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Generalized solutions of mixed problems
for quasilinear hyperbolic systems
of functional partial differential equations
in the Schauder canonic form

by Jan Turo (Gdansk)

Abstract. Theorems of existence, uniqueness and continuous dependence on output data
arc proved concerning a.e. solutions of mixed problems for quasilinear hyperbolic systems of
functional partial differential equations of the first order.

1. Introduction. We shalil consider quasilinear hyperbolic systems in the
following Schauder (or bicharacteristic) canonical form

n

() X Aylx,y,ulx, »), (Vu)(x, p)[Deujlx, »)

j=1
+ (X, y, u(x, ¥), (Vau)(x, ¥))Dyuj(x, »)]
= fi{x, vy, u(x, ¥), (Vyu)(x, y)).
(x, y)el,,o, i=1, ..., n, with the initial condition
(2) u, y) =@y, velo0,b],
and the boundary conditions

u;(x, 0) = ho; (x, u(x, 0), (Vou)(x,0), ieJo=1li: sgn4(0,0,0,0 =1},
3)
u; (x, b) = hy; (x, u(x, b), (Vou)(x, b)), i€, = li: sgn4(0,5,0,0)=—1],

x €[0, ap), where I,=1{(t,y:0<t<x, 0<y<b}], o =(e;(», ...
coes @a(y), D= 0/0x, D, = 0/0y, ae, b, 2 >0, are given constants, and
V,,s=0,1, 2,3, are operators of the Volterra type. Whengver A = [4;;]
is the identity matrix, systems (1) reduce to the first canonic (or diagonal)
form [14].

Systems (1) contain as a particular case (V,u)(x, y) = u{a(x, ¥), B,(x, )
the systems of differential equations with a retarded argument [9], [10],
which arise in the theory of the distribution of wealth [7].
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Several kinds of integral-differential systems can be derived from systems
(1) by specializing the operators V;, s =0, 1, 2, 3. For instance, problems
arising from laser problem in Nonlmear Optics are also the special cases of

problem (1)-(3) (V,u)(x, y) = j K(y—0u(x, 1)dt) [4].

In this paper, we consider the local existence, uniqueness and continuous
dependence of generalized (in the sense almost everywhere) solutions of
mixed problem (1)-(3) on output data.

Generalized solutions of quasilinear hyperbolic systems with the Cauchy
and boundary conditions of the Cesari type have been investigated by
Bassanini [2], [3], Cesari [5], [6], Kamont and Turo [9], [10]. and Turo
[12]. [13].

Continuous generalized solutions (satisfying corresponding integral sys-
tem) of mixed problems for hyperbolic systems have been considered by
Filimonov [8], Myshkis and Filimonov [11], and Abolinia and Myshkis [1].

We shall prove, by means of the group property of characteristics and
chain rule differentiation statements of real analysis, that continuous general-
ized solutions are generalized solutions (see the proof of Theorem 1).

2. Assumptions and lemmas. Let us introduce the norm [{D||

= max ) |d;j| of the matrix D=1[d;], i,j=1,...,n. We denote by [u],

L€i<snj=1

max |u;] the norm of u in R"
1<i<n
AssumpTioN H,. Suppose that
(i) A: E,, —R" is continuous, where E,y=1,,x2xQ, 2=[-2,
Q"< R" and Q > 0 is given constant;
(i) det A(x, y, u,v) = >0 in an for some constant y;
(iii) there are constants M >0, m; > 0,s =0, 1, 2, 3, such that for all

(x, y, u, v), (X, y. u, D) €E, , we have

14 (x, v, u, v

<M
”A (x., ,vv u, U)_A(f» ,)71 ﬁ’ lT)” < m0|x_i|+ml ly_.}—)l+m2|u_a|n

kl

+mylv—1],.

Since det A(x, y, u, v) 2 4 >0 in E,, relations (iii) of H, yield analo-
gous relations for the inverse matrix A~ ' = [A;;']. Thus, there are constants
M >0, m, >0, s=0,1, 2, 3, such that for all (x, y, u, v), (X, y, i, V) €E
we have

UO’

A= (x, y, u, VIl S M,

4" (x, y, u, )= AN, ¥, i@, DI < mg |x— X +my ly—yl+m} ju—il,
+m;|v—1,.
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AssumpTioN H,. Suppose that
() the functions sgnAi(-, 0,-, ), sgni(-, b,-.-): Ej = [0.de] xQ xQ

—R" are constant in E ;

(1) A(-, y,u,v): [0, ap] = R" i1s measurable for every (v,u,rv)eE
=[0.h] xQ xQ;

(i) there are a constant A > 0 and integrable functions /;: [0, ¢y] > R,
=[0, + ), s =1, 2, 3, such that for all (y, u, ), (y, ur, ©) €E, almost ev-
erywhere (a.e.) in [0, a,]. we have

[A(x, y, u, v)|, < A1,
(4) |A(x, y,u, 0)=Alx, ¥, @, D), < 1 () [y =¥+ () Ju =i, + 1y (x) v =17,

(tv) there are constants &, €(0, b) and A, > 0, such that 7;(x. v, u. t)
> A, for iedy, ve[0,e0], (x, u, l')eE},O, and —/;(x,yv,u, )= A, for
i€y, ye[lb—ego. b]. (x. u, v)€E,,.

