Non-linear eigenvalue problems and bifurcations for differentiable multivalued maps

ć

by Renato Guzzardi * (Rende, Italy)

0. Introduction. In this paper we study the solution set of an inclusion of the form $x \in F(\lambda, x)$ where $F(\lambda, x)$ is a multivalued α -contraction. In the proof we use a new concept of differentiability of multivalued maps introduced in [6]-[8], in Section 1 we collect the notations to be used in the sequel and the main properties of the fixed point index introduced in [5].

In Section 2 we introduce the concept of multivalued differentiability along P for multivalued maps, and in Section 3 we prove a fixed point theorem for this type of maps.

In Section 4 we prove that the solution set of an inclusion of the form $x \in F(\lambda, x)$ contains a non-empty closed connected subset which is unbounded in $\mathbb{R}_+ \times P$.

Section 5 is devoted to the study of the case when $F(\lambda, 0) = 0$ for every $\lambda \in \mathbb{R}_+$, and we proof that bifurcation from the line of trivial solutions $\mathbb{R}_+ \times \{0\}$ occurs.

Finally in Section 6 we discuss the situation where bifurcation from infinity takes place.

We would like to mentione that results of Section 3 to Section 6 contains as particular cases some results of H. Amann [3].

1. Notation and Preliminaries. Let E be a real Banach space. A subset P is called a Cone if $P+P \subset P$, $R_+P \subset P$, $P \cap (-P) = \{0\}$, $\bar{P} = P$, where R_+ := $[0, +\infty)$ and \bar{P} denotes the closure of P. Each cone P induces an ordering \leq by setting $x \leq y$ iff $y-x \in P$. The relation \leq is reflexive, transitive, antisymmetric and compatible with the linear structure and the topology of E. By an ordered Banach space (OBS), usually denoted by (E, P), we mean a Banach space E together with an ordering \leq induced by a cone P, the positive cone of E. We write x < y iff $y-x \in P := P \setminus \{0\}$. The elements of P are called positive. The norm of an OBS is called monotone if $0 \leq x \leq y$

^{*} Work performed under the auspices of Gruppo nazionale per l'analisi funzionale ed applicazioni, C. N. R.

implies $||x|| \le ||y||$. The positive cone is called *total* if P - P = E and generating if P - P = E. In the sequel the cone P is considered total.

Given two real Banach spaces E and F, a multivalued map T: $A \subset E \multimap F$ is called *upper-semicontinuous* (u.s.c.) at $x \in A$ if for any neighbourhood U of T(x) there exists a neighbourhood V of x such that $T(y) \subset U$ for any $y \in A \cap V$.

Denoting by K(F) the family of all non-empty compact convex subset of E, the multivalued map $T: A \subset E \to K(F)$ is upper-semicontinuous on A if T is upper-semicontinuous at each point of A.

A multivalued u.s.c. map $T: E \to K(F)$ is called homogeneous if T(tx) = tT(x) for any $x \in E$ and $t \in \mathbb{R}_+$. Let L(E, F) denote the space of linear continuous mappings from E in to F; then a multivalued u.s.c. map $L: E \to K(F)$ is said to be linear from E into F, if there exists a maximal set $\mathcal{L} \subset L(E, F)$ such that

$$Lx := \mathcal{L}x = \bigcup_{l \in \mathcal{Y}} lx$$
 for $x \in E$.

Let (E, P) be an ordered Banach space with total positive cone P; then a multivalued map $T: P \to K(E)$ is positive if $T(P) \subset P$, where $T(P) := \bigcup_{n} T(x)$.

For any $a \in E$, X and Y non-empty, r > 0, we denote:

$$d(a, X) := \inf \{ ||a-x||, x \in X \},$$

$$d(X, Y) := \inf \{ ||x-y||, x \in X \text{ and } y \in Y \},$$

$$d^*(X, Y) := \sup \{ d(x, Y), x \in X \},$$

$$H(X, Y) := \max \{ d^*(X, Y), d^*(Y, X) \},$$

$$|X| := d^*(X, \{0\}) = \sup \{ ||x||, x \in X \},$$

$$B(X, r) := \{ x \in E | d(x, X) < r \}; \quad B := \{ x \in E | ||x|| \le 1 \};$$

$$S := \{ x \in E, ||x|| = 1 \}.$$

We recall that if X and Y are compact subset of E

$$d^*(X, Y) = \inf\{t > 0 | X \subset Y + tB\}$$

and consequently

$$H(X, Y) = \inf\{t > 0 | X \subset Y + tB, Y \subset X + tB\}.$$

We recall following known result.

PROPOSITION 1.1. Let $X, Y \subseteq E$ be bounded. Then for every $z \in E$ we have $d(z, X) \leq d(z, Y) + d^*(Y, X)$.

Proof. For every $x \in X$ and $y \in Y$ we have

$$||x-z|| \le ||y-z|| + ||x-y||$$

and

$$d(z, X) \le ||y - z|| + d(y, X)$$

$$\le ||y - z|| + d^*(Y, X) \le d(z, Y) + d^*(Y, X). \quad Q.E.D.$$

Let E be real Banach space. If $Q \subset E$ is any bounded set we define the measure of non-compactness of Q, $\alpha(Q)$, to be the inf $\{\varepsilon > 0 | Q \text{ can be covered by a finite number of sets, each of which has diameter less than <math>\varepsilon\}$ (Kuratowski [9]).

