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FACTORIZATION AND INVERSE EXPANSION THEOREMS
FOR UNIFORMITIES

BY

W. KULPA (KATOWICE)

The aim of this paper is to prove two theorems on uniform spaces,
both being generalizations of known theorems of Mardesi¢ [6] concerning
compact Hausdorff spaces and their further generalizations to more
general topological spaces due to Pasynkov [8]. The first theorem is
concerned, roughly speaking, with the possibility to get for each uniform
map X — Y a factorization X —-Z — Y through a uniform space Z
having uniform dimension the same as X and uniform weight the same
as Y, and the second with the possibility to get an inverse expansion
of a uniform space by means of metrizable uniform spaces having the
same uniform dimension as the given space.

The main tool in our proofs is a quotient operation on pseudouni-
formities preserving dimension. This operation was defined by Bourbaki
[2] without taking into consideration dimension properties. It was also
considered by Arhangelskii [1] without specifying its uniform properties.

By using this operation, the proofs of uniform generalizations of
Mardegié-Pasynkov theorems are natural and in a sense standard, which
shows that the category of uniform spaces occurs to be a natural domain
for the theorems of such a kind.

Uniformities are always regarded as families of coverings as in the
book of Isbell [5].

I wish to express my gratitude to Docent J. Mioduszewski for helpful
conversations during writing the paper.

1. Preliminaries. The quotient of a pseudouniformity. Let X be
a set and P a covering of X. If weX, then the star of x with respect to P
is the set
st(x, P) = U {U: veUeP}.

If UeP, then the star of U with respect to P is the set
st(U,P) = {U': UeP,U NnU #0}.
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If P and @ are coverings of X, then @ is said to be a refinement —
respectively a star refinement — of P, in symbols @ &P — respectively
Q }; P — iff for each V e there exists a UeP such that V =« U — respecti-

vely st(V,Q) < U.

A pseudouniformity on X is a family # of coverings of X such that

(1) # is a directed family with respect to the star refinement,

(2) if Qe and Q@ & P, then Pe%.

A subfamily # of  such that each Qe # has a refinement Pe# is
said to be a base of . Of course, # satisfies (1).

If a family # of coverings of X satisfies (1), then it is a base for
a pseudouniformity consisting of all coverings P of X such that Q&P
for some Qe 4%.

If a pseudouniformity # is such that

(3) for each two distinet points ' and 2" from X there exists P
such that «’ ¢st(z’’, P),
then it is said to be a uniformity.

A family of coverings of X satisfying (1) and (3) is a base for a uni-
formity. For the brevity sake we shall denote the base and the uniformity
induced by the base by the same symbols.

If # is a pseudouniformity on X, ¥ is a pseudouniformity on Y
and f: X — Y is a map, then f is said to be uniform with respect to #
-and ¥ if for each Qe¥ there is f'(Q)e# (f'(Q) means the covering
{UV): Ve@)).

As usually, a pair (X, %), where  is a pseudouniformity on X,
is said to be pseudouniform space. Uniform maps will be denoted also by
(X,2) > (Y, ). .

Each pseudouniformity leads to a uniformity by means of the following
quotient operation.

If # is a pseudouniformity on X, then sets

[#] = (N {st(z, P): Pe®}

form a partition of X. In fact, let ye[z] = M {st(z, P): Pe%}. For
each PeU let us take Q(P) such that Q(P) 5; P. There is st[y, @(P)]
< st(x, P). Therefore

[y] = M {st(y, B): Re %} < () {st[y, @(P)): Pe %}
< () {st(x, P): Pe%} = [x].

But if ye[z], then xe[y], because x ¢[y] implies x ¢st(y, P) for some
Pe %, and hence y ¢st(z, P) for this P, contrary to y e[x]. Thus it is proved
that [x] and [y] are equal if they have a point in common.
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Let ¢: X - X, be the quotient map onto the partition described
above, ¢(x) = [z] for xe¢X. For each Pe # the family
P ={X,—q(X—U): UeP}
forms a covering of X (in fact, let [x]e¢X,; then [x] = st(x, P); we take
Qe such that @ %; P; there is [x] = st(x,Q) < V, where VeP; if
y <« X—7V,then [x] N [y] = G, thus [z]eX,—q(X—V) for V P described
above). The family # = {,IP: Pe %} forms a base of a uniformity on X, .
To see (1), let us take arbitrary coverings ,P’ and L from . Let Pe%
be such that P & P’ and P & P’". Then, as is easy to see, qP & L and
P%— AL To check (3), let [w] # [y]; then there exists Pe % such that
y¢st(z, P). Thus q(a) = [w]est([w],q ) and q(y) = [yl¢st([x], P) are
distinguished by a covering P belonging to ,%.

