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In the study of various familiar properties in graphs, sufficient con-
ditions are often given in terms of the degrees of the vertices. For example,
for a graph G of order p > 3, the minimum degree 6(G) = 4(p + m) suffices
to insure that G contains a hamiltonian path, a hamiltonian cycle, is hamil-
tonian-connected [4], or is panconnected [3], [5] (i.e., for each pair u, v of
distinct vertices of @, there exist w —v paths of each length !, where
d(u,v) <1< p—1 and d(u, v) denotes the distance between % and v in G)
for m = —1,0,1 or 2, respectively. In each case, every vertex of the
graph @ is required to possess sufficiently high degree, where this degree
is a function of the order of G. The object of this paper is to introduce
a concept in which each vertex of the graph has sufficiently large degree
in an associated subgraph, where this degree is a function of the order
of the subgraph. This enables us to present sufficient conditions for the
above and other properties in terms of functions. In this process we obtain
classes of graphs which have a nonempty intersection with the correspond-
ing minimum degree classes, while neither of pairs of corresponding
classes properly contains the other. Unless stated otherwise, the termi-
nology of [1] will be used.

Definition. A graph @G of order p dominates a function f if the ver-
tices of G can be labeled v,, v,, ..., v, such that, for each ¢ with1 < i < p,

degg,v; = min{f(p,), p;—1},

where G; = {{v;, V4,1, ..., Vp}> and p; = |V (G))|.

It will be convenient to assume that if a graph G dominates f, then
the vertices of G are already labeled v,, v,,...,v, as in the definition.
Obviously, if @ dominates f, then each induced subgraph G, also dominates f.
The fact that @ —v, = G, dominates f serves as an extremely useful tool
for applying mathematical induction in our proofs. The following result.
is now obvious:
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THEOREM 1. A graph G dominates f(x) = x—1 if and only if G is
complete.

Graphs that dominate constant functions have a very familiar proper-
ty, which we discuss next.

THEOREM 2. Let n> 1. If a graph G of order p > mn+1 dominates
f(x) = n, then G is n-connected. Moreover, if G is connected, then G dominates
f(x) = 1.

Proof. If G is a graph of order p = n+1 and G dominates f(x) = n,
then ¢ ~ K, ,,, and hence G is n-connected.

Assume that if H is a graph of order p —1 > n+1 which dominates
f(x) = n, then H is n-connected, and let G be a graph of order p which
dominates f(x) = n. Then the vertices of G can be labeled as v,, v,, ..., v,
such that, for 1<i<p—mn, deggv;=n and {{Vp_p41, ..., 0> ~K,.
Since G, = G —v, dominates f(x) = n and p, = p —1 is the order of G,,
by the induction hypothesis G, is n-connected.

Let 8 be an arbitrary set of vertices of G satisfying |S| <n—1. It
suffices to show that G —8 is connected. If v,¢ 8, then G—8 =G, —
— (S —{v,}). Thus G — 8§ is connected, since |S — {v,}| < » —2 and %(G,) = ».
So we may assume that v,¢ S. Then S < V(@,) and, since |S|<n—1
and #(@,) = n, the graph G, —8 is connected. Since degg v, > n, there
is a vertex w of G,— 8 such that v,we E(G). This implies that @ — 8§ is
connected.

Finally, let G be a connected graph of order p. If p =1 or 2, then
clearly G dominates f(x) = 1. If p > 3, let T be a spanning tree of G.
By labeling an end vertex of 7 as v,, labeling an end vertex of the tree
T—{vy,vgy...,0;_1} as v; for 2 <i << p—1, and labeling the remaining
vertex of T as v,, we observe that T, and hence @, dominates the function
fl@) =1. | N

We note that this result is the best possible. Clearly, every dis-
connected graph dominates f(x) = 0. For n > 2, consider disjoint graphs G,
and @,, where @, ~ K, , and G, ~ K,, for m > 2. Let G be the graph
obtained by adding all possible edges between G, and G,. Then @G is at
least of order n + 1 and G dominates f(x) = n» —1, but G is not n-connected.

