# DIFFERENTIAL GEOMETRY BANACH CENTER PUBLICATIONS, VOLUME 12 PWN—POLISH SCIENTIFIC PUBLISHERS WARSAW 1984

# ON INFINITESIMAL DEFORMATIONS OF SUBMANIFOLDS OF A RIEMANNIAN MANIFOLD

#### S. T. HINEVA

Faculty of Mathematics and Mechanics, Sofia University, Sofia, Bulgaria

## § 0. Introduction

Recently infinitesimal deformations of submanifolds of a Riemannian manifold have been studied by K. Yano [6], [2], B. Y. Chen [2], S. Tachibana [5], R. A. Goldstein and P. I. Ryan [3] and other authors.

Let  $M^m$  be an m-dimensional compact orientable submanifold of an n-dimensional orientable Riemannian manifold  $M^n$ . In the present paper conditions have been found in which the submanifold  $M^m$  does not allow non-trivial infinitesimal isometric and non-trivial infinitesimal conformal deformations.

- In § 1, we give some known results on the infinitesimal deformations of subma nifolds and some definitions needed for the later discussions.
- In § 2, we consider infinitesimal isometric deformations of the submanifold  $M^m$ . We find conditions in which  $M^m$  is rigid.
- In  $\S$  3, we find conditions in which the submanifold  $M^m$  is rigid with respect to infinitesimal conformal deformations. All manifolds are assumed connected.

#### § 1. Preliminaries

Let  $M^n$  be an *n*-dimensional connected Riemannian manifold covered by a system of coordinate neighbourhoods  $\{U, x^i\}$  and let  $g_{ij}$ ,  $\Gamma^k_{ij}$ ,  $\nabla_i$ ,  $R^h_{ijk}$  and  $R_{ij}$  denote, respectively, the metric tensor, the Christoffel symbols, the operator of covariant differentiation with respect to  $\Gamma^k_{ij}$ , the curvature tensor and the Ricci tensor of  $M^n$ . The indices i, j, k, h assume the values 1, 2, ..., n.

Let  $M^m$  be an m-dimensional connected Riemannian manifold, covered by a system of coordinate neighbourhoods  $\{V, u^{\alpha}\}$  and let  $g_{\alpha\beta}$ ,  $\Gamma^{\delta}_{\alpha\beta}$ ,  $\nabla_{\alpha}$ ,  $R^{\delta}_{\alpha\beta\gamma}$  and  $R_{\alpha\beta}$  denote the corresponding quantities of  $M^m$ . The indices  $\alpha$ ,  $\beta$ ,  $\gamma$ ,  $\delta$  run over the range  $\{1, 2, ..., m\}$ .

76 S. T. HINEVA

We suppose that the manifold  $M^m$  is isometrically immersed in  $M^n$  by the immersion  $r: M^m \to M^n$  and we identify  $r(M^m)$  with  $M^m$ . We represent the immersion r by

$$(1.1) x^i = x^i(u^\alpha)$$

and denote

$$B_{\alpha}^{i} = \frac{\partial x^{i}}{\partial u^{\alpha}}.$$

 $B_{\alpha}^{i}$  are m linearly independent vectors of  $M^{n}$  tangent to  $M^{m}$ .

We denote by  $N_{\lambda}^{l}$   $(\lambda, \mu = m+1, m+2, ..., n)$  n-m mutually orthogonal unit normals to  $M^{m}$  and by  $D: I \times M^{m} \to M^{n}$ ,  $I = (-\varepsilon, \varepsilon)$ ,  $\varepsilon > 0$ , an arbitrary deformation of  $M^{m}$ . Then the field  $z^{l}$  of the deformation D can be represented as

$$z^{i} = \xi^{\alpha} B_{\alpha}^{i} + \xi^{\lambda} N_{1}^{i},$$

where  $\xi^{\alpha}$  and  $\xi^{\lambda}$  are, respectively, tangential and normal components of the field of deformation  $z^{i}$ .

We call a deformation D of the submanifold  $M^m$  trivial, when the field of the deformation  $z^i$  is identically equal to zero.