The map ¢: X — X, is um’form with respect to # and #. In fact,
e «; we have

¢ {Xq—q(X—U): UeP} ={X—q'[q(X—-T)]: UeP} 3 Q,
Where @ & P,Qe%. To check this, let Ve@. There exists Ue P such that
st(V,Q) < U. This implies that V< X—q '[¢(X—U)], since zeV
N qg'[q(X—TU)] leads to ¢(r) = q(y) for some yeX—U. But zeV
cst(V,Q) =% and q(r) =q(y) implies yest(x,Q) < st(V,Q) < ;
a contradiction. )

We shall show that # is the greatest uniformity ¥~ on X, such that
q is uniform with respect to  and ¥". To see this, we shall show that if
a covering @ of X is such that ¢7'(Q) e %, then Q ¢, #. In fact, if ¢7'(Q) ¢ 7,

then
| qlg (@] = {Xv—q[X—q (V)]: VeQ} e, 2,
since X,—q[X—q (V)] =V for each VeQ; we get Q = q[q " (Q)]-

The uniformity ,# on X, will be said to be a guotient of pseudo-
uniformity #.

. The quotient ¢ of # is unique up to an isomorphism determined by

the condition:

(5) for each map f: X — Y uniform with respect to a uniformity
on Y there exists a unique uniform map filling up the diagram

f >
X ;Y

The minimal cardinality of a base of a pseudouniformity # is called
the weight of %.
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A covering P is said to be of order < n, ord P < n, iff for each reX
there exists at most n elements U of P such that xeU.

If a pseudouniformity # contains a base consisting of coverings
of order < n+1, then it is said to be of dimension < n, dim Z < n.

PROPOSITION 1. If % is a pseudouniformity on X and [ is the quotient
of %, then
(6) weight % < weight %,

(7) dim Z < dim %.

Proof. Property (6) follows immediately from the construction
of the quotient. Property (7) easily follows if we note that if Pe U and
V, is an element of P for ¢ =1,2,...,% then

Vanzn...nd'—‘—'ﬂ
= [Xg—q(X—=V)]N...N[Xy—q(X—-V})]=0

PROPOSITION 2. Any map f: X — Y uniform with respect to a pseudo-
uniformity % on X and a uniformity on Y admits a decomposition into

x—t——y
q
Xq

maps uniform with respect to a umiformity U on X, such that weight
Z < weight % and dim % < dim %.
Proof follows immediately from (5) by taking ¢ as the quotient
of . Factor map X — Y is now uniquely determined by virtue of (5).
ProOPOSITION 3. For each subfamily # of a uniformity % on X there
exists a pseudouniformity  such that

(8) BeUcU, cardd = weight#%, dim % < dim %.

Proof. For every two coverings P', P"e# take a covering Pe%
such that P }-P’ and P &-P" and ord P < dim #+1. Let #, denote
the family of aﬂ such covermgs Assume that families %,,..., %, are
defined. Applying the above operation to | {#;:¢ =1, ..., n} we receive
B Family % = {#4;:1=1,2,...} forms a pseudouniformity
satisfying (8).
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2. Factorization theorem for uniformities.
THEOREM 1. Let f: X — Y be a map wuniform with respect to a uni-

formity % on X and a uniformity ¥ on Y. Then there exists a factorization
of f (in general, not unique)

uniform with respect to a uniformity # on Z, and such that
(9) dim % < dim %,
(10) weight #° < weight ¥".

Proof. Let # be a base of the uniformity ¥ on Y such that card Z
< weight ¥". Consider the family f~!(#) of coverings on X. Since f is
uniform, we have f~!(#) « #. According to Proposition 3, the family
f71(#) may be extended to a base of a pseudouniformity % < % such that
dim # < dim  and weight * < card f~'(#). Now f: X— Y is uniform
with respect to # and ¥". Applying Proposition 2 we get the required
factorization of f.

