B. LYSIK (Wroclaw)

ON THE STATICAL COMPUTATION OF CONOIDAL SHELLS

Introduction. Conoidal shells are used in the modern industrial
building for roofing (fig. 1). '

The conotd is a surface described by a straight line moving paral-
lel to a given constant plane and sliding along two constant curves. We
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shall consider only the case when the curves lie in two parallel planes
which are perpendicular to the above-mentioned plane.

As far as I know, Fauconnier [1] first employed conoidal shells
for the roofing of industrial buildings. But as far as the complete sta-
tical computation of conoidal shells is concerned no publications exist
in which the boundary conditions are considered. There have been pub-
lished only some particular solutions of the differential equations of the
stress inside the shell ([2], [3], (8], [9D).

The present paper gives a mathematical method of statical com-
putation of a conocidal shell if the exterior forces and the geometrical
and elastic conditions on the boundary of the shell are known. This
method is based on the following assumptions:

1. We .assume that the stresses in the normal section of the shell
are tangential to the surface and that no moments occur. The conside-
ration of moments would lead to a more complicated task. Therefore
we restrict ourselves to the momentless theory of shells. For thin shells
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this theory seems to be the most adequate. Consequenfly, we assume
the shell to be ‘“thin”.

2. The boundary of the shell is strengthened with bars in which
besides stresses also moments may be considered. We suppose that the
stresses are connected in a certain way (which we shall describe in § 7)
with the interior forces of the bars. '

In this paper we show how to compute the stress of the shell if the
exterior forces acting on it are given.

I am indebted to Professor S. Drobot for calling my attentlon to
this problem and for the aid which he has given me in solving it.

1. The geometrical description of a conoidal shell. Fig. 1 shows
& conoidal surface in the frame of coordinates zyz. The notation of this.
figure will be used in the sequel. We congider a conoidal surface which
arises when moving a straight line parallel to the plane 20z in such a way
that at every instant it cuts the y-axis and the curve

(1.1) w=a, &=7fy)

Here f(y) is an even and convex function. The equation of this cono-
idal surface is

xf (y) .

2y

(1.2) 2 =

We consider that part of the surface (1.2) which lies above the rec-
tangle I,I,Jq/,. The npumbers g, ...,h, (fig. 1) are considered as
known. The first two of them can be expressed by the length I, breadth
2k and the heights hy, b, as follows:.

_hyl Ml
o hl_"ho’ te hl—hﬂ.

(1.3) @,

Instead of the variables #,y we shall use in our considerations

the variables &,  defined by
@ Fy o

1.4 = — =2,
( ) E wli 77 f’ k) 50 wl

The variable ¥ can be expressed uniquely by # sinece it follows from
our assumptions that f'(y) is a monotone function, and therefore an
invertible one. Thus, we shall regard y a8 a function of #.

The parametric equations in the coordinates £,  of the part of the
conoidal surface lymg above the recta.ngle I,...J, are

(LB) o=u8 y=yn), z=2¢&Hn]; &<E<SL —1<n<L
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In the sequel we employ the coefficients and the determinant of the
first fundamental form which we have computed to be

A, ) =Va+Fly(n)], B(& q) =y (n)V1+(xén),

C(&, 1) =y (VB + (@xén)+ Ly(n)]; % = f (k).

2. The equations of equilibrium of the conoidal shell. We shall
apply the general equations of the
equilibrium of a thin shell in arbi-
trary ecurvilinear coordinates. These
equations written in invariant form
may be found in [6]. For our pur-
pose it is not necessary to write them
down. Let us denote the fechnical
components of the stress tensor by
8, T,, T, (fig. 2) and the components
of the exterior loads in the fixed
coordinate system Oxyz by X*, Y%,
Z*. In the sequel we shall not 18, ]=1821=$ ZM1-270)
use the variables X*, Y* Z* but Fig. 2
the following functions of them, re-
garded as funections of &, #:

X(&,n) = OX*y Y (¢, n) = CY*’

(1.8)

(2.1) X
26, m) = 0|7~ X —eta |,

In our case the equa,tibns of the equilibrium of the conoidal shell
are the following ones:

0 [B o8
w1a—§(le)+$1W+X = 0,

0 [y'A o8
2. — = —+ Y =0
(2.2) an(B T2)+?/ a§+ ’

A 1
&y' =T+ 2ny'S+—2Z = 0.
B %

Eliminating 7, from the last two equations, we get

¢ d 1
. i _ o r _ ’ - 14 =0
EGE WS g (V8) =28~ 2+ EY =0,

(2.3)
, A o 1 d (B s
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Here the variables S, 7,, T, are unknown functions of a point
on the surface. We see that if ‘we find § from the first equation, then
the functions 7,, T, can be determined from the remaining two equa-
tions, namely

AT o8 ' B 1

where (%) is an arbitrary function of the variable ». Later, in § 8.9,
we shall determine z(7) from the boundary conditions. Thus, we con-
sider in the sequel the first equation (2.3) only. )

3. Two Cauchy problems for the equations of equilibrium of the
conoidal shell. In the first equation (2.3) let us write

(31)  o(&, n) =y (9)8(§, n). 7 A
We get thus one equation in par-
tial derivatives of the first order for
one unknown function ¢(&, %): e L)
ol50s E]
0 7,
(3.2) Eo2 — 2 — 20+ E¥ ——Z] = 0. k _const
0& an % ; {5
> 2
Equation (3.2) determines the stress \ k/ n= 52‘
in the ghell: if we know that in the -2 /\;\”é >
rectangle I,...J, (fig. 3), 7‘@ E{f
. . Q=-
(33) f<E<1l, —1<9<1, v
: ' L //
then, as has already been mentioned, AN
. ) (€1,
we may determine 8, T,, and T, from ofbo ) I
equations (3.1) and (2.4).
Let us study equation (3.2) more :

closely. The ‘characteristics of this

equation are solutions of the system Fig. 3
d d do

(3.4) s _ M _ i
§& 2

1, )
20+ —Z,— &Y
X

From the first of these equations we get
(3.5) ' £y = const.

This is a one-parameter family of curves which are projections
on the plane £0#n of the characteristic lines (3.4) (fig. 3).
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Let us now consider more exactly the behaviour of these character-
istic lines, as it is of great importance for the sequel. Those charac-
teristics which cut the sides I [, or JyoJ, of the rectangle I,...J,

~do not fill up the whole rectangle; consequently, if we know the boun-
dary conditions for o(& , ) only on the sides I,I, and J,J,, the deter-
mination of ¢(§, ) from (3.2) is impossible.