This measure of non-compactness satisfies a number of properties [9] among which are the following:

$$A \subset B \subset E$$
 implies $\alpha(A) \leqslant \alpha(B)$,
 $0 \leqslant \alpha(A) < \delta(A)$, where $\delta(A)$ is the diameter of A ,
 $\alpha(A) = \alpha(\bar{A})$ and $\alpha(A \cup B) \leqslant \max \{\alpha(A), \alpha(B)\}$,
 $\alpha(A + B) \leqslant \alpha(A) + \alpha(B)$,
 $\alpha(c \circ A) = \alpha(A)$,

where $c \circ A$ denotes the closed convex hull of A.

Let $T: D \subset E \to K(E)$ be a u.s.c. mapping called *condensing* (resp. α -Lipschitz with constant $k \ge 0$) provided that $\alpha(T(Q)) < k\alpha(Q)$ for each $Q \subset D$ with $\alpha(Q) \ne 0$. In particular, if k < 1, then T is called α -contraction (Darbo [4]).

Let X and D be subset of E and set $D_X := D \cap X$. We denote by $\partial_X D$ the boundary and the closure of D_X relative to X.

If $X \subset E$ is closed and convex, $D \subset E$ is open and $T: \overline{D}_X \to K(X)$ is condensing and such that $x \notin T(x)$ if $x \in \partial_X D$, then it has been shown by Fitzpatrick and Petryshyn [5] that there exists an integer $i(T, D_X)$, the fixed point index of T on D_X , which has the following properties:

- (P₁) Solvability. If $i(T, D_X) \neq 0$, then T has a fixed point in D_X .
- (P₂) NORMALIZATION. If $x_0 \in D_X$, then $i(\hat{x}_0, D_X) = 1$, where \hat{x}_0 denotes the mapping whose constant value is x_0 .
- (P₃) Additivity. $i(T, D_X) = i(T, D_{1X}) + i(T, D_{2X})$ for every pair of disjoint open subset D_1 , D_2 of D such that T has no fixed point in $\overline{D} \setminus (D_1 \cup D_2)$.
- (P₄) Homotopy. If $H: [0, 1] \times \overline{D}_X \to K(X)$ is u.s.c. and such that $\alpha(H([0, 1] \times Q)) < \alpha(Q)$ for $Q \subset \overline{D}_X$ with $\alpha(Q) \neq 0$ and if $x \notin H(t, x)$ for $t \in [0, 1]$ and $x \in \partial_X D$, then $i(H(t, \cdot), D_X)$ is independent of $t \in [0, 1]$.

These properties were established in [5] in the more general setting where E is a Frechét space.

Let us use properties (P_1) - (P_2) to deduce some further properties of the fixed point index.

R. Guzzardi

(P₅) Excision. Let $V \subset U$ be open and $x \notin T(x)$ on $\overline{D} \setminus V$. Then $i(T, D_X) = i(T, V_X)$.

Proof. The additivity gives $i(T, D_X) = i(T, D_X) + i(T, \emptyset)$ hence $i(T, \emptyset) = 0$. Again by additivity we get $i(T, D_X) = i(T, V_X) + i(T, \emptyset)$ = $i(T, V_X)$ Q.E.D.

Let $\Lambda \subset R$ be an arbitrary interval and let A be a subset of $\Lambda \times E$. Then for every $\lambda \in \Lambda$, we denote by A_{λ} the slice at λ , that is

$$A_{\lambda} := \{ x \in E | (\lambda, x) \in A \}.$$

Observe that A_{λ} is open in E if A is open in $\Lambda \times E$.

(P₆) GENERAL HOMOTOPY INVARIANCE. Let $U \subset \mathbb{R} \times X$ be bounded and open. $H: U \to K(X)$ u.s.c. condensing and such that $x \notin H(t, x)$ for every $(t, x) \in \partial U$. Then $i(H(t, \cdot), U_t)$ is independent of $t \in [0, 1]$.

Proof. Note that the index is well defined since $\partial(U_i) \subset (\partial U)_i$. From [5], Proposition 3.1, it follows that I-H is proper and the set

$$\Phi := \{(t, x) \in U | 0 \in x - H(t, x)\}$$

is a compact, possibly empty, subset of U. Hence $\varepsilon := d(\Sigma, \partial U) > 0$. For $t \in [0, 1]$ define :

$$V_t := \{x \in U_t | d((t, x), \partial U) > \frac{1}{3}\epsilon\}, \quad I_t := \{t' \in [0, 1] | |t, t'| < \frac{1}{3}\epsilon\}.$$

It is not difficult to check that

$$\Phi \cap (I_t \times E) \subset I_T \times V_t \subset U$$
.

Now, by excision, for $t' \in I_t$ we obtain

$$i(H(t',\cdot), U_{t'}) = i(H(t',\cdot), V_t).$$

By the homotopy invariance the last index is independent of $t' \in I_t$. Since [0, 1] can be covered by finitely many I_t 's the statement follows. Q.E.D.

