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1. Introduction. In this paper we study the functional equation

(L)  f@)+ D g:(¥:) = MT (@, 91, Yay+eey ¥a))  for all 2eX, y;e ¥,

=1

on topological spaces X and Y; with real-valued f, g;, » and T. Unless
otherwise stated the followings are supposed:

PX: (A) X is a locally connected Hausdorff space such that any
pair of points is contained in some open and connected set with compact
closure,
or

(B) X is arcwise connected in the sense that with each z,
and @z, in X, @, # x,, there can be associated a bicontinuous mapping
(continuous, one to one, and with a continuous inverse) ¢: [0,1] - X
so that ¢(0) =z, and ¢(1) = z,.

PY: n>1 and for each 1 <7< n, Y; is a connected space.

Among other more general results the following uniqueness theorem
will be proved.

THEOREM 1.0. Suppose T': X XY, XY, %...xY, > R is continuous
tn its first variable x e X and jointly continuous in its n variables (Y., Ys, ...,
Y)Y, x ¥, x...x Y,. Suppose (f° g%, g2, ..., g%, h°) is a particular system
of solutions of (1.0) consisting of continuous f° such that f° and at least
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one of the g2, s arc non-constant. Then any system of solutions (f, g,, sy ...,
ns h) of (1.0) with continuous f is of the form

[ =af"+8,
(1.1) g =oagi+phi, =1,2,...,m,
h=ah®+B+B1+Bot..+Bay

with real constants a, and B; (1 =1,2,...,1).

The important question of uniqueness of the system of solutions
of the equation

(1.2) @) +9(y) = bz, )

has been widely examined, since J. V. Pexider 1903, under various struc-
tures of the spaces and regularities of the mappings in question. Following
the works of I'. Radd 1958, J. Aczél and S. Golgb 1960 and R. D. Luce
and J. W. Tukey 1964 (cf. Aczél [1], p. 147) Aczél gave in [1] the fol-
lowmg analogous result.

THEOREM 1.1. If the variables » and y in equatwn (1.2) range over
a domain D < R and also T(z, y)eD, if further (1.2) has a system of solu-
tions (f°.g°% h°) consisting of fumctions mapping D onto R in a one to one
way, one of which (f°) is continuous, then any system of solutions ( fsg,0)
of (1.2) in which f can be majorized by a measurable function on a set of
positive measure is of the form

, f=a+8, g = ag’+ By, = ah®+ B+ fy,
with real constants a, f and B,.

The simple proof Aczél gave in Theorem 1.1 is based on the tran-
sform of (1.2) into Pexider’s equation f(x)+g(y) = h(z+y) through
the injections (f°, ¢° k°) of D onto R. This method, however, cannot bhe
employed in proving Theorem 1.0 as the functions in question need not
be injections. The present proofs are based on the work of Pfanzagl [5],
where he gave the following result:

THEOREM 1.2A. Let X be a locally connected Hausdorff space such
that any pair of poinis i8 coniained in some open and connected set with
compact closure. Let T: X* — R be continuous in each variable. If the
Sfunctional equation

(1.3) - f@+Sf(y) =b(T (2, ) fo'i' all z,yeX _ X

has two solutions (f°, k') with continuous ffi= O 1) and non-constant f°,
then

(1.4) ft =af°+8,

for some real constants a and B.
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Equation (1.3) was first studied by Denny [3] on arcwise connected
spaces X and @G. Laube and Pfanzagl gave in [7] the following theorem
which is a generalization of a result of Denny:

THEOREM 1.2B. Let X be an arcwise connected Hausdorff space. Let n
be any natural number greater than one. Assume that T: X" — R is con-
tinuous in two variables. If the funmctional equalion

(1.5) jf(wi) = MT (g, @3y ..., @,)) for all meX
=1

has two solutions (f', h') with continuous f* (i = 0,1) and non-constant f°,
then

(1.6) fr=1af°+p

with real constants a and f.

