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1. Introduction. Let 7: X — X be an invertible, bimeasurable, meas-
ure-preserving transformation of a probability space (X, 2, u). In [3]
Blum and Hanson proved the following mean ergodic theorem:

The transformation z is a strong mixing, i.e.,

lim (z"(4)NB) = u(4)u(B) for any 4, BeZ,

if and only if for every real number p with 1 < p < oo, every strictly
increasing sequence (%) of integers, and every f e L?(u) we have

h:nf %gf(f"‘(w))—ffd.u

This theorem has subsequently been generalized by many authors,
most of interesting results being obtained for cyclic semigroups of con-
tractions (and of power bounded operators) on LP-spaces (see [11], [13],
[1], [2], [7], [18], and [20]). In this context Nagel [16] considered order
contractions acting on more general Banach lattices with order continuous
norm (see also Schaefer [21], V, §8). Sato [19] and Fong [6] treated of
one-parameter continuous semigroups of operators.

In the present note we focus on groups. More specifically, we consider
measurable representations of a locally compact group @ on relevant Banach
spaces. Thus, on the geometric level, the discussion here is confined to
groups of measure-preserving transformations of the underlying measure
space (Section 4).

Throughout, we make strong use of ideas and methods developed
for cyclic and one-parameter semigroups mainly by Akcoglu, Sucheston,
Fong, and Nagel.

P
du(z) = 0.

2. Terminology and notation. Let G be a locally compact non-
-compact topological (Hausdorff) group. By G'U {co} we denote the one-

16 — Colloquium Mathematicum XLII



242 A. IWANIK

-point compactification of G. If f is a mapping from @ into a topological

space S, then we write

(*) lim f(t) = s

if f converges to 8 € 8§ on GU { o} along the filter of neighborhoods of oc.

In other words, (*) means that for every neighborhood U of s in 8 there

exists a compact subset K < @G such that f(!) e U whenever t e G\K.
A representation {— T, of G on a (real or complex) Banach space

E with Banach dual E’ will be called measurable if the function

t—> Ty y)

is Borel measurable for any = € E and y € E'. Clearly, every weakly con-
tinuous representation is measurable. Conversely, every measurable
isometric representation of G on a separable Banach space ¥ is automati-
cally continuous (for the case of Hilbert space see [8], Chapter 5, 22.20b;
in general case the same argument works).

Let ¢t — T, be a measurable representation of G on a Banach space
E and suppose that for some = € E the orbit

0, ={T\z: teG}

is bounded in E. Then for evéry finite signed Radon measure » on @ the
mapping

y—> [Ty, ydav(t)

defines a bounded linear functional [ T,xdv(t) on E’'. Moreover, if » is
a probability measure, then [ T,xdv(t) belongs to the weak* closed convex
hull of O, in E’. If, in addition, the set O, is relatively weakly compact,
then, by the Krein-Smulian theorem ([5], V, 6.4), the convex hull of
0, is relatively weakly compact in ¥, which clearly implies

[Twadv(t) e B.

Now let the family {T,: ¢t € @} be equicontinuous and suppose that
0, is relatively weakly compact for every « from a dense subset E, < E.
Then the mapping

x> f T, dv(t)

defines a bounded linear operator on E,, extending uniquely to a bounded
linear operator [ T, dv(t) on B. If this is the case, we say that the integral
[T, dv () exists.

Clearly, if » has finite support, then for every x ¢ E the functional
T,z dv(?) is in F and the integral [ T,dv(t) exists. Also, if F is a reflexive
Banach space and {T,:te @} is equicontinuous, then by the Banach-
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-Alaoglu theorem all sets O, are relatively weakly compact, so that
[ T,z dv(?) is always in F and [ T,d»(t) exists.

