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A remark on the general theory of summability

by BoGpAN Nowak (Lo6dz)

The theory of evaluating sequences by matrix founded Mazur and
Orlicz [3] has been generalized by Wlodarski [6] for continuous methods.

Basing on the ideas contained in the papers mentioned above,
Persson [5] has developed the theory of evaluation of functions defined
on topological spaces which are locally bounded Baire functions.

Persson’s approach, however, is inconvenient for the spaces R” (R,
is the space of real non-negative numbers) or N* (N is the discrete space
of natural numbers) e.g. according to Persson a = lima,, means
¢ = lim a,, uniformly with respect to » = 1,2, 3, ... The assumption

m—»—+4 00
of bou;dedness is also unnatural for functions defined in E, .

In this paper I show that for functions the topology in the domain
in which they are defined is in fact unessential. We know that for the
existence of the limit of a function it suffices that its field be a directed
set or that a filter (semifilter) be defined in its domain. The topology is
necessary only in the set of values of a function. The corresponding defi-
nitions and theorems are recalled in section 0. For proofs and details see
paper [1]. In this paper I make use of semifilters, notions of the theory
of integral an measure according to [2] and of the theory of linear metric
spaces according to [4].

I wish to express my many thanks to Professor L. Wlodarski for
his precious remarks concerning this paper.

0. Filters and convergence.

0.1. Let X be a set and @ a non-empty family of its subsets. @ is
called & filter if

(F,) Ae® and A c A, ¢ X implies 4,D;

(Fy) 4, Be® implies A N BeD;

(Fy) Ol @ (O the empty set).

A non-empty family IT of subsets of the set X is called a semifilier
if IT satisfies (F,) and if

(Fz) A, Bell implies that there exists a CelT such that C = A N B.
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It can easily be verified that the family
&, = {A < X : there exists a Bell such that B = A}

is a filter. .
Every semifilter I7 such that ® = @ is called a basis of the filter @.

0.2. Let (X, r) be a topological space and @ a filter of subsets of X.
We say that &, is the limit of @ (or @ converges to z,) if every neighbour-
hood of z, is included in ®. A semifilter of subsets of X is said to con-
verge to wye X if the filter @, defined in 0.1 converges to ,.

It can easily be verified that a semifilter /7 converges to z, if and
only if any neighbourhood of z, includes an element of the semifilter.

0.3, Let X be a set (Y, r) a topological space, f a function defined
on X whose values belong to Y, and /I a semifilter of subsets of X. The
family f(IT) = {f(A)} ez 18 2 semifilter of subsets of the set ¥. The func-
tion f is said to possess the limit y with respect to I7 if the semifilter f(/7)
converges fo Y in (¥, 7). We denote it by y = lim, f.

By a proper choice of X and /7 one may obtain the required kind of
convergence. To illustrate this, we consider the following examples:

Let X = N* and let (¥, t) = (R, v) be the space of real numbers.
It follows that a function f defined on X with the values from Y is a k-
fold sequence. Take for I7 the familly of sets of the form {(n,,...,n,):
n,=>m for i =1,2,...,k}. It follows that lim;f, if it exists, is an
ordinary limit of the sequence f(n,,...,n;) a8 2, = 00, ..., Ny — oco.

~ We denote by F(X) the set of all functions with complex values
defined on X.

1. Methods of evaluating. In [5] the method of evaluating functions
has been defined as a distributive, i.e. additive and homogeneous mapping
M of D(M) c B(X) into B(T), where X and Y are locally compact and
g-compact spaces and B(X), B(T) denote the familly of all Baire func-
tions bounded on compact sets and defined on X and 7, respectively.
The M limit of feD(M), if it exists, is lim, Mf, where II is a semifilter
of complementaires of the compact subsets of T. More generally,

1.1. DeFInITION. The method of evaluating functions defined in
the set X is a triplet M = (T, T, M), where T is an arbitrgry set,
IT o semifilter of subsets of the set 7' and M a distributive mapping of
D(M) c F(X) into F(T).

Let Y be a linear subspace of F(X). D(M;: Y) denotes the set:
of functions f such that fe¥ n D(M) and lim MF exists.

We denote this limit by AMf.

