contain necessary conditions for
o€ R, to be a bifurcation point in the case when the map F(4, -) has a
positive upper-aH-Diflerential at oo along P.

These two theorems are analogues of Theorems 5.1 and 5.2.

THEOREM 6.1. Let (E, P) be an OBS and let F: R, x P —» K(P) be an a-
contractive map. Suppose that there exists a sequence ((4;, x;)) in X such that
Aj = Ao€ R, and ||x;|| —» 0o0. Moreover, suppose that there exists a positive
upper-aH-Differential a%F (A9, ) and that the map F(-, x}||x||""*: R,

2

— K(P) is continuous at Ay, uniformly on unbounded sequence in P. Then 1 is

d
an eigenvalue of 6TF (Ao, 00) to which corresponds a positive eigenvector.
2

THEOREM 6.2. Let (E, P) be an OBS and let F: R, x P — K(P) be an a-
contractive map such that there exists a homogeneous a-contraction T,: E
— K(E) such that T,(P) < P and a multivalued map R,: R, x P — P such
that

F(A, x) c AT (x)+ R (4, x) forall (A, x)eR, xP.
Moreover, assume that the map R (-, x)||x]|"*: R, = P is continuous uni-

formly on un bounded sequence in P and R (A, x) = o(||x]) as ||x|| = + o for
every Ae R, . Suppose finally that J is a bifurcation point from infinity. Then
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Ay, >0 and A7 are eigenvalues of T, having positive eigenvectors. In par-
ticular, T, # 0.

The proof of Theorems 6.1 and 6.2 are, with the obvious modifications,

the same as those of Theorems 5.1 and 5.2.
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