Following Fong’s definition for measures on the half-line [6] (cf. also
[7]), we denote by U the family of all sequences (u,) of signed Radon
measures on G satisfying

(1) supliu,ll < oo,
@) limp, (@) =1,

(3) limsup|g,|(tK) = 0 for every compact subset K < G.
n le@

Roughly speaking, every (u,) € U corresponds to certain Cesaro type
weighted averaging procedure on G. As was kindly pointed out to us by
Dr. T. Byczkowski, certain sequences of probability measures satisfying
(3) were considered by Csiszar in [4]. In particular, Theorem 3.1 of [4]
asserts that if @ is a second countable locally compact group, (»,) is a se-
quence of probability measures on @, and u, = »,*... *», is the convo-
lution product, then either (u,) € U or else there exists a sequence (a,)
in @ such that the shifted distributions 4, *pu, converge in law as n — co.

In the sequel, given a Banach space E % (E) will denote the Banach
space of all continuous linear operators from E into E. By %,(F) and
Z,(E) we denote the space Z(F) endowed with the strong and weak
operator topology, respectively.

For Banach lattices, we use the terminology and notation of Schaefer’s
book [21].

3. Convergence of unitary representations. In the proof of the forth-
coming theorem we will need the following group theoretic lemma:

LEMMA 1. Let G be a locally compact non-compact group and suppose
that oo is a cluster point of a subset 8 < G. Then there exists a sequence
(8,) in S with the following property:

For any compact subset K < G there exists a natural number n(K)
such that each translate of K contains at most n(K) elements of (s,).

Proof. First observe that considering only left translates causes no
"loss of generality. For every relatively compact and symmetric neigh-
borhood U of identity in @G there exists a sequence (s,) in 8 such that s, .,
does not belong to any of s, U for ¢ = 1, ..., n. In particular, the sets
8, U are pairwise disjoint. Now, if a compact set K has a covering by %
left translates of U, then, clearly, no left translate of K can contain more
than % elements of (s,).

THEOREM 1. Let G be a locally compact non-compact group and let

t— T, be a measurable unitary representation of G on a complex Hilbert
space H. Then for each x € H the following conditions are equivalent:
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(i) weak-lim T,z = x,;
t—>00
(i) lim [ T,@dp,(t) = @, for every sequence (u,) € U;
(iii) weak-lim [ T,xdu,(t) = @, for every sequence (u,) € U for whioh

the u, are probability measures with finite supports.

Proof. (i) = (ii). By a standard argument, # can be represented as
a sum & = x,+, such that T,z, weakly converges to 0 as ¢ » oo. Since
@, is fixed under (7)), the integrals

thde.“n(t) = /‘n(G)wo

norm converge to z, by (2). Therefore, we may assume that # = z, or,
equivalently, z, = 0.
We have

[f 22 dun = (f Loz dp(o)] f Lo dpan )
= [ (T.2] [T dpn () dua (o)
= [au,(s) [(T,2]T,2)dp, (t)
= [ap.(s) [ (@IT, @) dun(t).

Let ¢ > 0 be given. By our assumption, there exists a compact subset
K < @ such that |(#|T,»)| < ¢ whenever u e G\K. By (3), there exists
a positive integer N such that

sup |u,|(tK) <e for n> N.
te@

Also, by (1), llu,ll < M < oo for n > 1. Therefore, by splitting the
second integral into two parts, we obtain

| [@IT, @) du, (0] < [ |@1T,-,,2)|d il (8) + [ edlp,l(8) < llwlPe+ Me
8K
whenever n > N. This implies

|f T dun 0] < (Mol +H)s  tor n> N,
whence
ljmetwdl‘n(t) = 0.
n

(ii) = (iii) is trivial.
(iii) = (i). Our argument is based on Fong [6]. If (i) fails, then
necessarily weak-lim T,# does not exist, whence for some y € H the

t—o00

complex-valued function k(¢) = (T,x|y) diverges as { — oo. Since A(?) is
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bounded, there exist two disjoint discs 4 and B in the complex plane,
such that oo is a cluster point of both A~'(4) and A~*(B). By Lemma 1,
we can find two sequences (8,) and (¢,) in A~!'(4) and A~!(B), respec-
tively, such that for every compact subset K < @ there exists a natural
number n(K) with

[{n: s, etK} <n(K) and |{n:1,etH} < n(K)

for all t €e@. Now we form two sequences (4,) and (»,) of Radon proba-
bility measures with finite supports on G by putting

1 +« 1
a,,=-;25,i and v,,=;26,‘.