Therefore, in order to secure a unique solution of (3.2) in the whole
rectangle (3.3),-the boundary conditions for ¢(£, ) must be given

1° on the side I,J,, or
2° on the three sides I I, JJy, L/,

since then the characteristic lines cutting these sides cover the whole
rectangle.
In consequence there are two Cauchy problems for equation (3.2)
and they depend upon which of the above-mentioned cases iz admitted.
In the next two sections we shall consider these Cauchy problems.

4. The first boundary problem. The ﬁrst boundary problem may
be formulated as follows:

Find a function o(£, n) satisfying (3.2) in the rectangle (3.3), its
values on the side I,J, (fig. 3) being known.

More precisely: if a function o(#) is defined for —1 < <1 (on
the side I.J,), find a function ¢(&, ) for which

(4.1) o(l,n) =0,(yp) for -1y L

This problem may be solved by known methods (see [7], p. 330),
for example by the method of characteristics.
From computations which we omit here it follows that

(4.2) a(s,n)=f"[¢1(52’7)+f i ( 7 )d’l]
1

111 0Z(A,u) ‘
e an)

We infer from formulas (4.2) that the unknown function ¢(Z, ),
by use of which the stress in the shell is determined, depends on the
function o,(7) defined on the side I,J,. Consequently, we need to know
the , function .o,(y). We shall determine it later (in § 8) from assump-
tions formulated at & suitable time.

P(d, ) =

5. The second boundary problem. The second boundary problem is:
- Find o(&, ) in the rectangle (3.3), its values on the sides I,I,,
JoJl, I,J, being known.
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Therefore
o(§,1) = o0y{§) for § < &1,
(5.1) 0{&, ) =op(n) for —1 <9 <1,
| o(&, —1) = o (&) for & < &< 1.

Since the function ¢(&, ) which we want to find ought to have
confinuous derivatives in the whole rectangle and on its sides, we must
afsume that the given functions o;(&), on(%), om(é) also have con-
tinuous derivatives and satisfy at the vertices I,, J, of the rectangle the
following conditions .of coincidence: :

orr(1) = o1(&o)y, oy (—1) = ol &),

oial) = 20 (8)— (so)—ﬁmo,l),

(5.2)
o (—1) = ‘“ﬁf’in(so)"“’m(fo)-f" o P&, ‘fl)
' 11 0Z (A ’l‘)__ ]
P2, u) = 7 [ on AY (2, p)

We shall now construet the unknown function ¢(§, 7).

At first, let us observe that the projections of the characteristics
8y =g, Fp= —§ of equation (3.2) divide the rectangle I,...J,
into three regions as shown in fig. 3. The characteristics which or1gma,te
in the segment 1,1, fill up region I, those which originate in IJ, fill
up region II, and those which have their initial points on J¢J; fill up
region III. Thus, o;(§) determines the unknown function ¢(£, ) in
region I, oy(#n) in region II, and oy (€) in region IIY, respectively.

The function o(£, ) can now be determined by known methods,
for example by the method of characteristics. From computations which
we omit here (solving (3.2)) for the initial conditions (5.1) we get

-
——al(fl/_)—l—ézf ( , zf)dl in the region I,
‘ &vVn 4
EV: (& 2 & . :
(5.3)  o(£, 7) = (?) ( )+§ f P( )di. in the region II,
o _

§ £y

—-am(fl/r;)-{— ' f ( , A’)d;' in the region IIL.
&Voy
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It follows from formula (5.1) that the unknown function depends
on the functions oy, oy, oy defined on the sides I,I,, IJ,, J,I;,
respectively. These functions will be determined later from the assumptions
concerning the way in which the shell is strengthened with bars running
along its boundary. In order to formulate these assumptions let us first
consider the bars which strengthen the shell.

6. The equations of equilibrium for bars which strengthen the
boundary of the shell. We assume that along the boundary of the shell
there run strengthening bars. We distinguish two kinds of those bars. To
the first kind belong curved bars which lie above the sides Iy/,, I,J, of the
fundamental rectangle and the second kind consists of the straight
bars along the sides Iyl,, JJ; of the fundamental rectangle. In this
section we shall consider the equations of equilibrium of these bars.

6.1. The equations of equilibrium of curved bars. We parametrize
the curved axes of those bars by # (fig. 4). The curved bar which lies

Fig. 4

above the side I,J, will be called shortly the back bar. The equations
of its axis are | '

(6.1) & = 5'71§o, y=y(n), =z==~&fyn]

The bar which lies above the side I,J, will be called shortly the
front bar, The equations of its axis are

(6.2) v=a, y=yln, z={fynl
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We assume that on these bars exterior loads and the forces origin-
ating in the shell are acting. Let the exterior load which acts on the
unit length have the following components in the sytem xyz:

in the back bar: Xo(n), Foln), Zo(n);
in the front bar: X,(n), ¥.i(n), Z.(n).

The forces by which the shell acts on the bars are produced by the
stresses § and T, (and not T,) existing at the points at which the shell
and the bars are joined. Here the shell acts

on the back bar by the stresses S8(&,, 1), T1(&4, 7);
on the front bar by the stresses S(1, ), T,(1, 7).

(6.3)

These stresses must be taken in opposite turns to those in the shell.
We shall now determine the interior forces produced in the cut of
each bar by those loads. We shall decompose these forces into three
components (fig. 5). The first component #(zn) has a direction tangen-
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Fig. 5

tial to the axis of the bar, the second one, 8(7), has the same direction
as the stress S,, i. e. it is directed along the straight line directrix lying
on the shell, while the third component n(%) lies in the plane passing
through the vector s and through the chief-normals to the bar; the direc-
tion of this component is not yet defined and it depends on a certain
funetion »(7) which will be later so determined as to simplify the com-
putations. The projections of the interior force m on the axes of the
system ayz are the following: »n, xny'n, n(vf+y’'). Besides the interior
forces s, t, m, there may occur also moments in the cut of the bar but
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they have no influence on the computations which follow. If in practic-
al computations the necessity of considering those moments arises, one
can do it independently of what follows.
In order to obtain the equations of equilibrium in each of the curved
bars, let us introduce the following notation. For the back bar:
the interior forces s;, £,, 7,;
(6.4) Ao(n) = A(&, 1)y Boln) = B(&o, 1);

vo(n) is the funetion which defines the direction
of the force n,.

For the front bar:
the interior forces s,, t,, ny;

(6.5) Ay(n) = A1, n), Bi(n) = B(Q,n);
v,(n) defines the direction of =,.

