COLLOQUIUM MATHEMATICUM

VOL. LIV 1987 FASC. 2

[»-MULTIPLIERS FOR THE LAGUERRE EXPANSIONS

BY

JOLANTA DLUGOSZ (WROCLAW)

0. Introduction. Let L be the homogeneous sublaplacian on the Heisen-
berg group H and let E(1) be the corresponding resolution of the identity,
ie.

L= ?ME(,l).
0

For a bounded measurable function K on R, we can define the
operator

(0.1) Ty = ?K(l)dE(A)
0

which is bounded on L?(H). If Ty is bounded on L?(H), then K will be called
an LP-multiplier for the sublaplacian. We know some sufficient conditions on
K to be an LP-multiplier. For example, the following theorem holds:

THEOREM A. There exists an Ne N such that if Ke CY(R,) and

0.2) sup|K?()AV)|<B<wo, j=0,1,...,N,
A>0
then the operator Ty defined by (0.1) is bounded on LF(H), 1 <p < o0, and

”TK”LP(H),LP(Iﬂ S CpB‘

We know several proofs of this theorem (see, e.g., [3], [S], [12]). It is
also a corollary to multiplier theorems of [9] and [10]. The best N obtained
by these authors is equal to $Q +2, where Q is the homogeneous dimension
of H.

In this paper we prove that every continuous LP-multiplier for the
sublaplacian on the Heisenberg group is an LP-multiplier for the Laguerre
expansions. Related results are in [2], [7], [8] and [12], where (among other
things) authors interpret some theorems concerning nilpotent Lie groups in
terms of eigenfunction expansions of differential operators on R". For
example, in [8] and [12] theorems concerning summability methods and
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LP-multipliers are obtained for the eigenfunction expansions of the operators
on R of the form
2k
(~ 12 +p (3,

where p(x) is a positive polynomial and k is an arbitrary positive integer. In
particular, for k =1 we have the Hermite expansion. Proofs of these theo-
rems use the observation that every such operator is an image by a unitary
representation of some positive Rockland operator on a homogeneous group
(cf. [1] and [8]). These results do not include the Laguerre expansions. We
apply to this case a different approach based on eigen-expansions of the
sublaplacian acting on the space of functions considered by Geller [6], and
on analogy to the classical passage from LP-multipliers on R" to those on T™.

I would like to thank Andrzej Hulanicki for indicating the problem and
for stimulating discussions.

1. Let H, be the Heisenberg group with underlying manifold R x C" and
multiplication given by

— — " —
¢, 2)(t', 2) =(t+t'+2Imzz’, z+2'), where zz' = ) z;z].
j=1

We sometimes write the element (t, z) as (¢, x, y)e R x R*", where z; = x;
+iy;, j=1,...,n
Let L be the homogeneous sublaplacian on H,, ie,

1 n
L= -3 3 (Xj+1¥D),

j=1

where X; (Y) is the element of the Lie algebra of H, corresponding to the
one-parameter subgroup (0,...,0,¢,0,...,0), ¢t in the x; (y;) position. Let
E(4) be the spectral resolution of the identity corresponding to L, i.e,

L= :j?).dE (4).
For a bounded measurable function K on R, we define the operator Ty by
(1.1) I = IK(}.)dE(}.).
Tx is always bounded on L?>(H,). Let 1 < p < co. If Ty is bounded on L?(H),

we say that the function K is an LP-multiplier for the sublaplacian.
Let

]' 1/2
I’k(v)=((j+k)') *2e "2 X(v), veR,,
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be the Laguerre function of type k, where L%(v) is the Laguerre polynomial
i (] +k)(-v)"
L5(v) = ) .
3 (?) pgl -p) p!
For m=(m,,..., m)eZ" and a=(a,, ..., a,)e N" put

I®(v) = ,-;1 Il;'j' (v), where v=(vy,..., v)eR:.
We define LP-multipliers for the Laguerre expansions as follows:
Let F be a bounded function on N". For a function ¢ L?(R"%) with the
Laguerre expansion

(1.2) o~ 3 (o, IDIF
aeN™®
we define Tr ¢ by
Tro~ ¥ Fa(o, INIM.

acN”®
If T; is a bounded operator on L?(R"), then F will be called an LP-multiplier
for the Laguerre series.

THEOREM. Let 1 < p < co. If K is a continuous function on R, and if it is
an LP-multiplier for the sulg_laplacian on the Heisenberg group H,, then for
every s >0 the operator Ty defined for a ¢eLP(R%) with the Laguerre

expansion (1.2) by
(1.3) T,0~ Y K(sQlad+n)(e, IMi®

acN"

is bounded on LP(R",) and
I Tk llLocmn ».Lorn s < I TicllLo,). Lo,y -

As an application of the Theorem we present the following

CoROLLARY. Let n be a positive integer. If a function Ke C**3(R,) and if
it satisfies condition (0.2), then for every s > 0 the function (K (s(2|d+ n))}enn
is an LP-multiplier for the Laguerre series of type m for all p, 1 <p < o0,
and me N". In addition, we have the following estimation for the norm of the
corresponding operator 7‘,":

||7}:,||LP(R1).LP(A|1) < C,B,
where the constant C, does not depend on K, s and m.