2. Differential for multivalued maps. In [6] we introduce a definition of differentiability for multivalued maps, T, acting between Banach spaces. In [7] we extended this concept to the case when T is single-valued and the domain is a cone. In this section we give the above definition for multivalued maps defined in a cone. Let (E, P) be an ordered Banach space with total positive cone and $F: P \to K(E)$. A homogeneous map u.s.c. $Tx_0: E \to K(E)$ is called an upper-H-Differential of F at $x_0 \in P$ along P if there exists $\delta > 0$ such that

$$F(x_0+h) \subset F(x_0) + Tx_0(h) + R(x_0, h)$$
 whenever $||h|| < \delta$.

Here $R(x_0, \cdot)$ is a multivalued map from P into E such that $|R(x_0, h)| = o(||h||)$ as $h \to 0$.

A homogeneous map T_{∞} : $E \to K(E)$ is called an *upper-H-Differential* of F at infinity along P if there exist $\delta > 0$ such that

$$F(x) \subset T_{\infty}(x) + R(x)$$
 whenever $||x|| > \delta$.

Here R is a multivalued map from P into E such that |R(x)| = o(||x||) as $||x|| \to +\infty$.

For $m = x_0$, ∞ a map F is said be H-Differentiable at m along P, if there exist an upper-H-differential T_m' : $E \to K(E)$ of F at m along P such that for any upper-H-differential T_m of F at m along P, we have $T_m'(h) \subset T_m(h)$ for all $h \in P$. In this case the multivalued map T_m' is called the H-Differential of T at m along P. T_m' is called the Differential (resp. upper-Differential) of F at m along P if T_m' is a linear multivalued map.

Assume that F is α -Lipschitz with constant k; then the multivalued map T'_m is called (upper-) αH -Differential (resp. (upper) α -Differential) of F at m along P, if is an (upper-) H-Differential (resp. (upper-) Differential) of F at m along P and it is α -Lipschitz with constant $h \leq k$.

Let $F: \mathbf{R} \times P \to K(E)$ for every $\lambda \in \mathbf{R}$ we denote with $\frac{\partial}{\partial x_2} F(\lambda, x_0)$ (called upper-H-Differential respect the second variable) a upper-H-Differential of $F(\lambda, \cdot)$ at x_0 along P. In the sequel we denote by (E, P) an OBS with total cone P. Given $\varrho > 0$ we set $P_\varrho := B \cap P$. The closure \bar{P}_ϱ of P_ϱ in P coincides with $\varrho \bar{B} \cap P$. Hence we have that the boundary S_ϱ^+ coincides with $\varrho S \cap P$. Finally we put $S^+ = S_1^+$.

3. Fixed point of differentiable multivalued maps. In this section we obtain results regarding the existence of positive fixed points for multivalued maps by imposing conditions for the upper-Differentials at 0 and at ∞ .

LEMMA 3.1. Let (E, P) be an OBS, ϱ a positive number and let $F: \bar{P}_{\varrho} \to k(P)$ be an α -contraction.

(a) Suppose that F(0) = 0 and assume that there exists a positive upper- αH -Differential F'_0 at 0 along P such that $\lambda x \notin F'_0(x)$ for every x > 0 and every $\lambda \ge 1$.

Then there exists $\varrho_0 > 0$ such that for every $\varrho \in (0, \varrho_0]$

$$i(F, P_o) = 1.$$

(b) Suppose that F(0) = 0 and assume that there exists a positive upper- α -Differential F'_0 at 0 along P such that $x \notin F'_0 x$ for every x > 0, and for some $\lambda > 1$, there is an element x > 0 such that $\lambda x \in F'_0 x$. Then there exists $\varrho_0 > 0$ such that for every $\varrho \in (0, \varrho_0]$.

$$i(F, P_o) = 0.$$

Proof. The homogeneous map F'_0 is an α -contraction and $(I - F'_0)(S^+)$

is closed. Consequently, since $0 \notin (I - F'_m)(S^+)$ there exists $\gamma_0 > 0$ such that for all $x \in P$

$$d(x, F_0(x)) \geqslant \gamma_0 ||x||.$$

According to the assumptions, there exists $\gamma_0 > 0$ such that $F(x) \subset F_0'(x) + B(0, \gamma_0 ||x||)$ for every $||x|| < \gamma_0$ and

(2)
$$d^*(F(x), F_0'(x)) < \gamma_0 ||x||.$$

We claim that the homotopy: $(1-\lambda)F_0'(x)+\lambda F(x)$ is u.s.c. α -contractive and has no fixed points on S_{ϱ}^+ , where $\varrho \in (0, \varrho_0]$. Indeed, suppose that there exists $\bar{x} \in S_{\varrho}^+$ such that $\bar{x} \in (1-\lambda)F_0'(\bar{x})+\lambda F(\bar{x})$. From (2) it follows that $(1-\lambda)F_0'(x)+\lambda F(\bar{x}) \subset B_{(F_0'(\bar{x}),\gamma_0||x||)}$ and $\bar{x} \in B_{(F_0'(\bar{x}),\gamma_0||\bar{x}||)}$, $d(\bar{x}_0', F_0'(\bar{x})) < \gamma_0||\bar{x}||$, contradicting (1). Therefore

$$i(F, P_o) = i(F_0', P_o).$$

In case (a) the homotopy $\beta \cdot F_0'(x)$ is u.s.c. α -contraction and fixed point free on S^+ , since $x \notin \beta F_0'(x)$ for every x > 0 and for $\beta \in [0, 1]$ according to our assumptions hence