Considering the projections of all forces appearing in the bars on
the axes of the system xyz we obtain the following equations of equili-
brium

for the back bar:

d d - B
_(so/Ao)"‘wl—(”o“o)‘{‘BoXo‘l‘%_o‘Tl(&m 7) = 0,

o dn dn A,

d d - '
(6-6) —d—(?/’to/Bo)"!" ”50_(Wy’no)+Bo Yo+ ?/'S(Eo, 7]) = 0,
7 dn
d , T d d , R
"%T("ﬂ/ to/Bo)+ ——(f80/Ag) — =—[(vof + ¥ )0+ BoZo+
n dn dn

+xEony’'S (&, n)+ 1B °T 1oy ) =0

for the front bar:

d d B,
-’1’1‘;1—17—(31/A1)—m1 d?] ("’1’”'1)+B1X1+m1 T 1(1, 7) =0,
(6.7) #"—(y'tI/BIHxi(ny'nl)+31?1—y'8(1 n) =0
dﬂ d?’ 1 ?

d , d d =
"‘d‘;(’?y'tlle) + Td_")_(f'gl/Bl)_ E}"[("’li‘f‘ y')n, ]+ BZ,—

B
— 81, - Lm0, ) — 0.

1
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6.2. The equations of equilibrium of straight bars. On the axes
of those bars we take the parameter £ The bar lying on the side I,I,
- will be called shortly the right bar, and that which hes on the side JJ;
will be called the left bar.

We assume that on these bars known exterior loads and also for-
ces produced by the shell are acting. Let us denote the components of
the exterior load in the coordinate system ayz as follows: .

) X,(&), Y,(8), Zy(§) in the right bar;
(6.8
X3(&), Y4(8), Zy(£) in the left bar.

The forces produced by the shell and acting on the straight bars
originate in the stresses T, and 8 (fig. 5) which act at those points at
which the shell is joined with the bars. Hence the shell acts :

on the right bar by the stresses §(£,1), T,(£,1);
on the left bar by the stresses S(&, —1), T,(&, —1).

Those stresses and the exterior loads produce interior forees in the
cross-section of the bar. We decompose those forces into three compo-
nents (fig. 5). The first component #(£) acts in the direction of the bar
axis, the second component s(£) has the same direction as the stress
S,, while the third component n acts in the direction of the z-axis but
in the opposite turn.

The moments which may also occur in the cross-section are not
regarded for the same reasons as for the curved bars. :

Let us denote the components of the interior forces which act in the
cross-section of the right bar by s,(&), £:(£), »,(&) and of these which
act in the left bar by s,4(£), (&), ng(£).

Projecting all forces appearing in those bars we get the following
equations of equilibrium:

for a right bar:

a -
_Zl—f— (L) + 2, [X,—8(§,1)]= 0,

- a - (1
(6.9 v () /B Do [Fa= 2 26, 1] =0,
d d = 1
o ()5 /B DI o )+ a1 [Za— 220 76, 1)] =0
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for a left bar:

"d_ (t3)+w1[2—(3+ S(&¢, —1)]. =0,

dé
d - (—1
(6.10) y'(——l)mﬁ__— [s4/B(&, —1)]+m1[Ya+§y(5(—_)l) T.(§, —1)] =0,
xy'(—1)

' (—1) - [sy/B(E, —1)]— T2 4 4 Ty(&, —1)—Z,| = 0.
: o |

B(¢, —1)

7. The conditions of coincidence on the boundary of the shell and
in the strengthening bars. We now make certain assumptions about the
nature of the connexion between the stresses in the shell and the interior
forces in the bars, as mentioned in the introduction. Namely, we assume
that the interior force t in the bar is proportional to the stress T, and
the interior force s in the bar is proportional to the stress S,, stresses
T, and S, actibg at the point at which the bar and the shell are joined.
More exactly, in the back bar we assume

(7.1) to = bo(n)Ta(&oy 1)y, 80 = @o(n)8(&sy 1),
and in the front bar ’
(7.2) ty = bi(n)Te(L; 1), 81 = a:(n)8(1, n),

where aq(7), bo(n), a,(n), by(n) are certain functions defined along the
bar. They have the following statical interpretation.

Let us first consider the connections between interior forces ¢ in
the bar and the stresses T, in the shell (see fig. 4). Let & denote the
thickness of the shell and the area A of that cross-section of the bar in
which the interior force t acts. For the cross-gection of the bar given
in §6 the area A4 depends on the parameter 7z along the bar. Now,
since & is small we assume that in every section of the shell which has
the length 1 and the thickness & there acts a stress 7,/d (expressed
in kG /m?).

Similarly, since the area A is small we suppose that in the section
4 there exists a stress equal to /4 (in kG/m?). Our assumption means
that the stresses 7,/6 and ¢/4 are equal, i.e. t = AT,/d. Hence the
coefficient b, is equal to 4,/8, and the coefficient b, to A,/d, where A,
and 4, denote the areas of the sections of the back and of the front bar,
respectively.

Let us now consider the connections between the interior forces
¢ in the bar and the stresses § in the shell (see fig. 4). We suppose
that the stress /6 (expressed in kG/m?) in the shell is equal to the ave-



224 - ~ B. Lysik

rage shearing stress s/A4 in the section of the bar. (By the way, we are
not concerned with the decomposition of the shearing stresses in the
section of the bar, but only with the average stress. In the statieal com-
putation of the bar one can also consider that decomposition but for
our aim it is unnecessary.) Hence we obtain an analogous statical inter-
pretation of the functions @,(7), @.(n). |

Since we are considering the momentless theory of shells in which
no normal stresses exist, we make no assumptions about the interior
normal forces m in the bar. Consequently, the normal forces » in the
bar must always be such as follows from the equations of equilibrium.

The assumptions about the connections between the stresses in
the shell and the interior forces in the straight bars are similar to those
suppositions which were made for curved bars. Namely, we now suppose
that the interior force ¢ in the bar is proportional to the stress T, and
the interior force s in the bar is proportional to the stress S;, stresses
T, and 8, acting at the point at which the bar and the shell are joined
‘(see fig. 5). This means that along the left bar we assume

(7.3) ty = by(E)T1(&,1), 8, = ay(£)8(5, 1),
and in the right bar
(7.4) ts = bs(&)T1 (&, —1), 85 = az(§)8(§, —1).

Here ay(&), a3(&), ba(&), by(&) are certain functions of the parameter
3 a.l()n@ the bar.

8, Determination of stresses in the shell by solution of the first
boundary problem. The solving of the system of equations of equi-
librium was reduced above (in §3) to the solution of (3.2), where the
unknown function is (£, 5). For that equation two boundary problems
have been considered and solved. In order to find the stress in the shell
we shall apply here solution (4.2) of the first boundary problem for
(3.2). The stress in the ghell for this problem, as follows from formulas
(4.2), (3.1), (2.4), depends on two functions of one variable: on the function
0,(n) defined on the side I,J; of the fundamental rectangle, and on an
arbitrary function -z(7) which appears in the first of formulas (2.4).

