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Let M be an n-dimensional manifold and let p be a point of M. Any
differentiable transformation of local coordinates (z°) — (¥°) in a neigh-
borhood of p involves a system of parameters such that

o ayﬂ . a’l"yd
1) Ay = 007 | " Aqy.a, = .. 0w |y
where det (A5) # 0 and the AZ . are symmetric with respect to the
lower indices. The formula of derivation of composite functions implies
‘the law of multiplication of the parameters (1). Thus

02 = A*Bj,
2) by = A: B+ A By By,

(see [2]), where Cj, O}, ... are parameters of the product. The set of
all the elements

L= (A5, A%, ...y AS )

ajag? * aj...a,

with the multiplication (2) forms _a Lie group L, called the differential
group of order r (1 <r < oco). Its dimension
n+r—1
N = fn( +r )

The structure of this group has been thoroughly investigated by
Nijenhuis in [5].

The subgroup of all elements of the form (4, 0, ..., 0) is isomorphic
‘to the full linear group GL(n, R) of all non-singular real » Xn matrices;
it will be denoted by L,.

The subject of our investigation is the multiplicative functional
matrix equation

13) F(L L) = F(L,)F (L),
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where L,, L,eL; and F is a non-singular real matrix of order m, in the
case r = 2 and 2 < m < n.

In general case solving of this equation rembers possible the deter-
mination of all linear purely differential geometric objects of the type
[m, n, r], i.e. with m components and of the class r (see [2]).

In the special case m =1 and n > 2 equation (3) was solved by
Golgb and Kucharzewski in [2]. They proved that any scalar function f
defined on the group L) (n > 2) satisfying equation (3) depends only
on the matrix parameters A3, i.e. on elements of the subgroup L,. Thus
we can write f(L) = h(Aj) and h satisfies the equation

(4) h(A5)h(Bg) = h(A:Bp).

For n =2 'equa.tion (4) was solved by Golgb in [1] and then for
arbitrary n by Kucharzewski in [3]. The solution is

h(43) = ¢(det(43),

where ¢ is an arbitrary multiplicative function of real variable.
The purpose of this note is to generalize the result of S. Golgb and
M. Kucharzewski to arbitrary m, 2 < m < n, with restriction to r = 2 (1)..
THEOREM. In the case 2 < m < n the general solution F of functional

equation (3) may depend only on the matriz parameters A; and satisfies
the equation

(5) P(4;Bp) = @(45) P(By).
Proof. The group L2 consists of elements
L = (43, 43,), det(43) #0, =A%, a,f,y=1,...,n.
Notice the following identities:
(6). (05, Apy) (05, By,) = (95, 45,1+ By,),
(7) (45, 43,) = (43, 0)(35, 4743,),

where [43] is the inverse matrix to [A5]. .
According to the decomposition (7) and to equation (3) we have:

(8) F(45, 43,) = F[(45,0)(8;, A7 4;)] = F (45, 0)F (3, 4745,).
Write

(9) G(45) S P(45,0), H(43) Z F(8, 45,);

we shall write shortly ¢(4) and H(X), where A = [43] and X = (43,)..

() The presented proof forms a part of author’s PhD thcesis.
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In virtue of (8) and (9) we get
(10) F(A3, A3) = G(A5)H(A%A},).
It can be written briefly
F(L) = G(A)H(A:A3,).

As the matrix F is non-singular, so are the matrices G and H. Let
L, = (83, 43,), L, = (93, B;,). Write

X = (45), Y = (B3).
According to (6) we have
L, L, = (63, 43,4+ B;,) = (E, X+ Y).
Since
F(L) = H(X), F(L)=H(Y)

we get from (3)

(11) H(X+Y) = H(X)H(Y).
Put L, = (83, A%), L, = (B3, 0). Then
(12) F(L,L,) = F(L,) F(L,) = H(43,)G(Bg,)

holds. In view of L,L, = (Bj, A5, B;B%) and of identity (9) we get
L, L, = (B, 0)(&3, B; A}, B; By).