$$i(F, P_{\varrho}) = i(F'_{0}, P_{\varrho}) = i(0, P_{\varrho}) = 1.$$

In case (b) from the linearity of F'_0 , there exists $l'_m \in L(E, E)$ and for some $\lambda_0 > 1$ there is an element $h_0 > 0$ such that $\lambda_0 h_0 = l'_0 h_0$. We claim that the equation

$$(3) x = l_0' x + \gamma h_0$$

has no positive solutions for every real $\gamma > 0$. In fact, suppose that there exists $\bar{x}_0 > 0$ and $\alpha > 0$ such that $\bar{x}_0 = l_0' \bar{x}_0 + \alpha h_0$. Let $\tau_0 \ge 0$ be such that $\bar{x}_0 = l_0' \bar{x} + \alpha h_0$. Let $\tau_0 \ge 0$ be such that $\bar{x}_0 \ge \tau h_0$ for all $\tau > \tau_0$. Then $\bar{x}_0 = l_0' \bar{x}_0 + \alpha h_0 \ge l_0 \tau_0 h_0 + \alpha h_0 = \tau_0 \lambda_0 h_0 + \alpha h_0 > (\tau_0 + \alpha) h_0$ which contradicts the maximality of τ_m . Hence for every real $\gamma > 0$ and $\varrho > 0$

$$i(l_0'+\gamma h_0, P_\varrho)=0.$$

Now, the homotopy $(1-t) l'_0 x + t (l'_0 x + \gamma h_0)$ is u.s.c. α -contractive and has no fixed points on S_{ϱ}^+ . Indeed, suppose that there exists $\bar{x} \in S_{\varrho}^+$ such that $\bar{x} = (1-t) l'_0 \bar{x} + t (l'_0 + \gamma h_0) = l'_0 \bar{x} + t \gamma h_m$ and equation (3) has positive solutions in contrast with the previsions result. Hence $i(l'_0, P_{\varrho}) = i(l'_0 + \gamma h_0, P_{\varrho})$. Obviously, F'_m is a positive upper α -Differential of l'_0 and there exists ϱ_0 such that for all $\varrho \in (0, \varrho_0]$

$$0 = i(l', P_a) = i(F'_0, P_a) = i(F, P_a).$$
 Q.E.D

LEMMA 3.2. Let (E, P) be an OBS and let $F: P \rightarrow K(P)$ be an α -contraction.

(a) Suppose that there exists a positive αH -Differential F_{∞}' at ∞ along P

such that $\lambda x \notin F'_{\infty}(x)$ for every x > 0 and every $\lambda > 1$. Then there exists $\varrho_0 > 0$ such that for every $\varrho > \varrho_{\infty}$

$$i(F, P_o) = 1.$$

(b) Suppose that there exists a positive upper- α -Differential F'_{∞} at ∞ along P such that $x \notin F'_{\infty} x$ for every x > 0, and for some $\lambda > 1$, there is an element x > 0 such that $\lambda x \in F'_{\infty} x$. Then there exists $\varrho_0 > 0$ such that for every $\varrho \geqslant \varrho_0$

$$i(F, P_{o}) = 0.$$

The proof is, with obvious modifications, the same as that of Lemma 3.1.

THEOREM 3.1. Let (E, P) be an OBS and let $F: \mathbb{R}_+ \times P \to K(P)$ be a map such that $F(\lambda, \cdot): P \to K(P)$ is α -contractive for every $\lambda \in \mathbb{R}_+$ and $F(\lambda, 0) = 0$ for all $\lambda \in \mathbb{R}_+$, suppose that for $m = 0, \infty$ there exists a multivalued linear map $F'_m: E \to K(E)$ and a map $F_m: \mathbb{R}_+ \times P \to K(P)$, such that

$$F(\lambda, x) \subset \lambda T_m x + r_m(\lambda, x), \quad (\lambda, x) \in \mathbb{R}_+ \times P$$

with $|r_m(\lambda, x)| = O(||x||)$ as $||x|| \to m$ in P for all $\lambda \in \mathbb{R}_+$. Finally, suppose that T'_m has exactly one positive eigenvalue μ_m with a positive eigenvector. Then for every $\lambda \in \mathbb{R}_+$ satisfying

$$\min\{1/\mu_0, 1/\mu_\infty\} < \lambda < \max\{1/\mu_0, 1/\mu_\infty\}$$

the map $F(\lambda, \cdot)$ possesses a positive fixed point.

Proof. From Theorem 3.1 and Lemma 3.2 it follows that there exists two real numbers ϱ and δ with $0 < \varrho < \delta$ such that $i(F(\lambda, \cdot), P) = 1$ and $i(F(\lambda, \cdot), P) = 0$ or $i(F(\lambda, \cdot), P) = 0$ and $i(F(\lambda, \cdot), P) = 1$. Hence, in both cases, from the Additivity property of the fixed point index it follows that

$$i(F, P_{\delta} \setminus \overline{P}_{\varrho}) = i(F, P_{\delta}) - i(F, P_{\varrho}) \neq 0.$$

From the solution property of the fixed point index there exists x such that $\varrho < ||x|| < \delta$ and $x \in F(\lambda, x)$. Q.E.D.