A deformation D of  $M^m$  is

(a) infinitesimal isometric (IID), if the components  $\xi^{\alpha}$  and  $\xi^{\lambda}$  of the vector field of deformation  $z^{i}$  satisfy the following system of equations:

$$\nabla_{\alpha} \xi_{\beta} + \nabla_{\beta} \xi_{\alpha} - 2h_{\alpha\beta\lambda} \xi^{\lambda} = 0,$$

where  $h_{\alpha\beta}^{\lambda}$  are the second fundamental tensors of  $M^{m}$  with respect to the normals  $N_{\lambda}^{i}$ ;  $h_{\alpha\lambda}^{\beta} = g^{\beta\delta}h_{\alpha\delta\lambda}$ ;  $h_{\lambda} = h_{\alpha\lambda}^{\alpha} = g^{\alpha\beta}h_{\alpha\beta\lambda}$ ,

(b) infinitesimal conformal (homothetic) (ICD, (IHD)) if  $\xi^{\alpha}$  and  $\xi^{\lambda}$  satisfy the system of equations:

$$\nabla_{\alpha} \xi_{\beta} + \nabla_{\beta} \xi_{\alpha} - 2h_{\alpha\beta\lambda} \xi^{\lambda} = 2\varrho g_{\alpha\beta},$$

where  $\varrho$  is a certain function (constant) of  $u^{\alpha}$ .

Let  $v^{\alpha}$  be a vector field in  $M^m$ .

(a) A vector field  $v^{\alpha}$  is a harmonic vector if it satisfies

(1.6) 
$$\nabla_{\alpha}v_{\beta}-\nabla_{\beta}v_{\alpha}=0, \quad \nabla_{\alpha}v^{\alpha}=0.$$

(b) A Killing vector is a vector field  $v^{\alpha}$  which satisfies

$$\nabla_{\alpha} v_{\beta} + \nabla_{\beta} v_{\alpha} = 0.$$

(c) An affine Killing vector is a vector field  $v^{\alpha}$  which satisfies

$$\nabla_{\nu}\nabla_{\beta}v^{\alpha} + R_{\beta\nu\beta}{}^{\alpha}v^{\delta} = 0.$$

(d) A conformal Killing vector is a vector field which satisfies

(1.9) 
$$\nabla_{\alpha} v_{\beta} + \nabla_{\beta} v_{\alpha} = \frac{2}{m} (\nabla_{\alpha} v^{\alpha}) g_{\alpha\beta}.$$

#### § 2. Infinitesimal isometric deformations

THEOREM 2.1. Let  $M^m$  be a non-totally geodesic, compact orientable submanifold of an orientable Riemannian manifold  $M^n$ . If  $M^m$  satisfies the conditions:

- (a) the matrix  $A = (h_{\alpha\beta\lambda}h_{\mu}^{\alpha\beta})$  is positively definite,
- (b) the Ricci tensor is positively definite,

then  $M^m$  does not allow non-trivial infinitesimal isometric deformations for which the tangential component of the deformation vector is a harmonic vector.

**Proof.** Let us suppose that  $M^m$  allows non-trivial IID. Then the tangential  $\xi^{\alpha}$  and the normal  $\xi^{\lambda}$  components of the field of deformation  $z^h$  do not vanish at the same time and satisfy equation (1.4).

For a compact orientable submanifold  $M^m$  the following integral formula is valid:

(2.1) 
$$\int_{M_m} \left\{ R_{\alpha\beta} \xi^{\alpha} \xi^{\beta} + \nabla^{\beta} \xi^{\alpha} \nabla_{\alpha} \xi_{\beta} - (\nabla_{\alpha} \xi^{\alpha})^2 \right\} dv = 0$$

for any vector  $\xi^{\alpha}$  in  $M^{m}$  [7]. Since the vector  $\xi^{\alpha}$  is harmonic, we have

(2.2) 
$$\nabla_{\alpha} \xi_{\beta} = \nabla_{\beta} \xi_{\alpha}, \quad \nabla_{\alpha} \xi^{\alpha} = 0.$$

We multiply (1.4) by  $\nabla^{\alpha}\xi^{\beta}$  and by  $h_{\mu}^{\alpha\beta}\xi^{\mu}$ . We obtain

(2.3) 
$$\nabla_{\beta} \xi_{\alpha} \cdot \nabla^{\alpha} \xi^{\beta} = h_{\alpha\beta\lambda} h_{\mu}^{\alpha\beta} \xi^{\lambda} \xi^{\mu}.$$

Equality (2.1) after applying (2.2) and (2.3) becomes:

(2.4) 
$$\int_{M^m} R_{\alpha\beta} \, \xi^{\alpha} \, \xi^{\beta} dv = - \int_{M^m} h_{\alpha\beta\lambda} h_{\mu}^{\alpha\beta} \, \xi^{\lambda} \xi^{\mu} dv \,.$$

The above equality in view of conditions (a) and (b) of the theorem is valid only when  $\xi^{\alpha}$  and  $\xi^{\lambda}$  are identically equal to zero. The theorem is thus proved.