2. In this section we investigate the action of L on spaces of functions of
the form

2.1) f@t,z)=exp(i Y m0)folt,ry, ..., 1),

j=1
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where m=(m,, ..., m)eZ" and z;=r;exp(if), j=1, ..., n. These spaces
were considered by Geller [6].
For a multi-index m =(m,, ..., m))e Z" we use the notation

mt=m{,....mf) and m =(mg,...,m,),

where m/ = max(m;, 0) and m; = max(-m;, 0), j=1,...,n
LEMMA 1. The functions

(2.2) P (t, z) =exp(i ), m;0;)IP (2|4 rP)e™ ¥,

ji=1

where r = (r3, ..., r2), are eigenfunctions of L on H, with the corresponding
eigenvalues |A|(2|a+m~|+n) for A <0 and |A|(2|a+m*|+n) for 2 > 0.

Proof. It is routine to verify this writing L in polar coordinates
X; = T; Ccos 01,
yj = rj sin GJ,

j=1,...,n and using the second order differential equation satisfied by
L;(v) (see [4]):
2

v PR
dv?

Let L%(H,) be the subspace of L?(H,) of functions of the form (2.1).
Denote by &, (f,) the Fourier transform of f,e L?(H,) with respect to the
central variable, i.e.,

L(v)+(k+1 —v);—vL'J‘-(v)+jL§(u) =0.

(23) fl (fO)('la STRERY ru) = -I euth(ta LS TIRERD rn)dt

for foe L' " L?(H,). For me Z" and ac N" let (cf. [6])

(24) R™(,f) = (2n)" g (j)(gr, f) @ 1y, s ) x T 3 UA )T, dr;.

j=1
We have for feL%(H,)
2|14\
(2.5) (F1 SR, rys ey = (—In—l) > R4 NIFQ21AP)
acN®

(the series being convergent in L2(R%) for a.e. A). For fe ¥(H,) of the form
(2.1) we have

@8)  folt, rry vy ) = (3)"1 [ e ¥ RE(A, £)Im21A ) A dA

n) 2n © 2eN"®
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and for felL%(H,)

2 n o
27) 2011224, = (n) [ Y IRRG, NI dA.

— ® g NP
LEMMA 2. The spaces LL(H,) are preserved by the operators Ty of the
form (1.1) and for feL%(H,) we have

(2.8) RT (A, Te f) = KZ(A)RT(4, f) ae,
where

win _ JK(AQ2la+m™|+n) for 1 <0,
(29) Ke@ = {K(Ill (2la+m*|+n) for 1 >0,

Proof. Assume first that Ty is a convolution operator by an L! radial
function (i.e., a function satisfying (2.1) with m = (0, ..., 0)). It is obvious that
Tx preserves the spaces L2 (H,). From Lemma 1 we have

Tk 22 = K& () 02.-
Hence from the formula (2.6) it follows that if

(2.10) [ Y IRT4,NNIA"dA < oo,
— ® gqeNP
then
2\" 1
211) Txf(@t, zq, ..., 2,) =exp(i Z m; 0,)( ) >
j= T

X [ e Y Km()RE(, £) M1 P AP dA.

- ® acN?

Since the formula (2.10) is satisfied for functions in % (H,), it holds for a
dense subset of LZ(H,). Thus the formula (2.8) holds for all feL2(H,) in
virtue of the fact that the map f — R¥?(4, f) from LZ(H,) to L*(R, |A|"dJ) is
continuous (cf. formula (2.7)).

Now, if Ke L*(R,) is arbitrary, we can find a sequence of functions K
in L®(R,) such that 7}‘ are convolutions by L' radial functions, Ty : tends

to Ty in strong operator topology, and K;(4) tends to K (4) for almost all A.
(To do this we can use, e.g., [7], Theorem 1.12)

3. Proof of the Theorem. To simplify the notation we present the proof
for the case n=1 only, the modifications for n > 1 being obvious. The
corresponding group H,; will be denoted by H.

Assume first that 1 <p < co. Let m be a non-negative integer and let
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s > 0. Consider the functions f and g on H of the forms

(3.1) ft,2)=fo(z)e™ e,  g(t, 2) = go(lz]) €™ €7,
where z = |z| ¢ and

SolzDe L2 nLP(C), go(lz)eL>*nI*(O), 1/p+1/g=1.
For 6 > 0 define the function
w,(t) = exp(—ndt?), teR.
We have

S, we()e L2 nL2(H), g(t, 2)w, () L* n L1(H)

for ¢, B, y > 0. Now, by the assumption, the operator Ty deﬁned by (1.1) is
bounded on LP(H). Consequently,

H

Put g =1/p, y=1/q and multiply both sides of (3.2) by &!/2. On the
right-hand side we obtain the expression

(e'/* [ exp(—mnet® dt)'/P (e/? [ exp(—met?)dt)'/d = 1.
i !