4. Global of positive fixed points. Let (E, P) be an OBS such that $P \neq \{0\}$ and let $F: \mathbb{R}_+ \times P \to K(P)$ be α -contractive. In this section we study inclusions of the from:

$$(1) x \in F(\lambda, x).$$

In other words, we study fixed point of one-parameter families of multivalued maps. In what follows we denote by Σ the solution set of inclusion (1) that is,

$$\Sigma := \{ (\lambda, x) \in \mathbf{R}_+ \times P | x \in F(\lambda, x) \}$$

R. Guzzardi

and we set

$$\Lambda := \{ \lambda \in \mathbf{R}_+ | x \in P \text{ and } (\lambda, x) \in \Sigma \}$$

Recall that a non-empty closed connected subset of a topological space X is called a *subcontinuum* of X. Finally, denote by Σ^+ the set of positive solutions of inclusion (1), Σ^+ consist of the union of $\Sigma \cap (\dot{R}_+ \times \dot{P})$ and the set $\{(\lambda, 0) \in \dot{R}_+ \times \{0\} | \lambda \text{ is a bifurcation point}\}.$

THEOREM 4.1. Let (E, P) be an OBS and let $F: \mathbf{R}_+ \times P \to K(P)$ be α -contractive. Suppose that F(0, 0) = 0 and that zero is the only fixed point of $F(0, \cdot)$. Moreover, assume that there exists a positive number ϱ such that $\delta x \notin F(0, x)$ for every $x \in S_{\varrho}^+$ and every $\delta \geq 1$. Then the solution set Σ contains an unbounded subcontinuum containing (0, 0).

Proof. The proof is with slight modifications the same as that of Theorem 17.1 in [3]. We give it here for the sake of completeness.

Put $Q_{\mu} = [0, \mu] \times \bar{P}_{\mu}$ for every $\mu > 0$. Let C the component of Σ containing (0, 0) and suppose that C is bounded. Then there exists a number $\mu > 0$ such that $C \cap \partial Q_{\mu} = \emptyset$.

Set $D:=\partial Q_{\mu}\cap \Sigma$. We have $D\cap C=\emptyset$ and D and C are closed subset of the compact metric space $X:=\Sigma\cap Q_{\mu}$. Then there exist two disjoint compact sets K_1 and K_2 such that $C\subset K_1$ and $D\subset K_2$ with $X=K_1\cup K_2$. Since Q_{μ} is a metric space, there exists an open set U of Q_{μ} with $K_1\subset U$ and $\overline{U}\cap (K_2\cap\partial Q_{\mu})=\emptyset$.

Consequently, U is a bounded open subset of $[0, \mu] \times P$ such that $x \notin F(\lambda, x)$ for all $x \in \partial U$ and all $\lambda \in [0, \mu]$. Hence, denoting by U_{λ} the slice of U at $\lambda \in [0, \mu]$, from property (P_6) of the fixed point index, we obtain

$$i(F(0,\cdot), U_0) = i(F(\mu,\cdot), U_\mu).$$

But $U_{\mu} = \emptyset$ and therefore

$$i(F(0, \cdot), U_0) = i(F(\mu, \cdot), U_{\mu}) = 0.$$

By the excision property of the fixed point index,

$$i(F(0,\cdot), U_0) = i(F(0,\cdot), P_0).$$

Now, the homotopy $\tau \to \tau F(0, \cdot)$, $\tau \in [0, 1]$ is u.s.c., α -contractive and has no fixed points in P for every $\tau \in [0, 1]$. From the homotopy property of the fixed point index it follows that

$$i(F(0, \cdot), P_{\varrho}) = i(0, P_{\varrho}) = 1.$$

This contradiction proves the assertion. Q.E.D.

COROLLARY 4.1. Let (E, P) be an OBS and let $F: \mathbb{R}_+ \times P \to K(P)$ be α -contractive. Suppose that F(0, 0) = 0 and that zero is the only fixed point of $F(0, \cdot)$. Assume that there exists a positive number ϱ such that $\delta x \notin F(0, x)$ for every $x \in S_{\varrho}^+$ and every $\delta \geq 1$. Moreover, $\overline{\lambda} > 0$ such that $F(\lambda, \cdot)$ has non-fixed

points. Then $\Sigma \cap ([0, \overline{\lambda}] \times P)$ contains an unbounded subcontinuum emanating from (0, 0).

Proof. From Theorem 4.1 it follows that Σ contains an unbounded subcontinuum C emanating from (0, 0). Denote by $P_1: \mathbb{R}_+ \times P \to \mathbb{R}_+$ the projection defined by $P_1(\lambda, x) = \lambda$, since P_1 is continuous, $P_1(C)$ is a connected subset of \mathbb{R}_+ hence an interval containing 0. Since $P_1(C) \subset \Lambda$ and $\lambda \notin \Lambda$, it follows that $\Sigma \cap ([0, \lambda] \times P)$ contains an unbounded subcontinuum emanating from (0, 0). Q.E.D.

COROLLARY 4.2. Let (E, P) be an OBS and let $F: \mathbf{R}_+ \times P \to K(P)$ be a contractive. Suppose that F(0, 0) = 0 and that zero is the only fixed point of $F(0, \cdot)$. Assume that there exists a positive number ϱ such that $\delta x \notin F(0, x)$ for every $x \in S_{\varrho}^+$ and every $\delta \geq 1$. Moreover, suppose that $F(\lambda, x) \neq x$ for every $\lambda > 0$ and every $x \in S_{\varrho}^+$. Then $\Lambda = \mathbf{R}_+$.