In order to simplify the computations let us take in (2.4) the inte-
gral between the boundaries 1 and & Then on the side I;J, of the fun-
damental rectangle the stress T, does not depend on 8 and X but only
on an arbitrary function of the pa.ra.meter n, which we now denote by

T1(n):

A o8
(8.1) T,(§, 1) = —-—[ ( + — X) a&-+ n(ﬂ)]
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Hence the stress-system depends on two functions, ¢,(n) and 7,(%),
given on the side I,J, or, in other words, on the stresses §, T, and T,
which appear on the front boundary of the shell, since the stresses on
this boundary can be expressed by those functions, as follows:

1 A
8(1, n) = %(,—m, T,(1,n) = —?1 7,(7n),
(8.2)
1, ) = B, [2 zZ( ]
T.(1, n) = — v A, ?70'1(97)+ a,n)

In order to solve our problem completely, we must know the fun-
ctions o,(n) and 7,(%) (as remarked in § 4). We determine those fun-
ctions from the assumptions about the way in which the shell is joined
with the front bar, namely, from the connections obtained in § 6 and
§ 7. Substituting in (6.7) the stresses S(1, %), T:1(1, %), Ts(1, ) from
(8.2) and using the conditions of coincidence (7.2), we obtain the
following system of differential equations (where oi(7), 7,(n) and n,(n)
are the unknown funections):

d [ a0 a _
wld_r](y—'lffl—) _mlﬂ (vy1y) 2,7, +B X, = 0,

| d [ b d -
(8.3) [ (2770'1+ Z)] + w—[ny'ny]— 01+ B, Y, =0,
dn A,y dn

_d_ nbl ( )] (a'lfdl) i ’
—% n [A 2770'1+ Z gf— v A, dn (v f+y)n ]+
+fv,— unoy+ B Zy = 0.

We introduce the following notation:

@y e b,
ay == Is f1 = A !
(8.4) ) ‘ '

1/[ aipiZ )’ B.Z 2 ( /313121' )' B,Z, :

= — -+ SRR —_
¢ (2/31"‘ 21 %#n(28,— a,) 2B,—ay %7 (28— ;) +

77/31B1?1)' 31Y1 2 [ /31fB1X1 ]' fBIXI
2 .
* (2‘31"‘ 01 + 2B, —ay N (21— ay) * @y % (20, —aq)

Zastosowania Matematyki IV 15
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Eliminating from equations (8.3) the functions o, and 7, we
obtain an equation of the second order where the unknown function
ig ny:

281m(1++"y") &

B5) T s )+ |
29 [ B1(1+ #*y )] 1—|— #* 4[31—0!1)77 2ﬂlv1n2} d |
* { % £2,81 —ay * 2ﬁ¥— ay) + 28, —a,) dy (9'm) +
: Ban Y ( 11 .)I %#(28y—a)+n ] ' N —
+ l2my (251_’&1) +2n 28, —a, + - 26— a n1y'nm+9Q =0.

- We shall reduce this equation to an equation of the first order. For
this aim we shall take a suitable definition of the funection »,(#) whieh
was introduced in § 6 (formula 6.5) and which determines the direction
of the component n, of the interior force in the front bar. Namely we
choose v, as follows:

__4:31—‘0‘1—1 28— ay (1+ ”2772)'_ 26, (1+ "2772)

(8.6)  nln) = 1— 28, * .  \28{—a, xn(1—28,)

After substituting in (8.5) the above value of » (%) we are able to
reduce this equation by 1ntegrat1ons to an equation of the first order.
Solving this equation of the first order we get

ff’?Qd"H‘ 1

2
8.7 y'n, = eXpwdn+02],

where

— # (2P —ay)y | 1—28 2,3;_]
w_Hf[zﬁl(l“'zﬂl)(l*%znz)_i‘_ B 125,17

and ¢,, ¢, are constants. of integration. These constants will be determi-
ned from the boundary conditions for the front bar.

The unknown functions o,(n) and z,(5) can be expressed by the
function »,, which is defined by (8.7). Namely

(1—251)(14-%2172)]- .
2 Ay
2"51@51““1)’7 N ;
BZ,—$Z | BT, B.X,

xn (28, — a;) a;—2p; &%1 (ay—26,) ’

1 A
o1(n) = [%“f“ +2‘B—n§‘(f77qd77+01) +

(8.8) i
7,(n) = ‘&; (viMy— 0104 [y} — B1X1/m1
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Substituting the obtained o¢; and 7, into formulas (8.1), (4.2), (3.1),
(2.4) we obtain the functions S(&, n), T,(&, n), Ts(&, n) describing the
stress in the shell for a given exterior load acting on it and for arbitrary
elagtic boundary conditions along the front bar.

If we assume that the shell is free along its front boundary, then
we assume ‘ _

(8.9) 6, =0, 7, =0.

This also follows from equations (8.3) if we substitute in them

oy =p=n=X=Y,=2,=0.

In the engineering practice one often deals with bars which give
no resistance in a certain direction. Let us now consider the case of a bar
which gives way in the direction of T,. It is also possible to describe
that case by formulas (8.8), (8.7), but it involves great difficulties in
computations since the function a; which occurs in them is expressed
by unknown functions #;; therefore we choose & different way to this aim.

From the assumption that no forces are passed through the bar
produced by the shell in the direction of T, it follows that T'(1, n)
= —A,7,/B; =0,i.e. 7, =0, We also suppose that X,; = 0. Then
the first equation of the system (8.2) implies a; = »9'n,[o,. Eliminating
from the other two equations a, and n, and substituting

(8. 10) oi(n) = 4" (n),
we obtain a differential equation of the second order for the unknown
function %(n):

(8.11) 2B (1 +w*n?) "+ (1+22?) w' — wPnPu. = ¢,
where ‘
L i 2.3 e 7
¢ = —2@+g)Z(1, )+ [ B Vidntun [ BuZydntor.
If we put
1 2002
(8.12) pr = T where 1 = const,

4(1+4w2?)
then equation (8.11) can be solved by integrations, namely

(8.13) u(n) —_ nl—2/ﬂ(2+ %2 1[1[ ffqdn (l_l_ %2 )-—1 1A 2/:1 2(117"!"0]

The constants of integration can be determined from the boundary
conditions of the front bar.

From formulas (8.10) and (8.13) obtained here it follows thut the
stress in the shell, when determined by applying the first boundary pro-
blem, depends on the way in which the front boundary is fastened. The
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way of supporting the shell along its remaining sides has no influence
on the stress in the shell but it must be such as to ensure that the supports
will . stand the stress from the shell. In the next section we shall cont
sider a problem in which the back, right and left sides have the decisive
influence on the stress..