Next, we present a sequence of results related to the hamiltonian
properties mentioned earlier.

THEOREM 3. If G 18 a graph of order p >3 and G dominates f(x)
= §(x—1), then @ contains a hamillonian path.

Proof. The result is true for p = 3. Assume that if H is a graph
of order p —1>3 and H dominates f(x) = }(x—1), then H contains
a hamiltonian path. Let G be a graph of order p which dominates f(x)
= }(r —1). Then G, = G —v, contains- a hamiltonian path P. Dby the
induction hypothesis, since @G, dominates f(z) = 4(x—1) and- |V (G,)]|
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= p —1. Let a and b denote the end vertices of P. If v,a or v,b is an edge
of G, then P can be extended to a hamiltonian path of G. So we may
assume that

{va, 0, b}NE(G) =0.

Since G dominates f(x) = 3(x—1), we have degg v, = 3(p—1), i.e.,
v, is adjacent to at least 3 (p —1) of the p —3 vertices in P {a, b}. Thus vy
is adjacent to at least two adjacent vertices in P — {a, b}, which implies
that P can be extended to a hamiltonian path of G.

A graph G of order p > 3 is said to be n-hamiltonian, 0 < n < p —3,
if the graph obtained from G by deleting any k vertices, 0 < k < n, is
hamiltonian. Thus, a 0-hamiltonian graph is simply a hamiltonian graph.
It was shown in [2] that if @ is a graph of order p > 3 and 6(@) = }(p +n),
0 < n<p-—3, then G is n-hamiltonian.

THEOREM 4. Let n be a nonnegative integer. If a graph @ of order p > n 43
dominates f(x) = 4(x+n), then G i8 n-hamiltonian.

Proof. For p =n+43, G ~K,,,, and the result holds. Assume
that if H is a graph of order p —1 > n + 3 and H dominates f(x) = }(x+ »),
then H is m-hamiltonian. Let G be a graph of order p which dominates
f(z) = 3(x+n). Then G, = G — v, is n-hamiltonian and degg, v, = 3(p +n).

Let 8 < V(@), with |§] =k and 0 < k< n. We wish to show that
@ — 8 is hamiltonian.

If v,e8, then G—8 = G,— (S —{v,}) is hamiltonian, since @, is
n-hamiltonian. So suppose that v,¢ 8. Now 0<k<n and S < V(G,)
imply that G,— 8 contains a hamiltonian cycle C on p —k —1 vertices.
Since

degg, v, = 3(p+n) = $(p+ k),

v, is adjacent to at least 4(p +k)—Fk = 4(p —k) vertices of C, and hence
is adjacent to two consecutive vertices of C. This implies the existence
of a hamiltonian cycle in G —8.

THEOREM 5. If a graph G of order p 3 dominates f(z) = }(x+1),
then G i3 hamiltonian-connected.

Proof. The result holds when p = 3, for then G ~ K;. Let p > 4
and assume that the result holds for all graphs H of order less than p.
Let @ be a graph of order p which dominates f(x) = }(#-+1). Then G,
= @ —v, is hamiltonian-connected and degg v, = }(p+1). Let a, be V(G).
If v, ¢ {a, b}, let P be a hamiltonian a — b path in G,. Then degg, v, > }(p +1)
implies that v, is adjacent to two consecutive vertices on P. Thus P can
be extended to a hamiltonian a —b path in G. Otherwise, without loss
of generality, assume v, = a. Since degg v, > $(p+1), there exists a
vertex w # b in G, which is adjacent to v,. Then the edge v,w together
with a hamiltonian w —b path in @, yields a hamiltonian a —b patb in G.
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It has been recently established that if 6(G) > 3(p +2) for a graph G
of order p > 4, then between every pair of distinct vertices of G there
exist paths of each length !, where 2 <! < p—1. Thus, the minimum
degree requirement implies that G is panconnected [3], [5]. The following
example shows that it is not possible to obtain a similar result by requiring
that G dominate the function f(z) = }(x+2).