Proof. Denote by $p_2: \mathbb{R}_+ \times P \to P$ the natural projection. Let C denote the unbounded subcontinuum of Σ emanating from (0, 0). Then $p_2(C)$ is a connected subset of P which does not intersect S_{ϱ}^+ . Hence, from the unboundedness of C, we have that $\Lambda = \mathbb{R}_+$. Q.E.D.

5. Bifurcation from the trivial solution. Let (E, P) be an OBS and let $F: \mathbb{R}_+ \times P \to K(P)$ be α -contractive and such that $F(\cdot, 0) = 0$. Then $\lambda_0 \in \mathbb{R}_+$ is called a bifurcation point for the inclusion

$$x \in F(\lambda, x)$$
.

With respect to the trivial solution, if for every neighbourhood U of $(\lambda_0, 0)$ in $\mathbb{R}_+ \times P$ there exists a point $(\lambda, x) \in U$ with $x \in F(\lambda, x)$ and x > 0.

Theorems 5.1 and 5.2 contain necessary conditions for $\lambda_0 \in \mathbb{R}_+$ to be a bifurcation point. Theorems 5.3 and 5.4 contain sufficient conditions for the existence of solutions which bifurcate from the trivial solutions.

THEOREM 5.1. Let (E, P) be an OBS and let $F: \mathbf{R}_+ \times P \to K(P)$ be an α -contractive map such that $F(\cdot, 0) = 0$. Suppose that $\lambda_0 \in \mathbf{R}_+$ is a bifurcation point such that there exists a positive upper- αH -Differential $\frac{\partial}{\partial x_2} F(\lambda_0, 0)$. If the map $F(\cdot, 0)||x||^{-1}: \mathbf{R}_+ \to K(P)$ is continuous at λ_0 , uniformly on null sequences in P, then 1 is an eigenvalue of $\frac{\partial}{\partial x_2} F(\lambda_0, 0)$ with a positive eigenvector.

Proof. The assumptions imply the existence of a sequence $((\lambda_n, x_n))$ in $(\mathbf{R}_+ \times \dot{\mathbf{P}}) \cap \Sigma$ which converges to $(\lambda_0, 0)$. Hence, letting $y_n := x_n/||x_n|| \in S^+$ we have

$$d\left(y_{n}, \frac{\partial}{\partial x_{2}} F(\lambda_{0}, 0) y_{n}\right) = d\left(\frac{x_{n}}{\|x_{n}\|}, \frac{\partial}{\partial x_{2}} F(\lambda_{0}, 0) \frac{x_{n}}{\|x_{n}\|}\right)$$

$$\leq d\left(\frac{x_{n}}{\|x_{n}\|}, \frac{F(\lambda_{0}, x_{n})}{\|x_{n}\|}\right) + d^{*}\left(\frac{F(\lambda_{0}, x_{n})}{\|x_{n}\|}, \frac{\partial}{\partial x_{2}} F(\lambda_{0}, 0) \frac{x_{n}}{\|x_{n}\|}\right).$$

However, by hypothesis we have

$$F(\lambda_0, x_n) \subset F(\lambda_0, 0) + \frac{\partial}{\partial x_2} F(\lambda_0, 0) x_n + O_{(\lambda_0, 0)}(x_n)$$

and

$$d^*\left(\frac{F(\lambda_0, x_n)}{||x_n||}, \left(\frac{\partial}{\partial x_2}F(\lambda_0, 0)x_n\right)\frac{1}{||x_n||}\right) \to 0$$
 as $n \to +\infty$.

Since $x_n/||x_n|| \in F(\lambda_n, x_n)/||x_n||$ and

$$\lim_{n} H\left(\frac{F(\lambda_{n}, x_{n})}{\|x_{n}\|}, \frac{F(\lambda_{0}, x_{n})}{\|x_{n}\|}\right) = 0.$$

It follows that

$$\lim_{n} d\left(\frac{x_n}{\|x_n\|}, \frac{F(\lambda_0, x_n)}{\|x_n\|}\right) = 0$$

and

$$\lim_{n} d\left(y_{n}, \frac{\partial}{\partial x_{2}} F(\lambda_{0}, 0) y_{n}\right) = 0,$$

i.e.,

$$0 \in \left(I - \frac{\partial}{\partial x_2} F(\lambda_0, 0)\right) (S^+).$$

But

$$\frac{\partial}{\partial x_2}F(\lambda_0, 0),$$

is α -contractive and, consequently, the set $\left(I - \frac{\partial}{\partial x_2} F(\lambda_0, 0)\right)(S^+)$ is closed. It follows that there exists x > 0 such that

$$x \in \frac{\partial}{\partial x_2} F(\lambda_0, 0) x$$
. Q.E.D.

THEOREM 5.2. Let (E, P) be an OBS and let $F: \mathbb{R}_+ \times P \to K(P)$ be an α -contractive map such that $F(\cdot, 0) = 0$. Assume that there exists a homogeneous α -contraction $T_0: E \to K(E)$ satisfying $T_0(P) \subset P$ and a multivalued map $R_0: \mathbb{R}_+ \times P \longrightarrow P$ such that

$$F(\lambda, x) \subset \lambda T_0(x) + R_0(\lambda, x)$$
 for all $(\lambda, x) \in \mathbb{R}_+ \times P$.