Remark 1. If in (4) [, = const, then assumption (iv) of H, can be
replaced by the following: the functions 4;(x, 0, w, v), i€Jqy, —4(x, b, u, v).
iel,, are bounded from below in E, by the positive constant,
say 2A}. Indeed, the inequality |4 (x, ¥, u, v)—4;(x, 0, u, v)| < ;) yields
—lyy+A4(x,0,u,v) < A(x,y,u,v). Hence, we have —Iv+24)<
A (x, y, u,v). Finally, for 0 <y < min{441; ', b} we obtain 4(x, y, u, t) >
A}. Similar considerations apply to the interval [b— Ay 17!, b]. Therefore, in
this case we can take ¢, = min (4§17 ', b}, A, = Ap in the assumption (iv) of
H,.

AssumpTioN Hj;. Suppose that

() £(, vy, u,v): [0, ap] = R" is measurable for every (v, u, v)€E:

(i) there are a constant F >0, and integrable functions k,: [0, ao]
—R,, s=1,2,3, such that for all (y. u,v), (V. u.?)€E, ae. in [0, ay]. we
have

If(x’ y" uJ v)l'l S F‘J
Lf(x, y, u, v)= f(x, y, &, D), < ky () [y — ¥+ ko () [u—u], + k3 (x) |v — T,

AssumpTioN H,. Suppose that

(1) the functions h,: E,:o—»R, i€Jo, are independent of u;, v;, for
j€Jo, and the functions hy;: Ejo —R, ieJ,, are independent of u;, r;, for
J€J;

(n) there are constants H, >0, s =1, 2, 3, such that for all (x, u, r),
(x, u, QGE;O, we have

lhoi (x, u, v) = ho; (X, @, D)) < Hy|x—X|+ Hylu—il,+ Hyjv—itl,, i€J,,
i (X, u, )= hy; (X, &, D) < Hy|x—X|+ Hy [u—ill,+ Hylv—10],, i€J,,
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(1) the compatibility conditions
ho: (0, ¢(0). (P(O)) =00, ieJy, hy (0, @ (b), (P(b)) = @;(b), i€J,,

are satisfied:
(iv) there is a constant @ > 0 such that for all y, v€[0, b] we have
M-, <@ly—y and max|p(y), =P, <Q.
{0.b]
We denote by D(a) (0 <a < ap) the set of all continuous functions
u: I, —» R" Lipschitzian with respect to both variables. Let B(u) be the set of
all functions u, u €D (a) satislying the conditions

u(x, . <2, u(0,y) =0o()).

We write B(a, P, Q) to denpte the set of all functions u, ueB(a)
satisfying the following condition Ju(x, y)—u(X, V)|, < P|x—X|+Q|y—7J] for
all (x, y), (X, ¥) el,, where we assume that Q > & which ensures that
B(a, P, Q) 1s not empty.

Let us consider in B(a, P, Q) the following ball

B(a, P, Q, w) = lu: ueB(a, P, Q), max|u(x, y)—o ()|, < w),
l(l
where 0 << Q—-9,.
AssumprTioN Hs. Suppose that
(i) V;: Blag, P, Q, w) = Blay), s=0,1,2,3;
(1) there are constants p,. g, ¢y, dy =0, k=0, 1, and integrable func-
tions ¢;, d;: [0, ag] = R,, I =2, 3, such that for every weD(a,), we have

Vw9l < plluCe Wl +aee k= 0.1, ve[0, b1,
IV 0 (% My < ¢ (e, My +dy,
V00, e < @ llulx, Hlly+dix), 1=2,3, ae. in [0, ao),

where
(-l = sup lu{x, y)—u(X, y),
R [x — x| ,
Ill(X, }’)—“(xa f)ln
llu(x, )y = - ;
».7e[0,b] ly =5

(i) there are constants r, =0, k=0, 1, and integrable functions
r: [0,as] =R, | =2, 3, such that for all u, veD(ay), x€[0, ag], we have

”I/ku_l/kv”x rk”u_l’”xs k =0. 15
Vu—=Voll, < (lu—vll,, =23,

where |[lull, = sup [u(t, y),.
(.y)ely
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Remark 2. In particular, from assumption (iii) of Hy it follows that
V.. s =0.1,2, 3, are operators of the Volterra type.

Remark 3. Note that, for ueB(a, P, Q, w) we have |u(x, v)l, < w
+ @, < Q. Hence, for ueB(a, P, Q. w) the points (x. y, u(x, y), (V;u)(x, ),
where (x, y) €l,, belong to E, . Thus, for every ueB(a, P, Q, w) the corre-
sponding family of characteristic is defined.

We consider, for v eD(a), the problem

Dyg(t:x.y) =7t gt; x. p), ult. g(e; x, 1), (Vau)(t. g(;x, »)).
(5) a.e. in [0, 4],
g(x;x, y)=y.

Because of assumptions (ii), (i) of H,, (1) of Hs, and ueD(a). we
conclude that the functions A(-, -, u(:, ), (Vau) (-, -)): I,—R.i=1,...,n
satisly the Carathéodory conditions. Thus, for every ueD(a), there is
a unique solution ¢; = g;[t](r; x, y) of problem (5).