Let G be the graph of even order p > 12, where

V(@) = {vy, v, ..., v},
with
H = {{vgy ...y Vy_1}> ’—‘—"Kp—z

E(G) = E(H)u{n,v;]2 <1< 3(p+2)}V{0;0,/ 3(p +4) <Jj < p—1}U{,0,}.

It can be verified that with this labeling of the vertices, G dominates
(fr) = 3(x+2). However, there is no v, —v, path of length two in Q.

The following examples (a)-(¢) illustrate that the results obtained
in Theorems 3, 4, and 5 are “best possible”. Example (d) indicates that,
for each m > —1, the class of graphs which are not complete and which
dominate f(x) = 3 (2 4+ m) is not contained in the class consisting of graphs
G such that 6(G) = 3(|V(G)|+m).

Let m and p be integers satisfying —2<m < p—3 with p> 3,
and let G be the graph of order p such that

V(G) = {v;, 02y ...,0}, H=6G—v,~K,,
and
E(G) = EH)V{v,0;| p—m—2<i<p—1}.

(For m = —2, E(Q) = E(H).)

Then G dominates f(x) = 4(x+m) and degyv, = m+2. We now
observe the following:

(a) For m = —2, G dominates f(x) = 4(x —2), but G does not contain
a hamiltonian path. .

(b) For m = n—1> —1, G dominates f(z) = }(x+n—1), but @ is
not n-hamiltonian.

(¢) For m = 0 and p > 4, G dominates f(x) = 32, but @ is not hamil-
tonian-connected.

(d) For m> —1 and p > m+5, G dominates f(x) = }(x+m), but
6(@) = 3(p +m) fails to hold.

Finally, we wish to show that the classes of graphs obtained by the
domination of f(x) = 3(z+m) for each m > —1 do not contain the cor-
responding minimum degree classes. Towards this end we derive the
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following necessary condition for G to dominate f(z) = }(x+m). As
usual, {y} will denote the least integer mot less than y.

THEOREM 6. Let p and m be iniegers of the same parity satisfying
1< m<p—4. If a graph G of order p dominates f(x) = }(x+m), then
[E(G@)] > tp(p+m).

Proof. Let ¢ = |E(@)|. Then clearly
»
q = ZdegG,vH
i=1

where, by definition, degg,; > $(p;+m) if }(p;+m)<p,—~1 and deggv:
=p;—1 it }(p;+m)>p,—1.

Sinee p; = |V(G;)| =p—1i+1, we have }(p;+m)>p,—1 if and
only if ¢>p—m —1. Hence ¢>p—m —1 implies deggv; = p;—1, i.e.,
Gym =~ K, ,. Furthermore, for ¢ <p—m —2,

1 1
dega,-"’i = {? (Pi+m)} = {? (p+m—i+1)}.

Now, considering the parities of ¢, p +m, and p —m —2, we see that

p—m—2 p-m-—2

> b5 @+m—itn} - ) 5 Btm—i) = (p—m—2).
Thus,
» p—m-—2
0= Daeggn> O {5 wam—it D} 4B &)
i=1 =1

P—m—2

1 3
- Z 5 @+m—i)+— (p—m—2)+ |B(Kpy,)|

i=1

1 3 1 .

=7 (p—m —2) (p—|—3m+1)+—4— (p—-m—2)+—2—(m+2) (m+1)
1 1

= ZP(P+m)+Z(P—m—2) (m+2)
1 .

>Zp(1’+m)-

Now, let p and m be integers satisfying —1 << m < p —4 such that
P +m is divisible by 4. Under these conditions, there exist }(p + m)-regular
graphs of order p. For such a graph G, 6(G) = }(p + m), but by the preceding
theorem G does not dominate f(x) = }(x+ m).
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The work presented here is a preliminary report on the concept
introduced, and further related investigations will form the basis for
future presentations.
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