Hence
(13) F(L,L,) = F(Bj, 0)F(53, B:4;,B;B.)
= G(B;)H (B; A}, B} B%).
Comparing (12) and (13) one obtains
(14) G(Bj)H (B:A;,B;B") = H(A},)G(B;).
On the other hand,
(45, 0)(B5, 0) = (43B;, 0).
Hence F(Aj, 0)F(Bg, 0) = F(A';Bé, 0) and using (9) we get
G(45)G(B;) = G(A5Bp);
thus G satisfies equation (5).
The general solution of equation (5), in the case m < n, was given
by Kucharzewski and Zajtz in [4]. It has one of the forms
1° G(A) = D(J), J = det A;
2° G(4) = C'p(J)(4") ' C;
3° G(A) =C ')A 0O,
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where ( is a non-singular n X n constant matrix; @(J) is a matrix function
-of real argument J * 0 satisfying the equation
(15) ®(J,1,) = ¢(J1)¢(J2):_

and ¢(J) is a scalar multiplicative function.
Now we shall deal with equation (14) substituting there successively
the solutions 1°, 2° and 3°.

Case 1° Taking for 4 an unimodular diagonal matrix

01,
. ’ 01y 0y 0 = 1,
On

ie. J =1, we get G(A) = E, the unit matrix.

In fact, ®(1)®(1) = &(1.1) and @ being non-singular, it implies
@(1) = E.

Then equation (14) takes the form

. 1
(16) H(?A;,@,,g,) = H(43,).

Let us fix the indices a, 8,y and choose p’s such that
2s0
(17) %:2, 01y oeny 0p=1.

For n > 2 equations (17) always have a solution g, ..., o, because
the left-hand sides of (17) cannot be identical.

We assume that the function H (X,‘,,) depends only on the indepen-
dent variables X%,, where u < ». Thus we can consider such arguments
only for which X3, + 0, with fixed «, 8, y, and the others X;, (u<7»)
-equal to 0.

Write

H(X,y=H(0,...,0, X3,0,...,0).

By (16) and (17) we obtain for the corresponding o’s H (2X,) = H (X,).
But in view of (11) H(2X,) = H*(X,), and consequently

H*(X,) = H(X,).

Since H is a non-singular matrix, it implies H(X,) = E. Thus we
‘proved that for any fixed a,f,y

(18) H(©,...,0,X%,0,...,0) = E
holds. For n > 2 the general sequence of arguments
(Xlu X{za weey Xon)
<an be written as the sum
(X1, 0,y...,0)+(0, X,,0,...,0)+...4(0, ..., 0, X))
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By (11)
H(XY, .., X%) = H(X4,0,...,0)... HO, ..., 0, X.);

n
in view of (18) every factor of the right-hand product is the unit matrix,
80 we get
H(-Xh’ ooy Xpp) = E.
Cases 2° and 3° Substituting 4, = ¢E we obtain

1
G(Ao)=¢(9")?E or G(4,) = g¢(e")el,

respectively. Thus both the G(A4,) are scalar matrices, and consequently
commuting with H in equality (14). Multiplying (14) by G~'(4,) we get

H(QAEY) = H(Agv)-

Therefore H (X) is @ homogeneous function of order 0. Putting ¢ = 2
we obtain H(24;,) = H(Aj,) and, as previously, it implies
H(Ap) = E.
In all the cases H being unit matrix we get finally from (10)
F(Ag, Ag) — G(45).

This finishes the proof.

Our theorem can be applied to characterization of the geometric
objects of type [m,n, 2], m < n, with linear homogeneous transforma-
tion rule. Then the following corollary holds:

COROLLARY. There are no geometric objects with linear homogeneous
transformation rule whose component number m = 2 is not greater than the
dimension of manifold and which are essentially of the second class, i.e.

whose transformation rule depends mon-trivially on the partial derivatives
of second order 9*y°|0x°dx".
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