The factorization f = hog satisfying (9) and (10) is not unique:
it depends on the choosing of a pseudouniformity # containing f~'(%)

(it is easy to see that it does not depend on the chosing of %, the base
for ¥").

We shall call factorization f = hog finer than a factorization
f="nh'og if there exists a uniform mapk : Z— Z' such that kog = ¢’
(hence hok = h’') and uniformity on Z satisfies (9) and (10).

ProPOSITION 4. There does not exist the finest factorization for f
satisfying (9) and (10), unless weight % < weight ¥ .

Proof. It suffices to show that for every covering P from U there
exists a factorization '

ap
(11) (X, %) > (Zp, Wp) > (X, ¥)
having properties (9) and (10) and such that ¢z'(,P) & P, where qPé Y p.

Since the finest factorization (X, %) 5 (Z,#) > (Y, ¥) of f is finer than
each of (11), we infer that ¢g: (X, %) — (Z, #") is a uniform isomorphism.
Thus we get, according to (10), weight # < weight #".
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To get the decomposition (11) for each Pe #, let us consider the family
#' of coverings from # such that Pe#’ and f'(Q)e %' for each Qe¢¥v”
and let us extend this £’ to a pseudouniformity #» ¢  in the way

ap
described in Proposition 3. The quotient map (X, %) — (Zp, #'p) is the
first map in (11) and the second map of (11) is uniquely determined
by ,Z as was shown in Proposition 2.

PRrROPOSITION 5. If the set S of factorizations of f is such that

(12)  each factorization of f satisfying (9) and (10) is isomorphic to
a factorization from 8, '

then the cardinality of S is greater than the weight of ¥ .

Proof. Suppose that there exists a set 8 of factorizations of f having
property (12) and such that the cardinality of § is not greater than the
weight of #". Thus the product (Z,, #°x) of the “middle” spaces in these

h
factorizations (X,QI)L(Z,W‘)ﬁ(Y, v"), where #°€8, is of weight
not greater than the weight of ¥". The maps g, # ¢S induce a map

Gu: (X, %) > (Zn, #). There exists a factorization (X, %) =3 (Zy, %)
—~(Y,7") of f. By Proposition 1, the map ¢g. may be factorized through
a map ¢': (X,%) > (Z,#"’) such that dim#’ < dim# and weight
#' < weight #°, < weight ¥". The factorization of g, through ¢’ induces
a factorization of f satisfying (9) and (10) which is the finest among
having these properties; a contradiction with Proposition 4.

In order to get topological corollaries of Theorem 1, let us recall
some facts connecting uniform and topological notions.

If X is a set, then any uniformity  on X determines a topology
T(#) on X: a subset A of X is open in T'(#) if for each xe A there exists
Pe % such that st(x, P) ¢ A. T(%) is a completely regular topology on X.
Conversely, each completely regular topology on X is induced by a uni-
formity, not necesserily unique. The uniqueness holds, e.g., for compact
spaces.

We say that the weight of a topology 7T is not greater than r, weight
T < 7, if there exists a base for 7' with the cardinality <z. If £ is a base
for uniformity %, then it is easy to verify that interiors of elements of
coverings belonging to # form a covering belonging to £ and that interiors
of elements of all coverings from # form a base for the topology induced
by the uniformity #. Thus, if # consists of finite coverings of X, then
the weight of the topology T on X is not greater than card #. In the case
of compact spaces the weight of T coincides with the weight of the unique
uniformity consisting of finite coverings.

If T is a completely regular topology on X, then it seems reasonable
to assume that the covering dimension of 7T is defined by means of func-
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tionally open coverings as follows: dim 7' < n iff for each finite covering
P of X consisting of functionally open subsets there exists a finite covering
@ consisting of functionally open subsets such that @ & P and ord ¢
< nm+1 (see the book of Engelking [4]).

As was shown by Pasynkov [8], dim T < n iff dim %,,,, < n, where
Umax 15 the greatest uniformity on X inducing the topology T'.

If the topology is fixed, it is convenient to write dim X and weight
X instead of dim 7' and weight T'.