Moreover, assume that the map $R_0(\cdot, x)||x||^{-1}$: $R_+ - OP$ is continuous uni-

formly on null sequences in P and $R_0(\lambda, x) = o(||x||)$ for all $\lambda \in R_+$ as $||x|| \to 0$. Suppose that $\lambda_0 \in R_+$ is a bifurcation point. Then $\lambda_0 > 0$ and λ_0^{-1} is an eigenvalue of T_0 with a positive eigenvector. In particular $T_0 \neq 0$.

Proof. The hypotheses imply that $\lambda_0 T_0$ is a positive upper- αH -Differential with respect to the second variable at 0. Consequently, the map $F(\cdot, x)||x||^{-1}$: $R_+ \multimap P$ is continuous at λ_0 , uniformly on null sequences in \dot{P} . From Theorem 18.1 there exists x > 0 such that $x \in \lambda_0 T_0 x$ and this implies $\lambda_0 \neq 0$, the map $T_0 \neq 0$ and λ_0^{-1} is an eigenvalue of T_0 . Q.E.D.

THEOREM 5.3. Let (E, P) be an OBS and let $F: \mathbb{R}_+ \times P \to K(P)$ be an α -contractive map such that $F(\cdot, 0) = 0$ and $F(0, \cdot) = 0$. Assume that there exists a multivalued linear α -contraction $T_0: E \to K(E)$ such that $T_0(P) \subset P$ and a multivalued map $R_0: \mathbb{R}_+ \times P \multimap P$ satisfying

$$F(\lambda, x) \subset \lambda T_0 x + R_0(\lambda, x)$$
 for all $(\lambda, x) \in \mathbb{R}_+ \times P$.

Moreover, assume that the map $R_0(\cdot, x)$: $R_+ \to P$ is continuous uniformly on null sequences in P and $R_0(\cdot, x) = o(||x||)$ as $x \to 0$. Suppose that there exists $\lambda_0, \lambda_1 \in R_+$ such that $\delta^+(T_0) \subset [\lambda_0, \lambda_1]$, where $\delta^+(T_0)$ is the non-empty set of all positive eigenvalue of T_0 with a positive eigenvector. Then bifurcation from the line of trivial solutions occurs, and Σ^+ contains an unbounded subcontinuum emanating from one of these eigenvalues.

Proof. Denote by C the component of $\Sigma^+ \cup ([0, \lambda_0^{-1}] \times \{0\})$ containing $[0, \lambda_0^{-1}] \times \{0\}$, we have that C is an unbounded subcontinuum emanating from one of these eigenvalues. In fact, suppose that C is bounded, then there exists a positive number $\mu > \lambda_0^{-1}$, and $\mu^{-1} \notin \delta^+(T_0)$, such that

$$\big(([0,\,\mu]\times S_\mu^+)\cup(\{\mu\}\times \bar{P}_\mu)\big)\cap C=\emptyset\,.$$

Let $C_1 = C \cup ([0, \mu] \times \{0\})$ and let ε be a positive number such that $\varepsilon < \min \{\mu, \delta_0, \delta_\mu\}$, where δ_λ denotes the number ϱ_0 of Lemma 3.1 with respect to the map $F(\lambda, \cdot)$. Put

$$D = (\{0\} \times (\bar{P}_{\mu} \setminus P_{\epsilon})) \cup ([0, \mu] \times S_{\mu}^{+}) \cup (\{\mu\} \times (\bar{P}_{\mu} \setminus P_{\epsilon}))$$

we have $D \cap C_1 = \emptyset$. Then, as in the proof of Theorem 4.1 we can find an open subset U of $[0, \mu] \times P$ with $\Sigma \cap \partial U = \emptyset$, $C_1 \subset U$, and $\overline{U} \cap D = \emptyset$. Hence the general homotopy invariance property of the fixed point index imply that:

$$i(F(0,\cdot), U_0) = i(F(\mu,\cdot), U_{\mu}).$$

The excision property of the fixed point index yields

$$i(F(0,\cdot), P_{\varepsilon}) = i(F(0,\cdot), U_0)$$
 and $i(F(\mu,\cdot), U_{\mu}) = i(F(\mu,\cdot), P_{\varepsilon})$.

From the normalization property we have

(1)
$$1 = i(0, P_{\epsilon}) = i(F(0, \cdot), P_{\epsilon}) = i(F(\mu, \cdot), P_{\epsilon}).$$

294 R. Guzzardi

Since μT_0 is a positive upper- α -Differential with respect the second variable at 0, it follows, from the assumptions, that there exist $\lambda \in [\lambda_0, \lambda_1]$, $\lambda \in \mu x \in \mu T_0 x$ for some x > 0, λ , $\mu > 1$, and 1 is not an eigenvalue with a positive eigenvector. From Lemma 3.1 we obtain $i(F(\mu, \cdot), P_{\epsilon}) = 0$ in contrast with (1). Q.E.D.