Theorem 1.0 is seen to be an extension of Theorems 1.2A and 1.2B.
We shall adapt Pfanzagl’s proof for Theorem 1.2A in a natural way with
minor- modifications.

2. Some uniqueness theorems. In what follows PX and PY of the
previous section are always assumed.

THEOREM 2.0. Let T: X xY — R be continuous in each variable. If
the functional equation

(2.0) f@)+9) = h(T(@,y) for all veX,ye¥

has two systems of solutions (f%, g', ) with continuous f' (i = 0,1) and
non-constant f° then '
gt = ag’+p
for some constanis a, e R.
Parallel to the formulation given in Pfanzagl [5] we prepare the
proof by two lemmas. The first one is adopted directly from Pianzagl [5].
We give the proof of the second one.

LemMA 2.0. Let X be a connected and locally conmected Hausdorff
space, 0: X — R a continuous function. Then for any t,,1,e0(X), t; <1,
there ewists a connected set B < X such that 6(B) = I, t,.

LeEMMA 2.1. Suppose T: X XY — R is continuous in each variable
and let (f, g, h) be a system of solutions of

(2.0)  f@+9) = k(T(@,y) for all zeX,ycY,

with continuous f. If there exist x,, x,e X such that f(x,) = f(@;) and T (x4, y)
# T'(xy,y) for all yeXY, then g is constant on Y.

Proof. (A) Let us suppose PX(A).
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There is an open and connected set ¢ =« X with compact closure
containing #, and z,. ' ‘

Let y,¢Y Dbe arbitrarily given. We shall prove that g is constant
on some neighbourhood of v,.

Let t;: = T(z;,y,), ¢ =1,2. We may assume 7, <t,. Since f(x,)
= f(z,) we have h(t,) = k(t,).

According to Lemma 2.0 (applied for X =0, 0 = T(-, y,)) there
exists a connected set B = C such that T (B, y,) = It;, t;[. Let B° be the
closure of B taken in X. Then B°is compact as B°is closed in the compact
set C° and so T (B¢, y,) is compact. On the other hand, },, t,[ = T'(B, y,)
< T(B% yo) € T(B, Yo)° = [t1, t.] and so T'(Bf, y,) = [y, ta].

Hence there exist ;e B° such that T(z;,y,) =¢;,i =1,2. We have
now f(z)+g(yo) = h(t:) = h(ts) = f(a2)+9(yo) and so f(@)) = f(ay).

Without loss of generality we may suppose that there exists x,¢B
such that f(x,) > f(x;). We shall show that this implies the existence
of z,¢B° such that T(z,, yo)et;, to[ and f(x,) > f(x) for all xeB°. As B°is
compact there exists z,e¢B° such that f(z,) = f(x) for all xeB°. If f(x,)
> f(#) = f(xy), then (T (2o, yo)) > h(t) = h(t) and so T(zo,Yo) # &,
i =1,2; hence T(z,,y,) is in ¥,, t,[. If f(z,) = f(x;) we may take =,
= z3eB and 80 T(®o, Yo) eI (B, Yo) = J1, tol.

With 2,: = T'(x,, y,) we define

U: ={yeX: t, < T(m,, ?/)'< tayy Vi={yeY: T(m;,y) <t < T(av;,y)}.

Since T is continuous in the second variable, U and V are both open
in Y; furthermore as y,eU N V, UnN V is a neighbourhood of y,. We
gshall show that g is constant on Un V.

For any ye U there exists zeB such that T'(x, y,}) = T (2,, ¥). Hence
(@) +g(@o) = (T (x, yo)) = T (2o, %)) = f(@) +9(¥). As f(a) < f(wo) we
have g(¥) < g9(¥,).

For any yeV, tye[T(z:, ¥), T(x,, y)] = T(B y) (because x;eB°, B° is
connected and T'(-, ¥) is continuous) and hence there exists xze¢B° such
that t, = T'(x, y). Now we have f(2o) +g(¥,) = k(o) = b(T (#, y)) = f(x)+
+9(y), and as f(x,) = f(x) we have g(¥) = g(y,)-

Hence for any ye U V we have g(y) = g(¥,).