THEOREM 2.2. Let  $M^m$  be a non-totally geodesic compact orientable submanifold of an orientable Riemannian manifold  $M^n$ . If  $M^m$  satisfies the conditions:

- (a) the matrix  $A = (h_{\alpha\beta\lambda}h_{\mu}^{\alpha\beta})$  is positively definite,
- (b) the Ricci tensor is negatively definite,

then  $M^m$  does not allow non-trivial infinitesimal non-tangential and non-normal isometric deformations for which the tangential component of the deformation vector is a Killing vector.

*Proof.* If we assume that there exists a non-trivial, non-tangential and non-normal IID of  $M^m$ , then  $\xi^{\alpha}$  and  $\xi^{\lambda}$  do not vanish and satisfy the equations (1.4).

The condition for a vector field  $\xi^{\alpha}$  to be a Killing vector is given by (1.7). We multiply (1.7) by  $g^{\alpha\beta}$  and we obtain

$$\nabla_{\alpha} \xi^{\alpha} = 0.$$

78 S. T. HINEVA

From (1.4), taking account of (1.7), we have

$$(2.6) \qquad (\nabla_{\alpha}\xi_{\beta} + \nabla_{\beta}\xi_{\alpha})h_{\mu}^{\alpha\beta}\xi^{\mu} = 2h_{\mu}^{\alpha\beta}h_{\alpha\beta\lambda}\xi^{\lambda}\xi^{\mu} = 0.$$

From condition (a) of the theorem it follows that (2.6) is valid iff  $\xi^{\lambda} \equiv 0$ .

The integral formula (2.1), in view of (1.7) and (2.5), becomes

(2.7) 
$$\int_{M^n} R_{\alpha\beta} \xi^{\alpha} \xi^{\beta} dv = \int_{M^m} \nabla_{\alpha} \xi_{\beta} \cdot \nabla^{\alpha} \xi^{\beta} dv.$$

This equality, if account is taken of condition (b) of the theorem, is fulfilled only when  $\xi^{\alpha}$  is identically equal to zero. The theorem is proved.

COROLLARY. If  $M^m$  satisfies the conditions of Theorem 2.2, then  $M^m$  does not allow non-trivial non-tangential and non-normal IID for which the tangential component of the deformation vector field is an affine Killing vector field.

THEOREM 2.3. Let  $M^m$  be a non-totally geodesic compact orientable submanifold of an orientable Riemannian manifold  $M^n$ . If  $M^m$  satisfies the conditions:

(a) the matrix 
$$A = \left(h_{\alpha\beta\lambda}h_{\mu}^{\alpha\beta} - \frac{1}{m}h_{\lambda}h_{\mu}\right)$$
 is positively definite,

(b) the Ricci tensor is negatively definite,

then  $M^m$  does not allow non-trivial infinitesimal non-tangential and non-normal isometric deformations for which the tangential component of the deformation vector is a conformal Killing vector.

*Proof.* From the transvection of (1.4) with  $g^{\alpha\beta}$  we obtain

$$\nabla_{\alpha} \xi^{\alpha} = h_{\alpha}^{\alpha}, \xi^{\lambda}.$$

From (1.4), (1.9) and (2.8) we have

$$\frac{1}{m}h_{\lambda}\xi^{\lambda}\cdot g_{\alpha\beta}=h_{\alpha\beta\lambda}\xi^{\lambda},$$

and then

(2.10) 
$$\left(h_{\alpha\beta\lambda}h_{\mu}^{\alpha\beta} - \frac{1}{m}h_{\lambda}h_{\mu}\right)\xi^{\lambda}\xi^{\mu} = 0.$$

Further the proof is analogous to that of Theorem 2.2.

PROPOSITION 2.1. A compact orientable submanifold  $M^m$  of an orientable Riemannian manifold  $M^n$  does not allow non-trivial tangential IID if the Ricci tensor is negatively definite.

THEOREM 2.4. If a compact orientable submanifold  $M^m$  of an orientable Riemannian manifold  $M^n$  satisfies the conditions:

- (a) the matrix  $A = (h_{\lambda}h_{\mu} 2h_{\alpha\beta\lambda}h_{\mu}^{\alpha\beta})$  is positively definite,
- (b) the Ricci tensor is negatively definite,

then M<sup>m</sup> does not allow non-trivial IID.