- It is easily seen that this definition contains the methods defined in
[5] and that D(M,) of {5] is D(M;: B(X)) in the sense of our argument.
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2. Let P be a semifilter of subsets of X and Y a linear ‘subspace
of F(X). We say that M is P-permanent for Y if fe Y and the existence
of limpf imply feD(M, Y) and AMf = limpf.

From 2 we obtain Persson’s definition by putting for P comple-
mentaries of compact subsets of X.

3. Let K be a class of methods of evaluating functions defined on X
and M a P-permanent method for Y belonging to K. We say that M is
P,Y-perfect in K if for every P-permanent for Y method L belonging
to the class K:D(M,: Y) < D(L,: Y) implies AMf = ALf for every
feD(M,;: Y).

We see that in the case of evaluating sequences the above definition
is equivalent to the usual one with K as the class of matrix methods,
Y = F(N) and P = {[n, o) N N},.~-

4. We see from the following proposition that the restriction of the
notion of perfectness to some class K is essential.

4.1. Let K be the class of all methods of evaluating functions defined
on X and let P, Y be given. If the method M is P, Y-perfect in K, then
feD(M,;: XY) if cmd only if feY and limpf exists.

Proof. Suppose that fe D(M;: Y) and limpf, does not exist. Let &
be any distributive functional defined on D( M;: Y) and such that &(f)
= 0 if limpf exists and £(f,) = 1.

Let L =T, 11, L), where T and P are defined as in M and (Lf )(t)
= (Mf)(®)+ &(f).

Then D(L;: Y) = D(M,;: Y), L is P-permanent and ALf, # AMf,
contrary to the assumption that M is perfect in K.

5. Let Y be a linear subspace of F(X) and let {||-|x}x.y e a count-

able family of seminorms on Y. We say that f =g if ||[f—g¢|x = 0 for
every KeN.

{Y, 1) is called a B, space if the topology = is generated by the
metric

o(f,9) = X 275 If— glle 1+ IIf — gllz) ™
k=1

and if the metric space (T, ¢> is complete (see [4]). In what follows we
consider methods M = (T, 11, Iﬁ) such that ||f—g|lx = 0 for every KeXN
implies _(ﬁf)(t) = (lf[g)(t) for every teT.
5.1. DEFINITION. Let (¥, ) be a B, space such that Y < F(X).
We say that a method M = (T, II, M > is topological in (¥, if
5.1.1. feD(M;: Y) implies ||fllsc0 = sup (Mf)(t)] < oo.
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5.1.2. D(M;: Y) is a B, space in a topology not weaker than the
topology generated by the seminorms of ¥ and the seminorm || |5 u.

5.2. We see that a “topological method” in the sense of [5] is topo-
logical in the meaning of 5.1 in B(X) for a g-compact and locally compact
space X, where B(X) is considered with the seminorms sup |f(x)] and Z
is a compact set included in X.

This class of methods will be denoted by BT.

5.3.1. Let u be a o-finite positive measure on the set X, i.e. X = (JX,

n=1
and p(X,) < oo for every n. L(u) denotes the family of functions feF(X)
such that for every measured E < X: if u(E) < oo, then ||f|}

= i!. |f(@)| u(dz). Putting, in 5.1, ¥ = L(x) with the topology generated
by the seminorms |fllz we obtain the class L(u)T.

5.4. X = N (evaluation of sequences), it is easily seen that the
class BT is equal to the class L(u)T with u(F) = Card(F) for matrix
methods.

"For X = R, the methods used in practice belong to both classes
considered above. In particular this is the case with the methods of class Z
defined in 5.5.

5.5. Let 1 be the Lebesgue measure on K, and let M (¢, ) be a con.-
tiunous function in R% . For feL(1); let (Mf)(t) = flTI(t, x)f(x)dz; by 7
we denote the family of intervals [a, o) for ;o,g 0.

The class of methods thus defined is called the class Z.