9. The determination of stresses in the shell by solution of the sec-
ond boundary problem. In order to find the stress in the shell we shall
apply here solution (5.3) of the second boundary problem for equation
(3.2). Now the stress in the shell depends on four functions of one variable,
namely on o;(§), o(7n), orp(€), which are defined on the sides I,I,,
I,J,, J,J; of the fundamental rectangle respectively (see figs 1 and 3)
and on the function (%), which appears in formula (2.4). ‘

Ag in § 8 (see formula 8.1) we substitute in (2.4) for the undefi-
ned integral an integral between certain limits &, and & Then on the
side I,J, of the fundamental rectangle the stress 7, does not depend
on § and-X but only on an arbitrary function of the parameter » which
will be denoted by z,(#):

R AT —i[f(ﬁJr — x)ae+ w(n)]
on &y

Thus, the stress in the shell depends on two functions, o () and
7o(7) defined on the side I,J,, on the function o (&) defined on the
side I,I, and on the function oy (&) defined on the side JyJ,. In other
words, the stress in the shell depends on the stress given on the back,
left and right boundaries; since the stress on those boundaries can be
expressed by the above-mentioned functions, namely :

1° on the back boundary

o | A
8(507 77)'= GII(,n) ’ T1(§07 77) = '_ffo(ﬂ)a
(9.2) y 0

B, 1
T5(&, "7) = 5 A, [2770'11( .H’;Z]§
. oY .

2° on the right boundary

_ ox(8) B, 1)[. ]
S(6,1) = 2y Tald, 1) = — -l | 2enld)+ "z

&1

)
&
y'(1)+2y" (1)
2y (1)B(E, 1) [5"‘_ y'(1) Eof"ldf_

(1) 7(1 ) 001(50):'

(9.3)
TI(E, 1) =
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3% on the left boundary

1y oyr($) T B(§, "1)[ i ]
8(5, 1) = = L, (e 1) = — =S 2ot 2|
(9.4) )
Tt~ = ~ g )
¢ &
| 3y'(—1)—2y" (—1) .
x[fam— ) Eof Gdesof §P(&, —1)dE+

—1)

fXd§+2?! 1)7e(—1)— 00'1(5)]

Hence we shall determine the functions oy and 7, as in § 8, from
the way in which the shell is fastened along its back boundary and the
functions op(£) and oyg(£) from the way in 'Whlch the shell is fastened
along its left and right boundaries.
| Let us first consider the back boundary. We suppose that this boun-
dary is strengthened by a bar. Then, substituting in (6.6) the stresses
8(&0s n)y T1(&0y m)y Ta(&p, m), from formulas (9.2) and using the con-
ditions of coincidence (7.1), we obtain the following system of differen-
tial equations with the unknown functions or (%), To(n), Ne(n):

2 — d (%O'II)_
Yy

d T
dn 1= (¥oTo) +21 70+ Bo Xy = 0,

T

1 d\fbd,
(9'5) - _'_"[ (277611"'_ Z)] +%§0 (”y no)"‘o'n"l‘B Y = O

& dnlLd,
il j— 7o ( 1 )] i(“ojo'n) LY
__g P [Ao 2nog+ ” Z+ an ——y’Ao an [(vef+¥')no]+

+ ”EonGll‘l‘fTo‘i"BoZo = _0-

‘Let us now introduce the following notation:

a b
Go = ':117 ﬁo
(9.6) ° = _ B
0, 1 ( aofo )’__ BoZ 2 (ﬁoBozo ) BZ, 4
© T mE, \280—asl  xn(2Be—ay)  %E \2Be—ay] | xn(266— o)
ﬂBo?o )’ | EoBo?o 2 ( f'BuX-o ), fBoXo

2 — B, Y — .

* (2;30— oy T o \280—as]  #@un(2Bo—a0)
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Eliminating from equation (9.5) o (n) and 74(%) we obtain an
equation of the second order for the function n,:

2Bon(14-#"&") A2
B0 ) AT
{ [ﬁo 1+”§ ]+2%§oﬁo7’,‘2 4 28ven® . 1+"2§20’72
%&y _ao 280—ao o(2B0— ay) #(2f0— ay)

+

a
+”50"72} —(y'n)+
an

Bon )' _( Bomve ) . %E§h+vm] ’ _
+[2%§0n(2‘30_a0 * 26— ag T 2/30"% Yot 1o = 0.

As in § 8 we choose for the still undetermined function »,(7), intro-
duced in §6 (formula (6.4)), the following one:

o—dot by o 2P0 ao(1+x252 ) 26, (1 + &)
EF28 T wn \ 2P—a %1 (£o+2.)
Equation (9.7) can then be reduced by integration to a differen-

tial equation of the first order which is easy to solve. After some cal-
culations we get

(9.8) wo(n) = —

(9.9)  ¥'no(yn) =

where

2B0— a4 [ %€, f’?QodW+01
*ﬂj‘z‘?’zeXP( — ) f ﬂo??

4,4 & ® ‘50(2/30 — ) 7 ]
= - 0 2 2 d y
o= [ Bt 2807 Bha(Eut 280) (L 2 |

and ¢, ¢, are constants of integration.
The unknown functions o;(n) and z4(%) are expressed by n, a8 fol-
lows:

expwdn+ 02],

e '(so+2ﬂo><1+xzsﬁn2)] :
(9.10) UI'[(77) = [%50"— 2ﬁ0%(2ﬂ0—-_a0) /)72 n()_]— 2‘80 (anodW+cl) +
L BOZO _ ﬁOZ . §0B0Y0 _ jBOXO
w0 (2Bo— o) #m(2Bo— o)  2Bo—ae %% (20— ag)n
4 (a0 ) B, X,
To(’?)— dﬂ( ?/' Volo) + 2, .

If we supposéd that the back bar did not carry the stresses T', from
the shell, i. e. that 7, = 0, then. it would be necessary to solve system
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(9.5) by a different method. Namely let us eliminate o, and n, from
the system (9.5), assuming moreover that X, = 0. After computations
and by substituting

(9.11) | an(n) = w” (n)

we obtain a differential equation of the second order where the unknown
funetion is u(%):

(9.12)  2Bn(L+ RE P " —E (L4 RER) U + P Emu = g,

where
. Bo 253 2 2 7 ¥ g
o = _“;(1‘*‘” Son )2 (&g, ’7)+”§0’7f30 odn+ EofBoyodﬁ‘f'cl-
If we set
12
(9.13) % o £y, where A1 = const,

bo = T8
then equation (9.2) can be solved. Namely
1422

(9.14) u(n) = a 716252772)1”' [ff qodn»(1_%253n2)1/1—117—2—2/1dn+02].
— X% %o

The method of determining the constants ¢,, ¢, will be shown at
the end of the section.