COROLLARY (Mardegi¢ [6]). Let X and Y be compact Hausdorff spaces
and let f: X — Y be a continuous map. There exist a compact space Z such

g h
that AimZ < dim X and weight Z < weight Y and a factorization X —7Z — Y
of f into continuous maps. onto

Proof. The map f: X — Y, being uniform with respect to the unique
uniformities on X and Y inducing the given topologies, admits, by virtue

h
of Theorem 1, a factorization X Lzl Y, where g and kb are uniform with
onto

respect to a uniformity #° on Z such that dim # < dim X and weight
# < weight Y. Since g is continuous, Z is compact. Hence dim #" = dim Z
and weight #° = weight Z, which proves the theorem.

Pasynkov [8] proved that if X is a completely regular space, Y
is a metric space and f: X — Y is continuous, then there exist a metric
space Z such that dimZ < dim X and weight Z < weight X and a factori-

. - g h - .
zation X -Z — Y of f into continuous maps.
onto

Main assertions of the Pasynkov result follow from Theorem 1
immediately. Namely, consider f: X — Y as a uniform map f: (X, %)
— (Y, 7¥), where ¥~ is a metrizable uniformity (i.e., weight ¥ < N,),
Theorem 1 gives a factorization (X, Z,.x) >~ (Z,#) - (Y, ") such
that dim # < dim %, and weight # < weight ¥". The latter ine-
quality means that Z is metrizable, the former according to a theorem of
Nagata ([7], p. 126, Th. V. 1.) means that dimZ < dim %, ,,. Since
dim %,,,, = dimX, we get dimZ < dim X.

To get the assertion concerning topological weight of Z an additional
procedure is needed in which the cardinalities of coverings are taken
into consideration.

3. Inverse expansions associated with a given uniformity. Let be
given a uniform space (X, #) and a family F of subsets of X. We say
that F contains arbitrarily small sets iff for every covering Pe # there
exists AeF such that A < V for a VeP.

We say that uniformity # in a set X is a complete uniformily iff for
each family F of closed subsets of X (in the topology induced by #) such
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that F has the finite intersection property and contains arbitrarily small
sets, the intersection () {A4: A eF} is non-empty.

THEOREM 2. Let X be a completely reqular space and let % be a uni-
formity on X. Then there exists a umform dense embeddmg of the uniform

space (X, %) into a uniform space (X %) where (X 02/) 18 the inverse limit
of a system over a directed set M such that

1. spaces of the system are metrizable and of dimension mot greater
than dim %,

2. maps ng: X, - Xz of the system are uniform and onto,
3. card M < weight #.

If, in a,ddztzon, U is a complete uniformity, then (X, %) is uniformly
isomorphic with (X 02!)

Note. If a space X is an inverse limit of a system of metrizable
spaces, then X being a closed subspace of the product of metrizable
spaces, i.e. a closed subspace of complete space, is a complete space.
Thus, Theorem 2 gives the possibility to expand a space into a system
of metrizable spaces under the best possible conditions.

Before proving Theorem 2, let us quote the following immediate
topological corollaries:

COROLLARY 1 (Mardesi¢ [6]). If a topological space is Hausdorff
compact, then it is homeomorphic with the inverse limit of a system of compact
metrizable spaces; moreover, the cardinality of the system is not greater than
the weight of the space and the dimension of each space in the system is not
greater than the dimension of the given space.

A completely regular space is said to be complete (Dieudonné [3])
iff there exists a complete uniformity on X inducing the topology.

CoROLLARY 2 (Pasynkov [8]). If X is a completely regular space,
then there exists an extension of X to a complete space which is an inverse
limit of a system of metrizable spaces; moreover, the cardinality of the system
18 mot greater than the weight of X and the dimension of each space in the
system s not greater than that of X.

Dieudonné [3] has shown that each complete space is a closed sub-
space of a product of metrizable spaces. Thus the existence of an inverse
expansion of a complete space by means of metrizable spaces is obvious
if we require no dimensional conditions on spaces in the system.

CorOLLARY 3 (cf. Isbell [5]). If (X, %) is a uniform space, then there
exists a compactification X* of X (in the topology induced by %) such that
dim X* < dim %.