5.5.1. ProOPOSITION. The method M from Z belongs to BT and L(u)
and AMf = Lim fll?[(t x) f(z)dw.

t—oo [0,t]

Proof. The topology in D(M B(X)) IS defined by seminorms
(Ifll, = sup |f(x)l, n =1,2,3,..., and SUPI f M (¢, z)f(2)dz| = ||flla,co-

In VleW of the continuity of M the mappmg t—> fM (t, ) f(x)do

is continuous as a function of ¢ for every fe L(A1) o . B(R, ) Then for every f
from ¥ = L(A) or = B(R,) we have |fly . < oo if feD(M;: ¥). In
D(M,: I(X)) we substitute |l = [ |f(x)/dz instead of |fl,.

[0,n]

It is easily seen that with these seminorms and ¥ = B(R,) or Y
= L(A) D(M;: Y) are B, spaces. The rest of the proposition is obv10us

6. In the definition of the topological in ¥ method M we have said
“in topology not weaker than...” In view of the following proposition
the topology in D(M,: Y) has been defined uniquely.

6.1. Let M and 8 be methods of the type B, topological in (Y, 1) and
D(M;: Y)c D(8,: Y). Then the topology induced on D(M,:Y) by
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the topology given in D(S;: Y) is not stronger than the topology given in
D(M;: Y).

Proof (similar to [5]). Let I:f —f be an injection of D(M;: Y)
in D(S;: Y). Let limf, =f in D(M;: Y) and lLmIf, =limf, =g¢ in
D(8,:,Y). Since neither topology is weeker than the topology of (Y, )
we have also limf, = f and limf, = ¢ in (Y, t); so f =g.

By the close graph theorem we conclude that I is continuous, which
ends the proof.

6.2, PrROPOSITION. Let M be a method topological in (¥ ,t) and lét
Y ¢ F(X). For every linear, i.e. distributive and continuous, function &
on D(M;: Y) there exists a method § topological in (X, 1) and such -thai
D(M,: Y)c D(S,: Y) and £(f) = ASf for any feD(M;: Y).

Proof (as in [5]). Let M =T, 11, M). We put (Sf)(t) = (lf[f)(tH-'
4 E(f)—AMSf for feD(M;: Y) and {eT. The method S = (T, II, S’) has
the required property.

7. The propositions from Section 6 and the Banach-Hahn theorem
on prolongation of functionals give the following

7.1. PROPOSITION. The P, Y-perfectness of a method topological in
(XY, t) is equivalent to each of the following

711, {feD(M;: Y):limpf exists} i3 dense in D(M;: ¥).

7.1.2. For every linear functional £ on D(M;: Y):if £E(f) = O for every f
such that limpf exists implies & = 0.

We omit the easy proof.

8. Let T=X =R, and IT =P = {[a, 00)}400-

8.1. PROPOSITION. For M eZ: the P, L(A)-perfeciness in the class L(A)T
implies the P, B(R)-perfeciness in the class BT.

Proof. We have: |f|; < |fll.C, for every feB(R.), some C), and
for k =1,2,...

Moreover, B(R,) is dense in L(4) in the L(1) topology, so if a set B
is dense in B(R_) it is also dense in L(1), 7.1.1, gives the theorem.

8.2. PROPOSITION. For M eZ : the P, L(A)-perfectness in L(A)T implies
the P, B(R +)-perfectness in BT.

Proof. Let £ be a linear functional on D(M,: B(R,)) such that
&(f) = 0 if limpf exists.

By the theorems proved in [4] we have & = £,+ &, where £, is
continuous with respect to |-|, for some » and &, is continuous with
respect t0 || ||z, o00-

Let us remark that £, is of the form

LU = [ ( A, o)f(@)ds) p(dt)da,

[0,20] [0,¢]
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for some measure u. Let us put & = &,,+ &,,, where &,;(f) = &(fY),
j=1,2, and '

fl@) for z<n,

@) =

I 0 for # > n,

f® = f—f0,

Thus &(f) = &(fM)+ &,,(f) because limpf® =0, £, may be con-
gidered as a linear functional on D(M: L(1)) and by the density of D (M, :
B(R,)) in D(M;:L(4)) we conclude that &, ,(f) =0 if limpf exists
and feD(M;: L(4)). By the perfectness of M in L(A)T we have §,, = 0,
so in D(M;: B(R,)) we also have &, =0 and by 7.1.2 M is perfect
in BT.

and
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