Remark 4. Note that, since g; = ¢; [u](t; x, y) is the unique solution of
problem (5), g; satisfies the following groupal property [6]

(6) gt gt x, ) =gt x,p). 1.0 €[0.x], (x, y) el

We denote by 7;(x, v, u) the smallest value of the argument x for which
the solution ¢, = g;[u](r; x, ¥) of problem (5) is defined. Then, the point
(zi(x, ¥, W), g; (] (zi{x. ¥, u); x, y)) belongs to the boundary of I,.

We introduce the following notations

Iyi = 1x. ) (x, Y€y, Tilx, y, u) = 0],

I = x.): (x, y) el lx, you)y >0, gi[ul(tilx, y, )i x, y) =0},

Iy = 0, 30 (x, yel,. ti(x, you) >0, g [u](ti(x, you); x. 3)=b).

From now on we admit that the constants we(0, 2—@,]. P> 0,
Q =&, ae(0, ay] are given.

Put

a

Ly =L,(a) = eXp(‘f[ll O+LNOQ+15()(c2()Q+d, (’))] d’),

0

Ly=L,(a= .‘.(12 () + (1) ry(0)dr.
0

Lemma 1 [14]. Suppose that Assumptions (ii), (iii) of H, and Hy are
satisfied, and for u, v €B(a, P, Q, w) the solutions g,[u], g;[v] of problem (5)
are defined on the interval [, ] < [0. a]. Then. for all (x, y). (X, V) €l,., the
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following inequality

lg; [ul(t: x, ¥)—g; [v](t: X, V)|

<Ll(Alx“il+|)7_ﬂ+L2”u—t’-‘“a)’ te[a’ ﬂ]a
holds.

Lemma 2 [14). If Assumptions H, and Hs are satisfied and a, 0 < a < a,,
is sufficiently small so that Aa < gy, where ¢, is given in (iv) of H,. Then, for
all (x, y). (x, V)€l or (x, y), (x, 7)€l (where the bar means closure of the
set) and ueB(a, P, Q. w), we have

[t (x, ¥ ) —Ti(x, p, w)| < Ag ' Lyly—J1,
and for (x.yv)el%; nI% or (x, y)el’, "It and u,veB(a, P, 0, w), we have

[to(x, v, up)=ti(x, v, o) S Ag ' Ly Ly|lu~vll,, i=1,..., n.

3. Operator S and its properties. Now we consider in D (a) the operator S
defined by

() (Suix, )= X A 0 vl ), () )[R, (x, )+

+(Tw);(x, )+ (2w (x, ], i=1,...,n,
where

®)  (Ru);(x, y)

l Z A% [0, 9,1k (9;(0: x, ¥)), (x, ) €l4;,
Z Aj [, O} hoy [7;]+ Z A% [z, 0w [7;, 01,  (x, y) eI,
kel g kel
, Z A,';k [T,j’ b] hy, [Tj]+ Z A;k [Tj-» b]uy [Tj, b], (x, y) eli,‘j,
kel Kkely
X n d )
9) (T“), X, y)= f Z EAjk[t’gj]uk [t, g;1dt,
rjk=l
(10) (Zu)j(x, y) = [f"[r gildr, j=1,...,n
Y

and
s Lt g1 = Aule. ;5 x, ), ule, g; 0 x, »), (Vw(e, g, x, »))s
ult, g1 =u(t, g;(t; x, »),
e [1,] = hoi (z;(x, v, w), u(z;(x, y, w), 0), (Vou)(z;(x, y, u), 0)),
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b (7] = b (706, y, ), u(z;0x, y.u), b), (Vou)(z;(x. v, u), b)),
T; = 15(x, y, u),
S0 91 = (e, 955 %, 9, ult, 9,65 x, ), (V) (t, g;(t; x, 3)).
We can rewrite (7) in the equivalent form

(] l) (Su)i (X, y) = (Ru)i(x’ ,V)+ Z Al; ! (xs y9 u(x, }’). (Vl u)(x, _V))
j=1

7

UTu); (x, Y+ (Zuw;(x, Y], i=1,...,n,

where
@i (9:(0; x, y), (x,y)els;,
(12) (Ru); (x, y) = { v (1], (x, y) el
hy: [7:], (x, y) el

(13)  (Tii(x, y)

X n d

E‘;kZI EA'_;I( [, 9,1 (1, 9,1 o4 (9;0; x, y))}dr, (x.y el
p d u u

f kz — Aj [t, gj][uk[tx gj]_hOk[Tj]]+

T

d
= + Z ZI?A_I;k [t’ g}] [uk [t’ gj]_uk [Tj" 0]]}‘1[* (xv )’) e]I(‘)j,
kelg .

}{Z iAyk [t 93 [ [, g;1—hp (1] +

5 ke, At

d
+) EA;k [t, 91 [ [t, 97— [x) b]]}dt» (x, y) €ly;,
kgdy .

Z is defined by (10).

Note that AY%[r, g;] and u,[r, g;] are absolutely continuous in t as
superpositions of the Lipschitzian functions.