Proof. It follows from Theorem 2 that (X, #) admits a dense embed-
ding in the inverse limit of a system consisting of uniform maps =), : X,
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— X,., where all spaces X, in the system are metrizable and dimJX,
< dim %. Consider the system of maps fa=,,: X, - fX,,, where g is the
symbol of Cech-Stone compactification. There is dimpgX,, = dimX,,
< dim  each me M, and the inverse limit space X* of the system of
maps fn" is such that dim X* < dim X, < dim #. It is easy to see that X
admits a dense (topological) embedding into X*, X — X*, being the

composition of the uniform embedding (X, #) — ()E’ ) @2) and the map
X — X" induced by Cech-Stone embeddings X,, — fX,, for me M.

4. Proof of Theorem 2. Let # be a base for # such that card #
= weight . We shall construct a family M of pseudouniformities a
on X such that a =« % for every ae M. The family M will be directed with
respect to inclusions. We construct M in the following way. For each
covering Pe# we construct by induction a sequence a(P) = {P;:
t=1,2,...} of coverings from # such that

(1) P=P1-§P2-§P3-§...
and
(2) ordP, <14+dim#% for:i=1,2,...

Each family o(P) = {P;: + =1,2,...} forms a base for a pseudo-
uniformity. Of course, dima(P) < dim # and weight «(P) is countable.
Let #, = {a(P): Pe#} be the family of pseudouniformities formed in
this way. Assume that the families %,,..., #,_, of pseudouniformities
having dimension not greater than dim # and of countable weight are
already defined. Now we define #,. For each two pseudouniformities
a and o' from %, U...U %, , we form, according to Proposition 3,
a pseudouniformity « such that o« U a” < a, dima < dim %, and that
the weight a is countable. Let M = {a:ae%;,? =1,2,...}. By the
above construction M is directed with respect to inclusions of pseudo-
uniformities and card M < weight #.

* For each ae M we form the quotient uniform map ¢,: X — X, of
pseudouniformity a. According to Proposition 1, the uniformities on X
have countable bases consisting of coverings of order not greater than
n41 (dim < n), and so, by the above quoted theorem of Nagata [7],
each topological space X, with topology induced by the uniformity a
is metrizable and dimX, < dim %, ae M. Fix the following symbols
(cf. Section 1):

[m]a = n {St(.’E,P): .PGC(}, Qa(w) = [w]a7
(3) L ={X,—q(X—V): VeP}, where Pea,
U, = {,P: Pea},

ie. %, is the quotient of pseudouniformity a with respect to #.

Collogquium Mathematicum XXI.2 15
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Define maps =5 : X, - X; for a > § by the formula

(4) ng([)) = []s.
Thus
(5) mhony =ai for y > B> a.

The maps =z are well defined, because if a > 8, then

[#]s = N {st(x, P): Pep} = () {st(x, P): Pea} = [x],.

Maps =z are uniform with respect to the uniformities #, and U,.
To prove this let us note that

(6) w5q, = ¢qs for a> B

and that for every Pea we have ¢,(P) = {q.(V): VeP}e%,, whence
(7)™ (4P) = gu[g5" (sP)] € .

Let (X, %) be the inverse limit of the above directed system and let
7, X - X,,ae M, be the projections. According to (6), the maps
q¢.: X > X,, ae M, induce & uniform map ¢q: X — X. The map is a uniform
embedding. In fact, it suffices to show that for every Pe # there exists
a covering P’ % such that ¢ '(P’)&P. Since the coverings =;'(.P)
forms a base for the uniformity % and since ¢ (P) P (see Section 1),
it implies that ¢ is a uniform embedding.

The image q(X) i3 dense in the space X with the topology induced
by the umformlty . In fact, let yeX and let W < X be & non-empty
open subset of X. We shall show that W n q(X) # 9. It is sufficient
to consider only W = zn;'(W,), where W, is openin X,. Let y = {y,} e W,
7, (y) = Y. W, and n;'(y,) = W. Since the maps ¢,: X — X, are onto,
hence there exists xe¢ X that q,(z) = y,. But y,e W, implies q(x)en,'(y,)
< W. This means that z;'(W,) N ¢(X) # @. If % is a complete uniformity,
then ¢(X) = X
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