Let us now consider the determination of o;(£) and o (&). These
functions, as already mentioned, will be determined from the way in
which the shell is fastened along its right and left boundaries. We shall
consider in detail only the computation of ¢;(&) which is defined on
the right boundary, since the method of computing op;(§) is similar.
Before calculating the ¢; and oy let us remark that on straight boun-
daries we have to determine only one funection (¢; or o) on each boun-
dary and not two, as along the back and front boundaries. This implies
certain restrictions in the way in which the shell is fastened along the
straight boundaries. '

Let us suppose, as in § 6, that the shell is strengthened along the
straight boundaries by bars. The unique determination of the functions
or and oy is not possible if we do not make some new assumptions.
These assumptions can be of two kinds. Namely we can suppose that
the bars are so constructed that they carry each stress T, which acts
along the straight boundaries or that they carry each stress § acting
along these boundaries (see fig. 6). We shall now consider the case when
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the first of these assumptions holds. In this case we shall calculate the

function o; from the first equation of system (6.9), since the other equa-

tion holds by definition. Substituting in the first equation of system

(6.9) (&) from the conditions of coincidence (formula (7.3)) and using
formula (9.3) we get

: &
d b, 3y’ (1)+2y" (1) '
(9.15) d_s{B(s, 7 [501— e Eofalds_

r E |
2y’ (1) fXd£+cl]} Fop—2y" ()X, = O.
&y &

3
— f EP(&,1)dE+
o

Fig. 6

Integrating boﬁh sides of this equation we obtain a differential

¢
equation of the first order which is linear in the unknown function [ oydé.

. &
Solving the last equation we geb
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&
(9.16) f"ldf — plerm+wr) e exp (—ZI—Z—SE) y
2

&o . : o
4 &
Yy (1)( g Be ) ]
X dé—— | Xd 1
Bs E-! : & Eof Il e

3
X {f[f §3P( ’
x & @MW) gxy (2 f ae )dE-l- Cz},

o
B¢
where 8, = by[B(&, 1).
In a similar way we calculate op;. Namely
§

(9.17) f odé = EEVEDHIEN)VE ”exp( 2 f )

2 (— & 3
U[ : UX?"“*— fde)—EOfwa,—l)dHcl]x

w &= D=2 (D)WY oy (2 f as ) d§+02}_
Bsé

333

Assuming that the bar carries each stress § which acts along the
right boundary, we calculate o; from the second equation of system
(6.9). The first equation holds by definition. Substituting s, from the
condition of coincidence (7.3) 1n the second equation (6.9), we obtain

from (9.3),

do 2 . 1 Ly
9.18 T = at | o — c Z— =Y,
( ) Oy df [a2+ y;(l)g] 01 %yl(l)f Z yl(l) Y27

where a, = a,/B(&,1). Solﬁ'ng this equation we get

1 [ 2 rd
(9.19)  oy(8) = —a—exp(—mf—%—i)x

x[————-—l ( Z+x,Y )ex( d&—l—]
(@) J Vg © O8] ORR (1)fazs I

In a similar way we calculate oy :

1 2 dé
(9.20) am(s)—aaep( v (— )fa§)

X[y*(l )f(xlgz nY )BXP( 1>faas)d§+“"]'
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If we assume that the bar does not carry any stresses T, produced
by the shell, then both functions will be found from equation (9.18) where
we substitute ¢ = ¥, = 0. Namely

o Z(E,1
(9.21) op(é) = —-—5;—),
and in the case of the left bar
Z(&, —1)
o () :T-

Hence, the stress in the shell, when determined by the sccond boun-
dary problem, depends on the way in which the back, right and left
boundaries are fastened. The constants of integration will be determi-
ned by the boundary conditions of the bars strengthening those bounda-
ries and by the conditions of coincidence (5.2) which must be. satisfied
by the functions o(&), og(7), ogr(é) in order to obtain the continuity
of the stresses 8, T;, T, and of their derivatives in the whole rectangle
I, J o], .

10. Examples. Let us here consider two cases of application of
conoidal shells. They are for rooflng and for building dam walls (see [6],
p. 202).

In the first case we shall restrict ourselves to shells which carry
only a perpendicular exterior load such that on the unit area of: the pro-
jection a constant force acts. We also suppose here that the stress depends
on the boundary conditions along the front arc of the shell. In the second
case we shall assume that the shell carries an exterior load acting in the
direction of the # — axis (fig. 1) such that on the unit area of the pro-
jection a constant force acts and, moreover, that also a hydrostatic pres-
sure, constant on a .unit projection of the area, acts on the shell. In
this case we shall assume that the stress depends on the boundary con-
ditions given along the right and left boundaries and along the back
arc. : o LT
" In these examples we shall confine ourselves to a conoidal surface
with a parabolical directrix (see (1.1)). Let this parabola be -

(10.1) Z = hy(1—9y*/k).
Hence the variables, &, 5 introduced in §1, are defined by

(10.2) E=afm, n=ylk; y =k
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The coefficients of the metric form can be expressed as follows by
the coordinates & and #: :

A(E, n) = VEFRE(A—17), B(E, 1) = kV1E (xkn),
O(&, n) = bV (@x&n)+ A — )P » = —2h [k

According to what has been sald above, we consider two kinds of exte-
rior loads:

(10.3)

(10.4) X=0, Y=0, Z = const,
X =R+ h;f (E—&)(L—72), ¥ = up(E—E))én,
(10.5)
= —y{§—&)— th-(l—nz), R = const.

1

Qalculating the stresses in the shell we shall make use, in the first
case, of the solution of the first boundary problem, and in the second
case — of the solution of the second one (see §§ 8 and 9).

In view of the symmetry of the exterior loads as well as of the boun-
dary conditions here assumed we shall compute the stress in one half
of the shell only.

ExAMPLE 1. Substituting the given exterior load (10.4) in formulas
(4.2) and (2.4) we get

2

‘ £ 2 B 2 1
S(E,n)=761(5 n), Ty(&,n) = —71*'251761(5 n)+—§Z y
(10.6) ~ , #e o

A B
I, (¢, n) RBU 5461(5277)0154-7”1( )]

The funcfions oy(n) “and 7:(n) are determmed from the conditions
on the front arc (see § 8).

Let us assume that the supports I,, J;-(fig. 1) of the front bar are
flexible without possibility of translation, and that this bar is under
an exterior vertical load, constant on the unit projection of the arc.
Thus (see 6.3)

(10.7) . X, =0, 7,= 0, ZIB1 = const.

The area of the section of that bar will be denoted, as in § 7, by
A,. The area A, depends on 7. We assume here that the stresses in
the shell and in the bar are equal along the front boundaries, i.e. b,
= A,]8, a; = A,/d.
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We introduce the following notation: let AF denote the area of
the normal section of the front bar (fig. 7). Let ¢ be the angle between
the sections A, and Aj. This angle is a
function of % and besides we have ¢(0)
=@(1) =0. It is Ay = A,cosp. Formula
(8.4) implies o, = a,/4,, p, =b;/A, and
thus a; = f; = 4,/04, = 4. Hence A
= 2, 0AV1+(hy o) (1 — %)% cosp. This for-
mula can be written with an error which
does not exceed }4:/z% as follows:

(10.8) 47 = x,0A.