On the left-hand side we have, by the Plancherel formula (cf. (2.7)),

(33) &t ij(fW.p)gwq—e"z—n— S | RIA, Te(fineg) REGE, gy 141 dA

2 TcaeN a

(we have changed the order of integration and summation, which is permis-
sible for functions from L?(H)). Now, by the definition of R™ (cf. (2.4)

RT (4, gw,)) =2n [ e*exp(—mneyt?)e=dt [ go(r) 17 (214 P?) rdr
- @ 0

= 2n(ey)” Y2 exp(—|A +s|*/4ney) c.j?go (N I™2|A| r¥)rdr.
0
By Lemma 2 we know that
R™(4, Ty (fwep)) = KT (A RT(A, fw,y).

Thus, the expression (3.3) is equal to



MULTIPLIERS FOR LAGUERRE EXPANSIONS o ' 291

64 5200 T [KID [ o @Irrdr

aeN O 0

x [ 90 () I 21AI P rdr (68y)~ 2 exp(— 14+ */Anefy) 4] di
0

(we recall that 1/8+1/y = 1/By, since B = 1/p, y = 1/g).

Observe that the integral with respect to 4 in the above expression is, in
fact, the convolution estimated at the point —s of some function of A
continuous for 4 # 0 with the Gauss—Weierstrass kernel

1
Wepy (2) = 5-(ey)” 12 exp (— |A1*/4nepy).

Observe also that for f,, goe L?(R. , rdr) the absolute value of the remainder
of the series is small independently of ¢ > 0. Therefore, letting ¢ — 0 in (3.4),

we can change the order of limand ) . Thus, in virtue of the inequality (3.2)
e—~0 aeN
and the whole consideration, we obtain finally

a

(3.5 |8n Y KJ(=s) | fo( I (2sr¥)rdr
0

aeN

o
x [ 9o () (258 rdr 8| < 1 Tell gy o 1 foll gy 190l o -
(1)

Define the functions ¢ and ¥ on R, as follows:

¢(u)=fo<g> and w(u)=go( %)
(B Wfollpnq = (27 [ 1fo (Prdr)
0

T ® 1/p 7t \1/P
= ES— 6“‘/’(“)'”‘“‘) = (z) Il(pIILp(R+)

and similarly for g,. Changing the variable in the same way on the left-hand
side of (3.5), putting K7'(—s) = K(s(2a+1)) (cf. Lemma 2), and then dividing
both sides by n/2s we obtain

We have

| K(sQat D)@, W ] < 1Tl o 1905, Wl

aeN
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for ¢ =L*NnL°(R,), YeL*NnLi(R,). Now the Theorem follows for
1 <p <o by the usual density arguments.
The case p=1 is even simpler. Let fe L' nL?*(H) be of the form

[, 2) =€ fo(z) h(2),

where z = |z| € and m is a non-negative integer. Since Ty is an L!'-multiplier
and it preserves the space L2(H), so Ty fe L' nL%(H). Thus

T f(t, 2) = €™ (Tx No(t, I2])

and
61 Fi(Tefolh 1) =" T REG Te )R
-2 & 2 KrOR @D
-2Ban 7 Kk2) T bt o) @A dr

aeN
xI7 (214 r?)
by (2.5), Lemma 2 and (2.4). Now, for any AcR,

(3.8) Ilﬁ"'l(Txf)o(/1 r)rdr < j I |Tx f (¢, r)| dt rdr

0 -
1 1
= 5 T My < 5 1Tl 3, 3 1 ol 1l 1
Let s >0 and let h(t) = exp(—nt?) . We have
? h(t)eé* dt = exp(—|A+s/%/4n) and IAll 1 =
Thus for A = —s, in vritue of (3.7), the inequality (3.8) takes the form
4s :f| ZNK (s +1)) :f fo(r) I Q2sr)ry dry I*(2sr?) rdr]

1
< 2_16” T‘x”LI(H'),Ll(H) "fOHLI(Q'

Define as for p > 1 the function

o= 5.

By considerations analogous to the previous ones, the last inequality is
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equivalent to

” Z K(S(2a+ 1))(‘»09 lam) I:‘"Ll(n".) < ”1‘K”L1(H),L1(H) ll(plll‘l(n+)
aeN
for e L' nL*(R,). This proves the case p = 1.
If Tx is an L*-multiplier for the sublaplacian on H, then it is an L!-
multiplier. Then from the case p = 1 we infer that the operator Ik, defined

by (1.3) is bounded on L!(R.) and, consequently, it is bounded on L®(R.).
Thus the Theorem is established.

Remark. The idea of the proof is taken from [11], pp. 260-263, the
proof of Theorem 3.8.
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