=1 =]
For K and n(K) as above we have

aE) <M ana b amy < M)
n n

for every t € @. Therefore, (4,) and (»,) satisfy (3) and are in 2. Thus the
sequence (u,) = (4;, ¥1 43y ¥5, ...) i8 also in . Since 4 and B are convex
and closed, we have [hdi,e A and [hdy, e B, whence ([ T,zdu,(t)|y)
diverges as n — oo. This contradiction concludes the proof of the theorem.

Now we give a few examples of unitary representations which either
satisfy or fail to satisfy (i) of Theorem 1. Example 1 is the classical case
of strong mixing.

Example 1. Let G be the group of integers, (X, X, u) any proba-
bility space, and = an invertible, bimeasurable, measure-preserving, and
strongly mixing transformation of X. By the definition of strong mixing,
the unitary representation

Tif (@) = f(z (=)
of @ on L*(u) satisfies

lim(T,f19) = [ fau [ gdu
—00
for any characteristic functions f, g € I*(u). By equicontinuity,
weak-imT,f = [fdu for every f e L*(u).
{0 | B

Example 2. Let G@ be a locally compact mnon-compact group,
(X, Z, u) a probability space, and A an index set. For every ae A put
X, =X and denote by (X, Y, ) the product probability space [] X,.

aed

Further, we assume that to each ¢t € G there correspond a permutation

o, of A and an invertible, bimeasurable, measure-preserving transfor-
mation o, of X such that g,0, = o, and o,0, = o, hold for all s,¢e@.
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Agsume, in addition, that for every a, f € A the set {t e@: g;(a) = B}
is relatively compact. (It is easy to see that under this assumption the
set A is infinite; this is, e.g., the case where 4 = @G/G, for a compact
subgroup G, < @, and ¢ —+ g, is the canonical action of & on the quotient
space.) The formula

(z(@)) (@) = oy(2 (e (a)))

defines an action ¢ -7, of @ on X. Clearly, all transformations 7, are
measure-preserving and invertible, and 7,7, = 7,, holds for any s, te@.
Therefore,

T f(z) = f(r,_.(®))
is a unitary representation of @ on L*(u). Let B and { be two cylinders
in X with bases in finite-dimensional product spaces [[ X, and [] X,,
aeB aeC
respectively. By assumption, there exists a compact subset K < G such

that ¢,(B)NC =@ for every t e G\K. Therefore, the cylinders 7,(B) and
C are stochastically independent and we have

(Tixz1x5) = B (w(B)NC) = a(B)a(0)
whenever ¢ € G\ K. Since the characteristic functions of cylinders form
a linearly dense subset of L*(u), we have

Lm(T,flg) = [ fdi [ g for all f, g e L*()

or, equivalently,
weak-limT,f = [faa for every feL*(n).
t—00

Let us specify two simple special cases of Example 2:

(a) If @ is the group of integers, 4 = @, and g;(a) = a1, o(®) = @
(te@ ae A, v e X), then we obtain the classical bilateral shift.

(b) X is an infinite compact group with normalized Haar measure u,
G is the group X endowed with discrete topology, 4 = @, and g;(a) = ta,
g(x) =tr (te@,ac A, zeX).

Example 3. Let @ be a locally compact non-compact group with
left Haar measure d¢ and let ¢ - T, be the left regular representation
of @ on L*(@), i.e.,

T.f(8) =f(t7's) (s,1€@).