By force of usual chain rule differentiation statements of real analysis
([6]), we have ae.
< P+QA,

d
o % Lt gj]

d
< E+DA, lc%uk [t,9/]

where E=my+m, P+my(p, P+q,), D=m;+m,Q+m;(c; Q+d,). Hence
(14) [(Tu);(x, )| < Ga, [(Zu);(x, pI < Fa, j=1,...,n,
where G = n(E+DA)(P+QA)a.
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From now on we make the assumptions: 24a < b which yields I%, N T},
= (), and the assumption Aa < ¢, which guarantees that the inequalities
Ji(x, v, u,v) > Ay and — A4 (x, y, u, v) = A, are satisfied in the sets I and
1%, respectively.

Lemma 3. Let Assumptions H,-Hs hold. Then for every ueB(a, P, Q, )
the function Su: I, = R" is continuous.

The proof of this lemma is similar to the proof of Lemma 3 [14].

Lemma 4. Suppose that Assumptions H,—Hs are satisfied. Then for every
u€eB(a, P, Q, w) the function Su satisfies in I, a Lipschitz condition in y with
some constant Q3.

Proof. Let (x, y), (x, )7)67":,,-. Then, by Lemma 1, we have
[(Ru); (x, y)—(Ru); (x, )| < PL, |y—J].

Furthermore, by integration by parts, we get

I(Ti); (x, y)—(Tit); (x, p)l

= Z {[A;‘k [X, V] - A‘;k [X, ﬂ [uk (x7 ,V) — Uy [0’ gj]] } -

k=

1
x _od

- ,[[A;k [r. 91— A% L. gj]]zuk [t.g;]dr
0

" d _
+ ‘ dr A, [z, g;1 [“k (1, 9;1—
0

—u (1. 31— (9005 x, )+ @ (9;(05 x, )] dt| < aly—71,
and
(Zu)j(x, y)=(Zu)j(x, VI < Ky Ly |y—¥,
where

Ky =Ky(a) = [k ()+ka () Q+ k3 () [e3 () Q+d5 ()]} dt,
0

a=n[D(P+QA)(1+L)+HE+DA)Q+P)LJa, g;= g;(t; x. ¥).
Hence

[(Su); (x, ¥)—(Su); (x, 3]
< I(Ru); (x »)=(Ru) (x, PI+| X [A5" (%, youlx, ), (Vup(x, y)—
- .l=|

—AG (x. 7, u(x, 9, (Vu)(x, )] LT (x, y)+(Zu);(x, ]|
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+ X A7 (s Foulx, B, (Vi e DY LT (x, 3) —(Ta; (x, 91|+
=1

+| Y A (x T ou(x, P (Vi (x, D) IZuw)j(x, 1) —(Zu)j(x. T)]
i=1

< [PL,+nD'(G+Fla+nM'(x+ K, L)]|y—1l,

where D' = my+m) Q+my(c, Q+d,).
Thus, we can take Q) = ®L, +nD'(G+F)a+nM'(x+K, L,). This ends
the proof.

LeEmMmA 5. Ler Assumptions H,—-Hs hold. Then, for (x, y)el_;‘,,-, ue
Bla, P, Q, w), the function Su is Lipschitzian in x with some constant Pf,.

Proof. Since 24a < b, in virtue of the theorem on prolongation of a
solution to the boundary for an ordinary differential equation, for any two
points (x, y), (X, y) €l%; (x < X), we can finde the point (x, ¥) €l%; such that
¥ =g¢;(x;X,v). Since the points (x, j) and (X, y) belong to the same
characteristic ¢ = ¢;(t; X, y). we have

I(Su); (X, ¥)—(Su); (x, y)
< n(G+F)(E'a+M)|x-X|+[nD'(G+F)a+Q3]ly~¥l,
where E' = my+my P+mi(p, P+q,). On the other hand, we have
ly—73] < Ajx—X|. Hence
(Su); (x, y)—(Su); (x. ¥)| < (W+Q5 A)|x—X],
where W =n(G+F)(E'a+ M +D'Aag). It means that we can take Pf,=
W+Q3 A, and the proof is complete.

LEmMMA 6. Assume that Assumptions H,-Hs are satisfied. Then, in the sets
oi und Iy, the function Su satisfies a Lipschitz condition in y with some
constant Q}.

Prool. Observe that the assumption 24a < b gives I, NIy = @. Let us
take (x, y),(x, Nely and y <y (the proof for I% is similar). Then on
account of Lemma 2, it follows that

[(Ru); (x, y)—(Ru)(x, P < HAg ' Ly [y -7,

where H = H,+H, P+ H,(p, P+q,). Furthermore, because of Ti(x. v, u)
2 t(x, ¥, u) for y <y, and by Lemma 2, we find

[(Tie); (x, ) —(Tin);(x, y)|
<Y [A%0x, y1— 4% 0x, FI] [w(x, 9 — R [ 1))+

kEJO

4 - Annales Polonici Mathematici 1.2
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+n(E+DA)Q+HAZYL,aly—7]+
+| Z {[A_l;k [x, y]- Al [x, ﬂ] [uh (x, -1y [Tj~ 0]] }l +
keJg
+n(E+ DA Q+PAGYLyaly—-F+GA Ly |y—3 < Bly—7l,
where 8= 2nD(P+QA)a+nL, (E+DA)[20+(H+P)A;']a+GA; ' L,.
Furthermore  [(Zu);(x, ) —(Zuw);(x, Y| < nly—3, where n=(K,+
FAgYL,. Hence
(Su); (x, y)—(Su); (x, D < [HAG' L, +nD'(G+Fya+nM (B+n)ly— 7.