COROLLARY 5.1. Let (E, P) be an OBS and let $F: \mathbb{R}_+ \times P \to K(P)$ be an α -contractive map such that $F(\cdot, 0) = 0$ and $F(0, \cdot) = 0$. Assume that there exists a multivalued linear α -contraction $T_0: E \to K(E)$ such that $T_0(P) \subset P$ and a multivalued map $R_0: \mathbb{R}_+ \times P \multimap P$ such that

$$F(\lambda, x) \subset \lambda T_0 x + R_0(\lambda, x), \quad (\lambda, x) \in \mathbb{R}_+ \times P.$$

Moreover, the map $R_0(\cdot, x)$: $R_+ \to P$ is continuous uniformly on null sequences in \dot{P} and $R(\cdot, x) = o(||x||)$ as $x \to 0$. Suppose that T_0 possesses exactly one positive eigenvalue μ_0 with a positive eigenvector., Then μ_0^{-1} is the unique bifurcation point. Moreover, Σ^+ (the set of positive solutions) contains an unbounded component C such that $C \cap (R_+ \times \{0\}) = (\mu_0^{-1}, 0)$.

The proof follows trivially from Theorem 5.3. Q.E.D.

6. Bifurcation from the infinity. Let (E, P) be an OBS and let $F: \mathbb{R}_+ \times P \to K(P)$ be an α -contractive map. In what follows we say that the solution set Σ meets $(\lambda_{\infty}, \infty)$ for some $\lambda_{\infty} \in \mathbb{R}_+$, if $\Sigma \cap ((\lambda_{\infty} - \varepsilon, \lambda_{\infty} + \varepsilon) \times P \setminus P_{1/\varepsilon}) \neq \emptyset$ for every $\varepsilon > 0$, λ_{∞} is also said to be a bifurcation point from infinity for the inclusion $x \in F(\lambda, x)$. Theorems 6.1 and 6.2 contain necessary conditions for $\lambda_{\infty} \in \mathbb{R}_+$ to be a bifurcation point in the case when the map $F(\lambda, \cdot)$ has a positive upper- αH -Differential at ∞ along P.

These two theorems are analogues of Theorems 5.1 and 5.2.

THEOREM 6.1. Let (E, P) be an OBS and let $F: \mathbf{R}_+ \times P \to K(P)$ be an α -contractive map. Suppose that there exists a sequence $((\lambda_j, x_j))$ in Σ such that $\lambda_j \to \lambda_0 \in \mathbf{R}_+$ and $||x_j|| \to \infty$. Moreover, suppose that there exists a positive upper- α H-Differential $\frac{\partial}{\partial x_2} F(\lambda_0, \infty)$ and that the map $F(\cdot, x) ||x||^{-1}$: $\mathbf{R}_+ \to K(P)$ is continuous at λ_0 , uniformly on unbounded sequence in P. Then 1 is an eigenvalue of $\frac{\partial}{\partial x_2} F(\lambda_0, \infty)$ to which corresponds a positive eigenvector.

THEOREM 6.2. Let (E, P) be an OBS and let $F: \mathbb{R}_+ \times P \to K(P)$ be an α -contractive map such that there exists a homogeneous α -contraction T_{∞} : $E \to K(E)$ such that $T_{\infty}(P) \subset P$ and a multivalued map R_{∞} : $\mathbb{R}_+ \times P \to P$ such that

$$F(\lambda, x) \subset \lambda T_{\infty}(x) + R_{\infty}(\lambda, x)$$
 for all $(\lambda, x) \in \mathbb{R}_{+} \times P$.

Moreover, assume that the map $R_{\infty}(\cdot,x)||x||^{-1}$: $\mathbf{R}_{+} \to P$ is continuous uniformly on un bounded sequence in \dot{P} and $R_{\infty}(\lambda,x) = o(||x||)$ as $||x|| \to +\infty$ for every $\lambda \in \mathbf{R}_{+}$. Suppose finally that λ_{∞} is a bifurcation point from infinity. Then

 $\lambda_{\infty} > 0$ and λ_{∞}^{-1} are eigenvalues of T_{∞} having positive eigenvectors. In particular, $T_{\infty} \neq 0$.

The proof of Theorems 6.1 and 6.2 are, with the obvious modifications, the same as those of Theorems 5.1 and 5.2.

References

- [1] H. Amann, Existence of multiple solutions for nonlinear elliptic boundary value problems, Indiana Univ. Math. J. 21 (1972), 925-935.
- [2] -, Non-linear operator in order Banach spaces and some applications to non-linear boundary value problems, Lecture Notes, Vol. 543, Springer-Verlag, New York 1976, 1-55.
- [3] -, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM REVIEW 18 (1976), 620-709.
- [4] G. Darbo, Punti uniti in trasformazioni a codominio non compatto, Rend. Sem. Mat. Univ. Padova 24 (1955), 84-92.
- [5] P. M. Fitzpatrick, W. V. Petryshyn, Fixed point theorems and the fixed point index for multivalued mappings in cone, J. London Math. Soc. (1) 12 (1975), 75-85.
- [6] R. Guzzardi, Differential Theory of Multivalued maps and Applications, Proceedings of Riyad Conference 1982 (to appear).
- [7] -, Positive solutions of operator equations in the non-differentiable case, Contemporary Mathematics Vol. 21 (1983), 137-146.
- [8] -, Non-trivial solutions of non-linear differential equations (to appear).
- [9] C. Kuratowski, Topologie, Vol. I, Varsovie 1958.
- [10] J. M. Lasry, R. Robert, Analyse non linéaire multivoque, Cahirs de Mathématiques de la decision No. 7611. Université de Paris-Dauphine.

DIPARTIMENTO DI MATEMATICA UNIVERSITÀ DELLA CALABRIA, ITALY

Reçu par la Rédaction le 15.11.1983