For two compact sets K and L in G we have iKNL = @, whence
(Texx|xz) = 0 whenever ¢ € @\(LK™"'). Therefore, by equicontinuity,

weak-limT,f =0 for every fe L*(G).
t—o00
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Example 4. Let A be a Hermitian operator on a complex Hilbert
space H and let G denote the group of reals. Then A induces a continuous
unitary representation ¢ — T, = ¢“4 of G on H. If 4 has an eigenvector
o pertaining to a non-zero eigenvalue 4 (e.g., if A is non-zero and compact),
then T,# = ¢**x and, clearly, weak-lim7T,z does not exist.

t—>o00

4. Groups of point transformations. In terms of ergodic theory,
Examples 1 and 2 of the preceding section can be viewed as strongly mixing
flows on probability spaces. Let us examine this case closer.

We say that a locally compact group G acts measurably on the prob-
ability space (X, 2, u) if to each te @ there corresponds an invertible,
bimeasurable, measure-preserving transformation 7, of X such that

(a) 7,7; = 7, holds throughout,

(b) the real function t— u(r, (A)nB) is Borel measurable on G for
all A, BelZ.

It is easy to see that (b) is implied by the joint measurability of the
mapping (¢, #) > 7,(®).

For every 1 < p < oo the measurable action ¢ - v, of @ on X induces
an isometric representation ¢ — T, on (complex or real) L”(u) by T,f(»)
= f(r _l(w)). By (b), t - T, is a measurable representation. Clearly, the
operators 7', are positive (in the Banach lattice sense) and satisty T\1 = 1,
where 1 denotes the constant-one function on X. Therefore, for every
bounded function f € L”(u), the orbit O, is order bounded in the Banach
lattice L?(u), hence relatively weakly compact ([21], II, 5.10 £f). Thus,
the integral [T,dv(f) exists in ¥(L”(u)) for any finite signed Radon
measure » on G (Section 2).

As an application of Theorem 1 we obtain the following extension
of the Blum-Hanson theorem. (By u ®1 we denote the one-dimensional
projection f— [fdu of L”(u) onto the constants.)

COROLLARY. Let a locally compact non-compact group G act measurably
on a probability space (X, X, u). With 7, and T, as above, the following condi-
tions are equivalent for every 1 < p < oo:

(0) limp(v,(4)NB) = p(A)u(B) for all 4,BeZ;
@) };ngT, = u®1 in L,(L*(u);
(ii) lim [T,dp,(t) = p®1 in L(LP(u)) for every (u,) e U;
(iii) linm JTidp,(t) = p®1 in L (L*(u)) for every (u,) €U for which
all u,, are ;robability measures with finite supports.

Proof. Considering the linearly dense subset of characteristic func-
tions in L?(u), we infer that (i) = (o) is trivial and (o) = (i) follows from
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equicontinuity. (iii) = (i) can be proved in exactly the same way as in
Theorem 1. The implication (ii) = (iii) is trivial.

We prove (i) = (ii). In the case of p = 2, the implication follows
directly from Theorem 1. In the general case, by equicontinuity, it suf-
fices to prove

lim [ T,fap, () = [fau

in Z?(u) for every 0 < f<1. If |u,| < M, then for every such func-
tion f we have

[T faun )| < M,

whence the set {fT,fdu,(t): n>1} is order bounded in L*(u). Since
on order bounded sets the LP-topologies for 1 < p < oo coincide ([21],
V, 8.3), we have the required L”-convergence by (ii) in Theorem 1.