In this formula A is a parameter. We
shall obtain the stress in the shell while
the exterior load acting on it is (10.4) and the loads acting on the front
bar are (10.7), by a superposition of the stresses which are produced by
the load (10.4) and by the load (10.7). :

Substituting in formula (8.7) and (8.8) the load acting on the front
bar X, = ¥, = Z, = 0 and the exterior load acting on the shell from
formula (10.4), and putting A = 3/8 in formula (10.8), we get

ou(n) _ —0,175-+ 0,055
Z (1+%2172)2

X,
10.9
(10-9) kry(n) 0,947 —1,527: " — 0,438 n*
z (1 o)

We have determined the constants of integration e,,e¢, from the con-

dition ¢,(0) = 0. .
Substituting in formulas (8.7) and (8.8) X =Y =2 =0 for

the exterior load acting on the shell and the values given by (10.7) for
the exterior load acting on the bar, and putting 1 = 3/8, we get

*®.

ou(n) _ 0,175—0,05:"y" 8

B,Z, (1+ ”2972)2 3 i
(10.10) - ‘4
kt,(n) —0,9474-1,627%"n" 4 0,438y 8
— — c— X.
B\Z, (14 2" 7")” 3

We determine the constants of integration ¢, ¢, also from the con-
dition ¢,(0) = 0.

We obtain the sfress-system which is produced by the exterior load
acting on the shell by substituting o,(n) and 7,(n) from formula (10.9)
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into formula (10.6). The stresses which are produced by the exterior
load acting on the front bar can be obtained by substituting o,(7) and
7i(n) from formula (10.10) into formulas (10.6)..

ExaMpLE 2. In this example we accept the extriror load acting
on the shell given by formula (10.5). We shall apply here the solution
of the second boundary problem. Substituting the known exterior load
(10.5) in formulas (5.3) and (2.4), we get

1 kR 3 -
;GI(EVZHZ;( ———)n+ :}i [26n(Vy—1)+£&Vn (1—n)]
kS(&,n) = in region I,
B G T
\ 3611 £ +7 ) 1 & ot (E—&) | in region 11,
(10.11)
__ B[248(5,m) R ]
e, = [ 2B - e
T(E, ) = —— f 1 ag 4 (- 80+ 520~ E— EP )]

- 'We shall compute the functions oy(&), op(n), 7o(%) from the
boundary conditions on the back arc and on the right boundary (see § 9).
We suppose that the supports I,,J, of the back bar are flexible
with possibility of translation and that there is a force acting on this
bar in the direction of the &-axis: :

(10.12) B,X, = const, TY,=0, Z,=0,

and also two concentrated forces which act at the points I,,J, and
have the direction of the x-axis. We suppose, moreover, that the last
two forces have opposite senses and equal absolute values.

We also assume that the back bar does not carry either the stresses

T, produced by the shell or any loads in the direction of the z-axis,
i. e. that -

B, t -
_A Tl(fo; n) = To(’]) = B,X,.
0 .

As in the first exa,nciple, we agsume that the stresses in the shell and
in the bar are equal along the back boundary, i.e. b, = 4,/8, a, = 0,
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where 4, denotes, as in § 7, the area of the section of the back bar. Let
us denote by A, the area of the normal section of the bar and by ¢ the
angle between sections A, and 4;. Hence Ay = A,cosp. We have
agsumed in formulas (9.11) and (9.14), from which o (%) will be compu-
ted, that

A— %25(2,772
Bo = 22 32
, 4(1+%&7)
(see (9.13)). Hence
A— e 4,

%0 41+ 2E4 64,

and consequently

. @b A—iE l/ (h) 22
A5 = . 1 —) (1— 08 .
0T T 1t 28y gy L) cose

This formula for 4 = 1 can be expressed as follows:

(10.13) Ay = ﬁ’i.
4
Let us now consider the right boundary. We suppose that this boun-
dary is strengthened by a bar which carries each stress § produced by
the shell (see § 9). Let us denote the area of the-normal section of this.
bar by A4,(£). Assuming that the stresses in the bar and those in the
shell are equal along the boundary, we have a, = 4,(£)/6. From for-

mula (9.18) it follows that ay = A,/6kV14 »*£, which implies
(10.14) , Ay = a0k V14 £*&%.

We suppose that a, = const. Furthermore, we assume that the
loads acting on the bar are Y, = 0, X, and Z, being arbitrary. If the
exterior loads acting on it are expressed by (10.5), those which act on
the back bar are expressed by (10.12), and a concentrated force H
acts on I,, we get the stresses in the shell by superposition of the stres-
ses which are produced by loads (10.5), where y = 0, with the stres-
ses produced by load (10.12) and the concentrated force H.

Substituting in formulas (9.1%) and (9.14) the load (10.5), where
y = 0 and the load acting on the back bar is X, =Y, =2, = 0, we
obtain the function oy (#%), and substituting the load (10.5), where y = 0
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and Y, = 0, in formulas (9.19) and assuming that a, = const, we obtain
o7 (). Namely

1 .
— (5—44"E) +3 (e, + &) +

' REk
(10.15) o) = — o {3

8,

+[20+ 378+ 20;;25302‘4- 10 Ede, 10 —
2
—18x*&3 7yt + 3+ X E3)(3+ 10" E5n") nln n} 7,

RE&ke,

E—2/k02 .
8z,

o1(&) =

We shall determine the constants e¢,, ¢, ¢, from the conditions of
supporting the baeck bar and from the conditions of coincidence (5.2)
(see §9). From the assumption that the supports of the back bar are
flexible with the possibility of translation it follows that the component
on the x-axis of the resultant of the interior force in the bar vanishes
at the point of supporting. This and tne second equation (9.5) imply
[f oy(n)dyl,-,+const =0. Hence wo can find the constants e,
¢;, ¢, by solving the system of equations

3 10 3,20 . 1
(5 =)ot (5 + 5o — § o8-,
- 1
— & R0+ (3 +10478)) o’ i0, + (34 2047 E7) 6 = — 3 (65 —49%° &),

(,1+ k—t) £ 2 01 (33052 £2) Wi Eley -+ 3 (14 205282 o,

1 4
= — — (191 —221x* &) — —.
3.( ”50) E

‘ 0

The stresses 8, T,,: T, are now produced by the exterior load acting
on the shell (10.5) where ¥ = 0, i. e. by a load acfing in the direction
of the §-axis and such that on the unit area of projection a._éonstan,t.
force acts. We shall obtain thése stresses by substituting o (7)
and oy(£) from formulas (10.15) and y =0, 7, =0 in formulas
(10.11). _ - N S

After substituting inh formulas (9.11) and (9.14) the load (10.5),
where R = 0, and the load acting on the back bar X = Y,==Z, =0,
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we obtain the functions oy (7) and after substituting that load and ¥, = 0
in formula (9.19), we obtain the functions ¢;(£). Namely

oxe() = [6(26 8, +605) -+ (12680, + 200,) 8] -,
(10.16)

_r [ 28 —2/ka
O'I('E) - %5 (2—{_]‘:a2 50‘{“005 2).