*Proof.* We multiply (1.4) by  $\nabla^{\alpha}\xi^{\beta}$  and by  $h_{\mu}^{\alpha\beta}\xi^{\mu}$ . We obtain

$$\nabla^{\alpha} \xi^{\beta} \cdot \nabla_{\beta} \xi_{\alpha} = -\nabla_{\alpha} \xi_{\beta} \cdot \nabla^{\alpha} \xi^{\beta} + 2h_{\alpha\beta\lambda} h_{\mu}^{\alpha\beta} \xi^{\lambda} \xi^{\mu}.$$

Equality (2.1) together with (2.8) and (2.11) gives:

(2.12) 
$$\int_{M^m} R_{\alpha\beta} \xi^{\alpha} \xi^{\beta} dv = \int_{M^m} \left\{ (h_{\lambda} h_{\mu} - 2h_{\alpha\beta\lambda} h_{\mu}^{\alpha\beta}) \xi^{\lambda} \xi^{\mu} + \nabla_{\alpha} \xi_{\beta} \cdot \nabla^{\alpha} \xi^{\beta} \right\} dv.$$

The above equality, in view of the conditions (a) and (b) of the theorem, is valid only when  $\xi^{\alpha}$  and  $\xi^{\lambda}$  are identically equal to zero. The proof is complete.

### § 3. Infinitesimal conformal deformations

THEOREM 3.1. Let  $M^m$  be a non-totally geodesic compact orientable submanifold of an orientable Riemannian manifold  $M^n$ . If  $M^m$  satisfies the conditions:

(a) the matrix 
$$A = \left(-\frac{1}{m}h_{\lambda}h_{\mu} + h_{\alpha\beta\lambda}h_{\mu}^{\alpha\beta}\right)$$
 is positively definite,

(b) the Ricci tensor is positively definite,

then  $M^m$  does not allow non-trivial ICD for which the tangential component of the deformation vector is a harmonic vector.

*Proof.* We multiply (1.5) by  $g^{\alpha\beta}$  and determine the function  $\rho$ 

(3.1) 
$$\varrho = \frac{1}{m} \left( \nabla_{\alpha} \xi^{\alpha} - h_{\lambda} \xi^{\lambda} \right).$$

Then we can represent equation (1.5) as follows:

(3.2) 
$$\nabla_{\alpha} \xi_{\beta} + \nabla_{\beta} \xi_{\alpha} - 2h_{\alpha\beta\lambda} \xi^{\lambda} = \frac{2}{m} (\nabla_{\varepsilon} \xi^{\varepsilon} - h_{\lambda} \xi^{\lambda}) g_{\alpha\beta}.$$

From equality (3.2), taking account of (1.6), we obtain

(3.3) 
$$\nabla_{\alpha}\xi_{\beta}\cdot\nabla^{\beta}\xi^{\alpha}=\left(h_{\alpha\beta\lambda}h_{\mu}^{\alpha\beta}-\frac{1}{m}h_{\lambda}h_{\mu}\right)\xi^{\lambda}\xi^{\mu}.$$

The integral formula (2.1) in view of (3.3) and (1.6) becomes:

(3.4) 
$$\int_{M^m} R_{\alpha\beta} \xi^{\alpha} \xi^{\beta} dv = \int_{M^m} \left( \frac{1}{m} h_{\lambda} h_{\mu} - h_{\alpha\beta\lambda} h_{\mu}^{\alpha\beta} \right) \xi^{\lambda} \xi^{\mu} dv$$

and hence we complete the proof, taking account of the assumptions.

PROPOSITION 3.1. A compact orientable submanifold  $M^m$  of an orientable Riemannian manifold  $M^n$  does not allow non-trivial tangential ICD if the Ricci tensor is negatively definite.

THEOREM 3.2. Let  $M^m$  be a non-totally geodesic compact orientable submanifold of an orientable Riemannian manifold  $M^n$ . If  $M^m$  satisfies the conditions:

80 S. T. HINEVA

(a) the matrix 
$$A = \left(h_{\alpha\beta\lambda}h_{\mu}^{\alpha\beta} - \frac{1}{m}h_{\lambda}h_{\mu}\right)$$
 is positively definite,

(b) the Ricci tensor is negatively definite,

then  $M^m$  does not allow non-trivial, non-tangential and non-normal ICD for which the tangential component of the deformation vector is a Killing vector.