As y,¢ Y is arbitrary, the function ¢ is locally constant at each point
of the connected space Y and is therefore constant on Y.

(B) Let us suppose PX(B).

Since X is arcwise connected there exists a bicontinuous mapping
¢: [0,1] - X so that ¢(0) = 2, and ¢(1) = x,. The simple arc ¢([0, 1])
joining #; and z, is homeomorphic with [0, 1] and is a space satisfying
PX(A). If we consider the retriction f|,(o1, of f to ¢([0,1]) instead
of f and ¢([0, 1]) instead of X in part (A) we see that g is constant on Y.
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It has been pointed out to me by M. A. McKiernan that continuity
of ¢ is sufficient.

Proof of Theorem 2.0. Since f° is non-constant there exist z,, ,¢ X
such that fo(x,) # f°(«,). This implies T'(z,,y) # T (x,, y) for all ye¥.
There exist real constants a, § such that f'(z;) = af°(x;)+p, 1 =1,2.
The assumptions of Lemma 2.1 are fulfilled for f: = f! —af% g: = g —ag®
and h: = h'— ah® and hence g'— ag® equals a real constant, say f,.

THEOREM 2.1. Suppose T: X x Y — R is conlinuous in each variable,
and suppose (f° g% h°) is a particular system of solutions of

(2.0) f@) +g) =h(T(z,y) for al zeX,ye¥

with non-constant continuous fO and non-constant g°. Then the general system
of solutions (f, g, h) of (2.0) with continuous f is given by

(2.1) f=af'+B, g=cg+B, h=ah'+p+p.

Proof. Let (f', g%, k') be a solution of (2.0) with continuous f*. By
Theorem 2.0 there exist real constants a and g, such that

(2.2) g' = ag®+fi.

Now (ft—af B,, k' —ah®) is a system satisfying (2.0), and if possible
that fl—af® is not a constant then by Theorem 2.0 again there exist
constants y, deR such that ¢g° = y-8,+ é and contradicts the assumption
that g° is non-constant. Thus f! — af® is a constant, say feR, and we have

(2.3) ft=afo4B.

Now h*(T(z, 3)) = f(2)+¢'(y) = af*(2)+f+ag®(y) +f; = ah®(T(z, )+
+p+8; for all 2z¢X,yeY and hence

(2.4) h* =ah®+pg+p8, (on T(X,Y) of course).

Equations (2.2), (2.3) and (2.4) imply that (f%, ¢*, A!) is of the form (2.1).
The fact that any system (f, g, k) defined by (2.1) satisfies (2.0) with
continuous f is obvious.

THEOREM 2.2(1.0). Suppose T: X XY, x¥,%X...XY, >R 1is con-
tinuous in its first variable xe X and jointly continuous in its n variables

(Y1) Y2y +oey Yn) € Yo X Xy Xooo X Y. Suppose (f° g1, 925 <.y Ghy h°) 48 a partic-
ular system of solutions of the functional equation

(1.0)  f(@) + D) 6:(%) = BT (@, 91,92y .1 ¥s)  for all weX, e Y

i=1

consisting of continuous f° such that f* and at least one of the g¥s are non-
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constant. Then any system of solutions (f, gy, Gay -5 Gn, k) of (1.0) with
continuous f is of the form

f= oo+,
(1.1) g =agi+p; (1=1,2,...,m),
h =ah®+B+pr+ ot 4 Ba

with real constants a,f and f; (+ =1,2,...,n) and vice versa.