Thus, we can put Q3 = HAg' L, +nD’(G+F)a+nM'(B+n). This ends the
proof.

ConcrusioN. From Lemmas 4 and 6 it follows that the function
Su satisfies in I, the Lipschitz condition in v with the constant
Q° = max (03, 03}. Obviously Q° > Q5 and Q° > QF. If the points (x, y) and
(x, y) belong to the different sets Iy;, Iy, Iy;, then this case reduces, in view of
Lemma 3, to the considered already one.

Lemma 7. Let Assumptions H,~Hs hold. Then the function Su satisfies in
1, a Lipschitz condition in x with the constant P° = Q5 A+ W.

The proof of this lemma runs similarly as the proof of Lemma 7 {14].

Remark 5. In particular, without loss of generality, we may assume
that A > 1. Then, by Lemmas 4,6 and 7, we conclude that the function Su
satisfies in I, the Lipschitz condition with respect to both variables with the
constant PS.

LeMMA 8. Suppose that Assumptions H,—Hj; are satisfied, and a €(0, a,] is
sufficiently small such that

(15) a<w[H+PA+nM'(G+F)]".
Then the operator S maps B(a, P, Q, w) into B(a, P5, 05, w).
Proof. This will be proved by showing that

(16) [(S1) (x, )—o (V. < 0,
and
(17) (Suw)(©0, y) =o(y), yelo,b],

for ueB(a, P, Q, a))._
First, let (x, y)ely;. Then

(18) [(Su)i (x, Y)— @i V)| < [@A+nM'(G+F)]a.

Now, let (x, y)eI¥; (the proof for (x, y) €I% is analogous). Then, taking
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into consideration compatibility condition (iii) of H,, and initial condition
(2), we get

(Ru); (x, )= @, (v)| < (H+®A)a,

since y < Ax < Aa for (x, y)el¥;.
Hence, by using estimates (14), we obtain in this case that

(19) I(Su); (x, )~ @; (W) < [H+PA+nM'(G+F)]a.

Combining (18) and (19) we get (16) for a satisfying condition (15).

It is obvious that (17) is satisfied. Finally, let us observe that from
Lemmas 4,6 and 7 it follows that Su satisfies in I, a Lipschitz condition with
respect to x and y with constants P° and Q5, respectively. Thus the proof is
complete.

Lemma 9. If Assumptions H,-Hs are satisfied, then for all

(x, eIt NI, u,veB(a, P, Q, w), we have
I(Su) (x, y)—(Sv) (x, Y)la < vy lfu—12ll,,
where v, is some constant such that vi 0" as a —0".

Proof. By Lemma 1, we have |(Ru);(x, y)—(Rv);(x, y)| < ®L, L, |[u—1v]|,.
Moreover, by manipulations and integration by parts, we get -

[(Ti); (x, y)—(To);(x, VI < yllu—1ll,.
where

y=n{[2(my+myr)+ DL, L,](P+QA)+(E+DA)(Q+®) L, L,+ 1]} a,

and
(Zw);(x, y)—(Zv);(x, Y| < (K, Ly L, + K))|lu—2ll,,

where K, = K, (a) = [[ka(t)+k3(t)rs(t)]dt.
0
Combining the estimates above, we get

I(Su); (x, y)—(Sv)i (x, YN < vy llu—olls,

where v, = @L, L,+n(my+m5r)(G+F)a+nM'(y+ K, L, L, +K,).
It is obvious that v; »0% as a—0*, since L, »0*, K, »0*, K, »0*
as a =»07. This completes the proof.

LeMma 10. Let Assumptions H,-Hs hold. Then for every (x, y)el%, N 1%,
or (x, eI, nIt; and u, veB(a, P, Q, w) we have

I(Su)(x, )= (Sv) (x, Y)ln < vy [lu—vll,,

where v, is a constant.
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Prool. Let us take (x. y)el% N 1I%;; then by Lemma 2. we get
(Ru); (x. y)—(Ru);(x. )| S(HL, L, A"+ Hy+ Hyro) llu—1],.

Furthermore, let us assume that t;(x, y. u) < 7;(x, y, r); then by using
Lemmas | and 2, we see that

(Tu); (x. v) = (Tv);(x. VI < [C+na(E+DA)(H,+ Hyro)] lJu—vl,.
where
C=n\(P+OA)[3(my+myr))+ DL, Ly(AAg '+ 1)]a+GAG* L, L+
+a(E+DA[L, L,(20+PAG'+ HA; Y +3]).
Moreover,
(Zw);(x, y)=(Zv);(x. Y| < o |lu—ril,,

where ¢ = (K, +FA; )L, L, + K.
Hence
[(Su); (x, 3)—(Se)(x, VI < vyllu—rll,,
where
vy = HL, LyAg '+ Hy+ Hyrg+n(my+myr ) (F+G)a+nM' ( +a).