Remark 1. By the proof of the Corollary, (i) <> (ii) <> (iii) holds
for any measurable isometric representation t — T, of G on L* (u) (1 < p < )
satisfying T, > 0 and T,1 =1 for ¢ € G. On the other hand, if a measur-
able isometric representation satisfies the two conditions above and
if, in addition, (X, X, ) is a standard Borel space, then, by Theorem 2
of [9], for every ¢t e G there exists a measure-preserving transformation
7,-, of X such that T,f(%) = flr,_,(2)) for every fe L”(u) (cf. also [12],
Theorem 3.1). By the essential uniqueness of z,_,, we have AL (2))
= 74(x) almost everywhere on X for all 8,¢ e @ (the exceptional set of
measure zero depends on s and t). If, moreover, G is second countable,
then, by a slight modification () of Mackey’s Theorem 1 in [14], the
transformations v, can be chosen so that 7,7, = 7, holds throughout
and the mapping (¢, ) - 7,(x) is jointly measurable. Thus, under the
assumptions above on X and @, the representation ¢t — T, is induced by
a measurable action of G on X.

S. Order contractive groups in Banach lattices. We can generalize
the equivalences (i) <> (ii) <> (ili) in the Corollary by considering arbi-
trary Banach lattices with order continuous norm. The method is due to
Nagel [15] who also introduced the concept of order contraction (cf.
[21], V, §8).

Let E be a (complex or real) Banach lattice with order continuous
norm. According to [21], V, 8.1, an equicontinuous (semi-) group (T,)q
of operators on F, each having a modulus, is called order contractive if

(1) By using either Satz 1 in [16] or Theorem 6.1 in [22], and the fact that
every uncountable standard Borel probability space contains a null set of cardinality
continuum (see footnote 15 in [16]), we can carry the action of G from a standard
Borel space 8 into X.
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there exist a quasi-interior element w € £, and a strictly positive linear
form x on E such that |Tj|u < w and |T,|'u < u for all ¢t € @G. In the like
manner, we say that a representation ¢ — T, of the group @ on F is order
contractive if each T, has a modulus and (7)), is an order contractive
group of operators. Every order interval in F is relatively weakly compact
([21], 11, 5.10 and 5.12), therefore, if ¢ — T, is a measurable order con-
tractive representation and » is a finite signed Radon measure on @,
then [T,xdvr(t) is in E for every « from the norm dense principal ideal
E, < E generated by . Thus, by Section 2, the integral [T,d»(t) exists
in Z(E).

The following result corresponds to Nagel’s Theorem 5.2 in [15]:

THEOREM 2. Let t — T, be a measurable order contractive representation
of a locally compact non-compact group G on a (complex or real) Banach
lattice E with order continuous norm. Then the following conditions are
equivalent:

(i) hmT, =P in Z,(E);
(ii) hm [T,du,(t) = P in £L,(E) for every (u,) € U;
(iii) hm JTdp,(t) =P in £,(E) for every (u,) € U for which all u, are
probabilitynmeasures with finite supports.

Proof. For (iii) = (i) see Theorem 1, (ii) = (iii) is trivial.

We prove (i) = (ii). Our argument is modelled on [21], V, 8.4. There
exists a compact space K (the structure space of E) such that x4 can be
viewed as an order continuous finite Radon measure on K, % as the
constant-one function, and the principal ideal F, generated by u can
be identified with the Banach lattice C(K). Moreover, C(K) < E < L'(u),
both inclusions of dense ideals (see [21], V, 8.4, for details). Now{—T,|C(K)
is an isometric representation of @ on C(K). Dually, each T, extends to
an 1sometry T, on I’ (#), giving rise to a measurable isometric represen-
tation ¢t — T, of @ on L'(u). Now, by the M. Riesz convexity theorem
(see, e.g., [21], V, 8.2), the restrictions 7,|L?(x) yield a measurable
unitary representation of @ on the complex Hilbert space L*(u). Since,
by [21], V, 8.3, both the weak and the norm topologies of F and of L*(u)
coincide on order intervals in C(K), we have

lim [ T,zdp,(t) = Pe
n

in F for every «# € C(K) (Theorem 1). Since C(K) is dense in H, (ii) follows
by equicontinuity.