Proof. The space ¥: = ¥, XY, X...x Y, is connected. By applying
Theorem 2.1 (for X =X, Y: =Y, x¥Y,x...xY,, T =T, fo=fo

n
9°(Y1s Yas -y Yn) : = X 9i(9:), B° = h°) we can write the general system

i=1
of solutions (f, gyy g2y -y gn, ) a8
f=af°+8,

(2.8) ) gi(w) = (Y gdw))+y:  for all ¥, (i =1,2,...,n),
f=l

t==1
b= akd+B+y1,

where a, f8, y, are real constants. Equation (2.5) is equivalent to (1.1)
with appropriate constants fg;.

THEOREM 2.3. Suppose T: X XY, x¥Y,X...xY,—> R is continuous
in each of its m+1 variables, and suppose (f° g%, 9%, ..., g%, h®) is a parti-
cular system of solutions of the functional equation (1.0) consisting of non-
constant continuous f° and non-constant g% (¢ = 1,2,...,n). Then the
general solution of (1.0) with continuous f is given by (1.1).

Proof. Let ¢ <n be arbitrarily fixed and let us leave the y,’s, say
y; = b;, fixed in (1.0) for each j # 4. We then have

f(w)‘f‘(gi'f‘ Z gj(bj))(yi) =BT (@, byy bay «vey bioyy Yoy bigrs ooy ba))
, J#i -
for all xeX, y,eY,.
By Theorem 2.1 there exist constants a, § and y; such that

2 gg(bi)) T vie

J#

(2:6)  f=af+B, @i+ D g(b) = algi+
J#

As f9is non-constant, a and § are uniquely determined and are independent
of i. Putting g,: = y,+ ,Z’:; [ag}(b;) — g;(b,)] in (2.6) gives (1.1) for f and g,
#*

and of course A = ak®+ S+ f,+ fa+...+ B, then follows.
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3. Some applications. In 1970 J. Aczél, D. Z. Djokovié¢ and J. Pfan-
zagl gave in [2] the following result concerning the uniqueness of scales
derived from canonical representations P(a,b) = F(n(b)—m(a)).

THEOREM 3.0. Let m and n be strictly increasing functions defined on
ordered sets A and B, respectively, having the same non-degenerated real
interval I as range. Let m* and n* be another such pair of functions. If these
functions satisfy the equation ,

(3.0)  F(n(d)—m(a) = F*n*(b)—m*(a)), F(0) = F*(0) =}

with F and F* strictly increasing, then
o i
G1)  we@ = am(@+f, #0) =) +h, O =F ()

where a, B are appropriate real constants.

We shall now solve the functional equation (3.0) without the stand-
ardization assumption F(0) = F*(0) = }, and without assuming that m
and n are ranging the same interval.

THEOREM 3.1. Let m and n be striclly increasing functions defined
on ordered sets A and B having ranges I and J mnon-degenerated intervals
of R respectively. Let m* and n* be another such pair of functions. If these

Junctions satisfy the equation
(3.2) . F(n(b)—m(a)) = F*(n*(b) —m*(a))
with F and F* injective, then

m*(a) = am(a)—f for all aecA,

(3.3) n*(b) = an(b)+ for all beB,

(1) = F(t—_%:ﬁ‘—) for all  ted”—I",

where a = 0, 8, f, are real constants.
Conversely if m*, n* and F* are defined by (3.3), then they satisfy (3.2).

Proof. Let us topologize A and B with the order topologies (cf. [4],
p. 57). A and B are homeomorphic with I and J under m and » respectively ;
thus 4 and B are topologically equivalent to an interval of R. With these
topologies m* and n* are continuous injections.

We can now apply Theorem 2.1 for X = A, Y = B, T(a, b)
= F(n(b)_m(a))7 fo=—m,9°=mn, k= F7, ftl = —m* g, = n* and
k! = F*~!, Thus there exist real constants a =0, and B, such that

—m* = a(—’"’b)—f-ﬁ, n* = a’n—l—ﬂl, F*—l = aF_l+ﬁ+ﬂ1

and this is exactly (3.3).
Other applications can be found in Aczél [1] and Pfanzagl [5].
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