This proves the lemma.

LemMa 1. Suppose that Assumptions H,—-Hgs are satisfied. Then for every

(x. v el NI (or(x. y) ela, NI, or (x, )€l Ly, or (x, ) ely N I5) and
u, t€B(u. P. Q. m) we have

[(Su) (x, y)—(Sv)(x, W), < vyllu—1]l,,
where vy is d constant.

Proof. We consider only the case when (x, y)el% N1} (the remaining
cases may be handled in the same way). Since 7;(x, y, u) = 0 for (x, y) = I;,
and v < Aa for (x, v)ely;, by Lemma 2, we have |t;(x, v.t)| < Ag 'L, L, ||u

- ".”a'

Since ieJ, for (x. y)€ly;, in virtue of assumptions (iv) of H,, we have
ri(x, v, u, ) = Ag. because of ieJ, and y <¢g,. Therefore, the function
g; [u](t; x, v) 1s increasing in ¢ for t €[0, x]. Whence

gi [u1(0: x, ») < g; [ul{mi(x, y, v): x, y).
In view of Lemma 1, we get
lgi Lol (r:(x0 v o) x, p) =g L3 (nax, v )5 %, 9)) < Ly Ly flu—tl,.

Hence, we have ¢;[u](0; x, v) < L, L, |lu—1]|,.
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Now, on account of compatibility conditions (iii) of H,; and initial

condition (2), we find
I(Ru); (x. 3) = (R} (x, Y| < Ly Ly(@+ HAG ) [l

Moreover, by manipulations and integration by parts, we get
I( ’nl)j(-\‘s y) _(Tl')j(x» VW <[C+a(E+DA)L, L,(®+ Q)] —rll,

and
(Zu);(x, ¥)—(Zv);(x, y)| < ollu—t],.

Combining the estimates above we conclude that
[(Su); (x, ¥)—=(Sv)i(x, )| < vyllu—rli,.
where

vy =Ly L, (®@+ HAG Y)Y +n(ms+mir,) x
x(F+G)a+nM'[{+a(E+DA)L, L, (P+Q)+a].

Thus, the proof is finished.
ConcLusioN. From the assumption 24a < b it follows that Inl, =0,

It. n 15, = @. Thus. the cases considered in Lemmas 9, 10 and 11 cover all
rectangle [,. These lemmas show that in /,. we have

(20) (1St —=Stl], < vy flu—tll,
where vy = vy+(H,+ Hyrg)[1 +a(E+DA)] (since vy < vy).
Note that, generally it has not to be H,+ Hyrq < 1. Thus. in general

case the operator § is not a contraction.
4. Properties of the operator S%. Now we are interested in properties of

the operator SS = S§2.
LEmMa 12. Let Assumptions H,-Hg hold. Then for a €(0, ay] sufficiently

small and P. Q sufficiently large. the operator S* maps B(a, P. Q. w) into

itself.
Proofl. Applying Lemma 8 to the function SueB(a. P*, Q°. w), we get

(S2w)(x. v), < Q. (S2u)(0.y) = @(y).

ISZu)(x, )= (V), < o,
provided « < w[HS+®A+nM (G5+F)]™', where H®=H,+H,P’+H,
x(po P +4qo). G* =n(ES+D’A)(P*+Q°A)a, E’=my+m, P +my(p, P°
+q1). D> =mi+my QS+ my(c; Q°+d,).

From Lemmas 4, 5. 6 and 7 it follows that the function S?u satisfies in
1, a Lipschitz condition with respect to both variables with the constants P%*

and Q%, respectively. Since now the arguments of the operator S are not
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arbitrary functions of B(a, PS, Q°, @), but the functions of the form Su.
Therefore the Lipschitz constants of the function S?u can be made more
precise.

Indeed, for any two points (x, y), (x, }7)67;,-, by Lemma 4, we have
IS? u); (x, ¥) = (S?u) (x, )| < [QL] +nD* (G + F)a+nM'(&*+ K} L)) |y -7,

where

L= exP(“:ll O+ (0) Q°+13(1) (c2 () @° +d, (1))] dt),
' 0

DS = m\+m,Q5+mjy(c, Q°+d,),

K3 = [k (0+k () @5 +ky () [ca (1) Q% +d5(1)]} dt.

0

Let now_(x, y), (x, y)eI¥, (the same proof works in the case when

(x, y), (x, p)ely). Tllen we have that i €J,, therefore for j¢J, the point (x, 0)
belongs to the set Ij,;. Hence, by Lemma 5, we obtain
I(Su); (x, 0)—(Su);(X, 0) < Pjlx—xl,

where j¢J,. According to assumption (1) of H, the function hy, (x, Su, V, Su)
does not depend on (Su); and (V, Su);, for j €J,, thus for (x, y), (x, y) €Iy, by
Lemmas 2 and 5, we have