Remark 2. In the definition of the order contractive representation
we assumed the equicontinuity of (T,),. If, however, the represen-
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tation is weakly continuous (i.e., the function ¢ -~ (Tz, y) is continuous
for all z € E, y € E'), then the condition

imT, =P in %, (B)
t—0c0

alone implies that the set {T,: ¢ € G} is relatively compact in £ ,(F¥), hence
equicontinuous. Indeed, for every neighborhood U of P in % (%) there
exists a compaet subset L < @& such that T, e U whenever ¢ € G\ L. The
set {T;: t € L} is compact in &,(E) as a continuous image of the compact
set L. Therefore, by the arbitrariness of U, the set {P}U {T,: t €@} is
compact in &, (F).

6. Groups of isometries on Lebesgue spaces. Let E be a (complex
or real) AL-space, i.e., a Banach lattice whose norm is additive on the
positive cone. The dual Banach lattice E’ can be identified with the
Banach lattice C(K) of all continuous (complex or real) functions on
a compact space K (see [21], I, §9). If T € #(F) is an isometry onto FE,
then the adjoint 7" is an isometry from Z' onto E’. Therefore, by the
classical Banach-Stone theorem ([5], V, 8.8), there exist a homeomorphism
¢p of K and a function r, € O(K) with |rp| = 1 such that

T'f(2) = rr(@)f(or(@))
for every f e C(K) (cf. [12], Theorem 3.1). We have clearly

1T f(@) = flpr (@),
8o |T'] is a Banach lattice automorphism of C(X) and
|T'| = 7pT".
Since |T'| = |T|’ by Lemma 3 in [10] (and its obvious modification
in the complex case), we obtain

LST| = |(8T)'| = |T'8'| = |rp(rso@,) ITV 8)| = ITI'I8)" = (I81IT),

whence |S8T| = |S||T| for any two isometries 8, T € £ (¥#). Therefore, for
any group (T),.q of isometries of F, (|T}|),s i8 a group of Banach lattice
automorphisms.

LevMmA 2. Let (T,),q be a group of isomeiries of an AL-space E.
Suppose that there exvists an element 0 = x € E whose orbit O, 18 relatively

weakly compact. Then there exists a non-zero element w € B with |T)|u = u
for all t e@.

Proof (cf. [21], V, 8.6). Let B denote the set of all weak cluster
points of the relatively weakly compact (by [21], II, 8.8, Corollary) subset
{IT,z|: t e @} < E. Clearly, all elements of B have the same norm [z.
It is a routine to check that |7,|B < B for every te@. Consequently,
|T;|C = C, where C denotes the weak closed (i.e., norm closed) convex
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hull of B. Since B is relatively weakly compact, C is weakly compact by
the Krein-Smulian theorem. From the preceding discussion it follows
that (|T;|),e acts as a group of isometries on the weakly compact convex
set C. Since all elements of ¢ have non-zero norm (|lz||), the assertion
follows from the Ryll-Nardzewski fixed point theorem [17].

PROPOSITION. Let (X, 2, u) be a o-finite measure space, B = L'(u),
and let G be a locally compact non-compact group. Then every weakly con-
tinuous isometric representation t — T, of G on E such that imT, exists in
2 ,(E) is order contractive. §—>c0

Proof (cf. [21], V, 8.7). Let v € E be a fixed, everywhere positive
function. A set 4 € X' will be called G-invariant if for every fe K, the
inclusion

{w: f(x) >0} < A
implies
u({z: ITIf(@) > 0}\4) =0
for all t e@. Let J denote the family of all G-invariant sets J € 2 for
which there exists a non-zero function wu;,0 < u; e H, satisfying both

{w: uy(x) >0} =J and |Ty|u; = u; for all t e@. Since for every pair
I1,J € J we have

IT(ug+uy) =ur+u; and {@: uz(x)+uy(x) > 0} =IUd,

the family J is upwards directed. Therefore, the order bounded family
{vg;: J eJ} = B is also upwards directed. Since every AL-space is super
Dedekind complete, there exists a function vy, 0 < v, € B, such that

Vo = SUpvy; = SUpPvVyy,,
JeJ n

where (J,) is a sequence in J (the suprema being taken in the Banach
lattice sense). By letting

w = 2 g, |
n

we obtain » € ¥, and |T|u = u for every t e G.
Now the set X decomposes into two G-invariant subsets

Y ={x: u(x)>0} and Z =X\Y.