*Proof.* Let us suppose that  $\xi^{\alpha}$  and  $\xi^{\lambda}$  do not vanish. Equality (3.2) in view of (1.7) becomes:

$$(3.5) h_{\alpha\beta\lambda}\xi^{\lambda} = \frac{1}{m}h_{\lambda}\xi^{\lambda}g_{\alpha\beta}.$$

Multiplying (3.5) by  $h_{\mu}^{\alpha\beta}\xi^{\mu}$ , we obtain

(3.6) 
$$\left(h_{\alpha\beta\lambda}h_{\mu}^{\alpha\beta}-\frac{1}{m}h_{\lambda}h_{\mu}\right)\xi^{\lambda}\xi^{\mu}=0.$$

Further the proof is analogous to that of Theorem 2.2.

THEOREM 3.3. A compact orientable submanifold  $M^m$  of an orientable Riemannian manifold  $M^n$  does not allow non-trivial ICD if the following conditions are fulfilled:

(a) the matrix 
$$A = \left(\frac{1}{m} h_{\lambda} h_{\mu} - h_{\alpha\beta\lambda} h_{\mu}^{\alpha\beta}\right)$$
 is positively definite,

(b) the Ricci tensor is negatively definite.

*Proof.* If we assume that there exists a non-trivial ICD of  $M^m$ , then  $\xi^{\alpha}$  and  $\xi^{\lambda}$  do not vanish simultaneously and satisfy equality (3.2). From equality (3.2) we obtain the following equalities:

$$(3.7) h_{\mu}^{\alpha\beta} \xi^{\mu} \cdot \nabla_{\alpha} \xi_{\beta} = h_{\alpha\beta\lambda} h_{\mu}^{\alpha\beta} \xi^{\lambda} \xi^{\mu} + \frac{1}{m} \left( \nabla_{\varepsilon} \xi^{\varepsilon} - h_{\lambda} \xi^{\lambda} \right) \cdot \nabla_{\alpha} \xi^{\alpha},$$

$$(3.8) \qquad \nabla_{\alpha}\xi_{\beta}\cdot\nabla^{\beta}\xi^{\alpha} = 2\left(h_{\alpha\beta\lambda}h_{\mu}^{\alpha\beta} - \frac{1}{m}h_{\lambda}h_{\mu}\right)\xi^{\lambda}\xi^{\mu} + \frac{2}{m}\left(\nabla_{\alpha}\xi^{\alpha}\right)^{2} - \nabla_{\alpha}\xi_{\beta}\cdot\nabla^{\alpha}\xi^{\beta}.$$

The integral formula (2.1) in view of (3.8) becomes:

$$(3.9) \qquad \int_{M^{m}} \left\{ \frac{m-2}{m} \left( \nabla_{\alpha} \xi^{\alpha} \right)^{2} + \nabla_{\beta} \xi_{\alpha} \cdot \nabla^{\beta} \xi^{\alpha} \right\} dv$$

$$= \int_{M^{m}} \left\{ R_{\alpha\beta} \xi^{\alpha} \xi^{\beta} + 2 \left( h_{\alpha\beta\lambda} h_{\mu}^{\alpha\beta} - \frac{h_{\lambda} h_{\mu}}{m} \right) \xi^{\lambda} \xi^{\mu} \right\} dv.$$

From the conditions of the theorem it follows that equality (3.9) is fulfilled only when  $\xi^{\alpha}$  and  $\xi^{\lambda}$  are identically equal to zero. The theorem is proved.

#### References

- [1] B. Y. Chen, Geometry of submanifolds, Marcel Dekker, Inc., New York 1973.
- [2] B.-Y. Chen, K. Yano, On the theory of normal variations, J. Differential Geometry 13 (1978), 1-10.
- [3] R. A. Goldstein, P. I. Ryan, Infinitesimal rigidity of submanifolds, ibid. 10 (1975), 49-60.
- [4] S. T. Hineva, Infinitesimal deformations of submanifolds of a Riemannian manifold, C.R. Acad. Sci. Bulgare 4 (1980).
- [5] S. I. Tachibana, On the isometric deformation vector of the hypersurface in Riemannian manifolds, Natur. Sci. Rep. Ochanomizu Univ. 27, 1 (1976), 1-9.
- [6] K. Yano, Infinitesimal variations of submanifolds, Kodai Math. J. 1 (1978), 30-44.
- [7] —, Differential Geometry on Complex and Almost Complex Spaces, Pergamon Press, Oxford 1965.
- [8] -, Integral formulas in Riemannian geometry, Marcel Dekker, Inc., New York 1970.

Presented to the Semester
Differential Geometry
(September 17-December 15, 1979)