I(RSu); (x, y)—(RSu);(x, V)| < Hy |t (x, y, Su)—7;(x, y, Su)| +

+ H, max |(Su); (; (x, y. Su), 0)—(Su);(x; (x, 7, Su), 0)|+
itJo
+ Hy max |(V, Su);(ti(x, y, Su), 0)— (¥, Su);(ti(x, ¥, Su), O)
i¥o
< BSA' LS|y -7
Furthermore, by Lemma 6, we get
(TSu);(x, y)—(TSw);(x, M) < B ly—,
and
(ZSw);(x, y)—(ZSu);(x, P < n¥ly—7l,

where 5 and n° are defined by B and  with P and Q replaced by P° and Q%,
respectively.
Hence

IS% u); (x, ) — (S u); (x, )|
S [HS A5 LS +nDS(GS+ F)a+nM (BS+n°)] |y — 7.
Therefore, for the function S?u as a Lipschitz constant in y, we can take

055 = LS + HS A ' LS +nD"S (G5 + Fya+nM' (& + B+ ).
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Consequently, in virtue of Lemma 7, we conclude that the function S%u
satisfies in I, a Lipschitz condition in x with the constant
PSS =05 A4+WS, where WS = n(G5+ F)(ES+M'+ DS Aa).

Obviously, without loss of generality, we may assume that A4 > 1. Hence,
in particular, we can take P as a Lipschitz constant of the function S2u
with respect to both variables.

Thus, in order to show that the operator § maps B(a, P, Q, w)
into B(a, P*, Q°%, ), and the operator S? maps the ball B(a, P, Q, w) into
itself, one needs the following restrictions on the constants w €(0, Q—@,], P
20,029, ae(0, ay):

[A+®A+mM' (G+F)la<w, Aa<ey, 2Aa<b,
[AS+®A+nM' (G5 + F)la< w, PSSP, 0%<Q.
Observe that, if w, P, Q are fixed, and a =+0", then
PS - Amax {®, Ag* (H+nM'F)} +nM'F,
0% »max {@, A5 (H+nM'F)},
PSS sUA+nM'F, Q% ->U,

where U = {H,+ H,(nM'F+®A)+ Hy[po(nM' F+ ®A)+qo]+nM'F} Ag’.

Therefore, for arbitrary we(0, Q—&,], if P>UA+nM'F, Q > U,
then, for sufficiently small a€(0, ao], all inequalities of (21) are satisfied.
Thus, we have

(22) S%: B(a, P, Q, w) = B(a, P, Q, w),

(21

which ends the proof.

In the sequel we shall assume that the constants P, Q and a are chosen
in such a way that (22) is satisfied.
We shall now prove that the operator S? is a contraction.

LemMa 13. Suppose that Assumptions H,~Hs are satisfied. Then for all
u,veB(a, P, Q, w) we have

(5% u) (x, )= (S2 ) (x, Yln < V¥ [lu—0ll,,
where the coefficient v 0% as a »0".
Proof. Let (x, y)el3¢ nI3. By using Lemma 9, we get
(S W) (x, ) —(S? v) (x, V)l» < v [ISu— S,

with v§ = L3 L, 4+ n(my+myr )G+ F)a+nM (Y + K3 LS L, + K ,).
Let (x, y)elw nI3 (analogously we can consider the cases when
(x, el n Ly, (x, y) el "I, (x, y) e3¢ n1I3¥). Then the assumptions of
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Lemma 11 are satisfied, and we have
(ST u)(x, ¥)—(S2v)(x, ¥)l, < v3[ISu—Stl,,
where
v =L Ly(d+H A5
+n(m’z+m’3r,)(Gs+F)u+nM’I"CS+a(Es+DS/1)Ls L,(®+0Q%+c°].

Let now (x, y)elsy I3 (the case (x, y) el NI} is similar). This im-
plies that i eJ,. Thus, the pomt (x, 0) belongs to I%; ml‘ for j¢J,. Conse-
quently, by Lemma 9, we obtain

[(Su);(x, 0)=(Sv);(x, O)f < vy [ju—vll,.

In virtue of assumption (i) of Hy, the function hy; (x, Su, V;, Su), i €Jy,
does not depend on (Su); and (V;, Su); for jeJ,. Therefore, we obtain

(RSu); (X, y)—(RSt);(x, Y| < HS Ag ' LY Ly ||Su—Svll,+(Hy+ Hyro) vy [lu—1ll,.

We may assume that 7;(x, y, Su) < 7;(x, y. Sv) then, by Lemma 10, we
have

(TSu);(x, ¥)—(TSv);(x. V)| < [P+ a(E>+ DS A)(H, + Hy )] ||Su— Stll,,
and
(ZSu);(x, ¥)—(ZSv);(x, )| < &°||Su—~Sv|l,.

Hence, in I3* I3 (also in 3¢ nI3Y), we get
(S u)(x, 1) = (S? ) (x, V)la < V3|ISu—Stll,+(Hy+Hyro) vy llu—1ul,,
where
v = HY Ag ' LS Ly+n(my+myr,) x
(G35 + Fya+nM'[S+a(ES+ DS A)(Hy + Hyro) +6°).

Thus, combining the estimates above, we find (we remind that I3~ I3F
=L'nI =@, since 24a <b) in I,

(S*u)(x, y)=(S? 1) (x, ¥)ln
S [ +nM'a(E3+ D% A) (@ + Q%) L] L,]||Su—Stll,+(Hy+ Hyro) vy [l —vl,.
Finally, by (20), we get
(S u)(x, ¥)—=(S? ) (x, ¥,
S\ +aMa(E5S+D%A)(D+ Q%)L Ly va+(Hy+ Hyro) vy ) lu—vl,.