Clearly, u(JNnZ) = 0 for every J e€J. We claim that u(Z) = 0. To
this end denote by » the restriction of x4 to Z and consider the represen-
tation ¢ — T,|L'(v) of @ on L'(»). By Remark 2 (Section 5), the orbits
of elements in L'(») are relatively weakly compact. Thus, by Lemma 2,
there are no non-zero elements in L'(»), implying u(Z)= 0.
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We have proved so far that |T)|u = u (t € @) for a positive quasi-
-interior element w € E. Since, clearly, |T,/'l =1, the representation
t— T, is order contractive.

Next we get rid of the assumption of o-finiteness of u. The proof
of the forthcoming lemma is included here for the sake of completeness.

Lemwma 3 ([5], IV, Exercise 13.54, II). Let (X, X2, u) be a (not necessarily
a-finite) measure space and let F be a relatively weakly compact subset of
L'(u). Then there exists a set Ae X of o-finite u-measure such that all functions
Jrom F are supported by A.

Proof. The space L'(u) can be viewed as a closed subspace of ca(ZX),
the Banach space of all countably additive measures on 2 with bounded
variation. Therefore, each relatively weakly compact subset of L'(u) is
relatively weakly compact in ca(l). By the Bartle-Dunford-Schwartz
theorem ([6], IV, 9.2), there exist a sequence (»,) in F' and a sequence
(a,) of positive real numbers with }'a, < co such that every »e F is
absolutely continuous with respect to the positive measure

A= Zanl”nl e L'(u).
Therefore, every element of ¥ is supported by the o-finite u-support
of A
Our last result corresponds to Theorem 2.1 in [1]:
THEOREM 3. Let E be a (complex or real) AL-space and let t — T, be
a weakly continuous isomelric representation on E of a locally compact

non-compact group G. Then the following conditions are equivalent:
(i) im7, =P in £ (EB);

t—o0

(ii) the integrals [T,du,(t) exist and converge in Z,(E) to P (as
n — oo) for every (u,) € U;
(iii) lim [T,dp,(t) = P in Z,(E) for every (u,) € U for which all u, are

probabih'ty.measures with finite supports.

Proof. Since (ii) = (iii) = (i) are standard, we prove only (i) = (ii).
By the Kakutani representation theorem (see, e.g., [21], II, 8.5), F can
be identified with L'(u) for some positive Radon measure u on a locally
compact (Hausdorff) space X. By (i) and Remark 2, all orbits O, (f € E)
are relatively weakly compact, whence, by Lemma 3, each O, is sup-
ported by a set A(f) of o-finite u-measure. Let E(f) denote the closed
Banach lattice ideal of ¥ generated by O,, i.e.,

B(f) = L' (%),

where v, is the restriction of u to A(f). The restricted representation
t— T,|E(f) of @ on L'(») is, by the Proposition, order contractive. Thus,

for every finite signed Radon measure 4 on @, the integral [ TygdA(t)
is in E(f) < E for every g from a dense subset of E(f) (see the discussion
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preceding Theorem 2). Since f is arbitrary, the integral is in E for every
g from a dense subset B, = E. Therefore, the integrals [ T,du,(t) exist
in # (E). By equicontinuity, it suffices to prove the convergence in (ii)
for individual relatively compact orbits O,, g € E,. Thus the result follows
from Lemma 3, the Proposition, and Theorem 2.
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