It should be remarked that v3 -0, L} -1, L, =0, v, =0, v, »H,
+H,r,, ES —const, D¥ —>const, as a »0".
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Taking W= [ +nM a(E5S+ DAY (@ + Q%)L Ly] vy +(Hy+ Hyrg)v,.
where certainly v* -0" as « =07, we get the assertion of Lemma 13.

5. The main theorem.

THEOREM 1. Let Assumptions H, -Hj holds. Then, for any w€(0, Q—®,7.
and any sufficiently large constants P, Q, there are number a. a €(0. ao], and a
function u: I, > R", ueB(a, P, Q, ). satisfying (1) ae. in I, and (2). (3)
everywhere in [0, b], [0. a]. respectively. Furthermore, u is unique in
B(a, P, Q, w).

Proof. Let us choose P, Q and « in such a way that inequalities (21)
are satisfied. Then, by Lemma 12. we get S: B(a. P, Q. w) = B(a. P*, 0%, w).
S%: B(a. P.Q. ) = Bu. P, Q, wm).

Now, let us take a€(0, up], so that v¥ < 1. Then, by Lemma 13. we
conclude that the operator S$% is a contraction. Hence, on account of
completeness of Bu, P, Q. ). it follows that there exists a function
weB(a, P, Q. ») such that S?u = u. It is known that the fixed point of any
power of an operator is the fixed point of this operator. Thus, we have Su
=u. For this fixed element we derive from (7) the integral equations

n

(23) wtx, ¥) = Y Agt(xyuxg ) (K a(x, )')}[(ﬁu)‘,—(x, V) +
=1

1=
+(ﬁl)_,(x. VHZu)(x, ), =100

where R. T and Z are defined by (8). (9) and (10), respectively.

Now, we only need to show that the fixed point u of the operator §
satisfies system (1) a.e. in [, and conditions (2), (3) everywhere in [0. b] and
[0. a]. respectively. We consider only the case when (x. y)ely;. Il we write j
instead of i in the relations (23), then by multiplication by
Aij(x, v, u(x, y). (Vi u)(x, ¥)), summation with respect to j. and usual simpli-
fications, we have

(24) Ai(x, vou(x, v (Vi utx, y)ux, p)
=1

J

= (ﬁu),-(.\'. _1')+(Tu),~(x, VI (Zu)(x. ).

By integration by parts and further simplifications, we obtain

(= X Al gitex, v u(es gl xon) (Viu (o g; (s x, 1)) x
0 k=1

d
x—u (1, gilt; x, y))+
dt

+ ity giteaxo v u(t, gi (e x0p), (Vau) (e, gides x, y)))] dr =0,
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and this relation holds for all (x, y)el,, i=1,...,n. By taking y =
g;(x; 0, n) and making use of (6), we get

@)1= % At 9.5 0, . u(t, g0t 0, ), (Ve 563 0, ) x
(1] k=1

d
x = we(t, i (15 x, Wh=sx0m+

+ fi(e, gi (50, m), u (e, gi (65 0, ), (Viw) (e, gi(t5 0, m)))] d = 0.

By force of (5) and Chain Rule Differentiation Lemma (4.1) of [6],
the derivative in (25) becomes

d
E“k (t$ "N ([; X, y))Iy=g,'(x:0,q) = Dt Uy (l1 gdi (t; 0’ '1))+

+;Li(r- gi(t; 01 ’7)1 U([, gi(t; 0~ Y])), (Vl M)(t, gi(t; Os r’))) Dyuk(t’ gi(t; Oa '1))

and this relation holds a.e. in the region I, of the (¢, n) space.
By differentiating (25) with respect to x we obtain

Y Aults git; 0, 1), u(t, g.(t; 0, m), (V, w)(t, g:(t5 0, m)) [D,u(t, g:(t; O, n))
k=1

+2:(r. g: (650, ), u(t, g:(t5 0, m), (Vi w)(t, g (65 0, M) Dy w1, g:(t5 0, m)]
= fi(r i (650, m), u(t, g (650, M), (Vaw)(t, g (60, ), i=1,...,n,

and this relation holds a.e. in I,. Finally, by taking y = g;(x; 0, ), that 1s,
returning to the variables xy, we get equality (1). Since the transformation y
= g;(x: 0, n) preserves sets of measure zero (betng Lipschitzian), we conclude
that (1) holds a.e. in I, as stated.

Similar arguments apply to the cases when (x, y)el§; or (x, y)el}y; (cf.
proof of Theorem [14]), and the proof is finished.

6. Continuous dependence on output data. We consider together with
problem (1}{3) the following systems

(26) Y AX(x, y, u*(x, y), (VE u¥)(x, y) [Duf (x,y)
j=1

+A¥(x, y, u*(x, y), (V3u*) (x, y) D,u*(x, y)]
= fi*(x, y, u*(x, y), (V& u*)(x, y),

(x,yel, ,i=1,...,n, with the initial condition

a07

(27) u*(0,y) =o0*(»), yel0,b],






