We shall determine the constants from the system of equations

(P8 + 3008 —1) 0+ (3+ 548 e, = 0,

— &y MR e L 22 B (1465780 ¢+ 2(3+10%°E0) ¢, = — kagko
. : 2+ ka,
(1+ —1——) 5t 0y + 2R B (14 188 0,+ 6 (14 10478, = — o g
kg 24 ka,

We obtain the stresses 8, 7'y, T, which are produced by the hydro-
static load acting on the shell by substituting oy (%) and o7(§) from for-
mulas (10.16) and R = 0, 7, = 0 in formulas (10.11).

Substituting the load acting on the back bar (10.12) in formulas
(9.11) and (9.14) and the load acting on the shell X =Y =2 =10
and ¥, = 0 in formula (9.19), we get

_ 1 |
o (n) = hyByZy [2(302+ 3x"Eger+ g) +2 (14 10¢,+ 842 &50,) #* £y +

(10.17) + 4t Eint+ % (3+14+*85 7" ) In n] 7,

or(§) = hyBo Xy 0o& 7*2,

We shall determine the constants from the system of equations:

2
(3528 +4x* 8y —1) 0, + (3+ B85 e = 37

— &5 kazg 4 (84 8x782) 252 E 00y + 2(3+ 1047EL) 0y = _g s
(1+ kl )5"_ *Mhoagy 622 65 (148 £) 0116 (L+-104°85) 6y = —'1341 N 1—24 28,
%9

We obtain the stresses 8, T, T, which are produced by the load
of the back bar (10.12), by substitutin_g oz(n) and oy(§) from formu-
las (10.17), B =y = 0 and 7,(n) = ByX, in formulas (10.11).
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Substituting X =Y =Z=X,=Y,=%2,=7Y,=0 in formulas
(9.11), (9.14) and (9.19) we get

(10.18) or(n) = Blext o' fyer) 14 20(e, - mboer) &’
. o (€) = ¢ g 2kaz :

We shall determine the constants ¢,, ¢;, ¢, from the system of equa-
tions ‘
(858 +Dx*Ey—1) e, - (3+ B El) e, = H,

— £ 20, 4- 20 £ (3 +- 10, £5) 6,4 2 (3 + 1048 6, = 0,
1
(1+ ‘k‘a‘) &R0y 6,28 (14 10572 6, 4 6 (14 10+2E) ¢, = 0.
2

We obtain the stresses S, T,, T,, produced by the concentrated
force H, substituting oy and o; from formulas (10.18), R =0, y = 0,
7o = 0 in formulas (10.11).

References

[1]1 M. Fauconnier, Essais de rupture d’une voille mince conoide en beton armé,
Génie civil 1 (1933), p. 533.

[2] K. Hruban, O nékterych movych druich tenkych kleneb, Technicky obzor
12, 13 (1942).

[3] Z. Leéniak, Obliczanie ¢ projektowanie cienkoéciennych sklepiet wichro-
walych, Inzynieria i Budownictwe 11 (1952).

(4] H. Neuber, Allgemeine Schalentheorie, Zeitschr. f. angew. Math. u. Mech.
29 (1949), p. 97. ‘

[6] D. Rudiger, Dehnungsspannungen und Verschiebungen der Konoidschalen,
Oesterreichisches Ingenieur-Archiv IX (1) (1955), p. 38.

[6] A. Jilek, Specjdlni Zelezobetonove Konstrukcé, Praha 1951.

[7]1 E. Kamke, Differentialgleichungen reeller Funktionen, Leipzig 1956.

[8] M. Soare, Die Membrantheorie der Konoidschalen, Der Bauingenieur 33 (7)
(1958), p. 256-265.

[9] W. Fligge, Statik und Dynamik der Schalen, 1957, p. 127-131.

Praca wplynela 10. 4, 1958

B. LYSIK (Wroelaw)

OBLICZANIE STATYCZNE POWLOK KONOIDALNYCH

STRESZCZENIE

Konoida jest powierzchnia utworzona przez prosta poruszajaca sie réwno-
legle do ustalonej plaszezyzny po dwdch krzywych, lezacych w plaszezyznach pro-
stopadlyech do tej plaszezyzny (rys. 1). W pracach omawiajacyeh obliczenia sta-

Zastosowania Matematyki IV 16
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‘tyezne powloki konoidalnej (zob. np. [2], [3], [8], [9]) nie uwzglednia sie warun-
k6w brzegowych, ale przewainie daje sie jedynie jakie§ rozwigzanie szczegélne
réwnah rézniczkowych, ktérym ezynia zadodé napiecia w powloce.

Celem niniejszej pracy jest przedstawienie metody matematycznej, stuiacej
do obliczania statycznego powloki konoidalnej przy danych jej obcigZeniach zewnetrz-
nyeh oraz warunkach brzegowych sprezystych i geometrycznych.

Metoda ta opiera si¢ na nastepujacych zalozeniach.

1. Przyjmujemy, ze w przekroju normalnym powloki panuja napiecia, kté-
rych wypadkowa lezy w plaszczyzme stycznej do powloki, a nie ma napieéd normal-
nych ani momentéw.

2. Powloka jest na brzegach swoich usztywniona pretami, w ktérych moga
wystepowaé momenty. Zakladamy, Ze napigcia w powloce sa W pewien sposéb (ktéry
oméwimy poéZniej) zwiazane z odpowiednimi silami wewnetrznymi w. pretach.

Zagadnienie, ktére rozwiazujemy w tej pracy, polega na tym, by przy tych
zatozeniach otrzymaé rozkiad napieé w powloce i w pretach, wywolany danym obcig-
zeniem zewnetrznym. .

Rozwiazanie uktadu réwnan rownowagl powloki konoidalnej (zob. (2.3)) o nie-
wiadomych napleclach 8,T,, T, (rys. 2), sprowadza sie do rozwiazania réwnania
rézniczkowego o pochodnych czastkowych pierwszego rzedu o niewiadomej 8 (zob.
(3.1), (3.2)). Niewiadome T,, T, wyznaczajs sie bezposrednio przez 8 (zob. (2.4)).
Analizujac przebieg rzutéw charakterystyk réwnania (3.2) (rys. 3), postawiono
i rozwiazano dwa zadania brzegowe Cauchy ego dla tego réwnamnia, W plerwszym
zadaniu (§ 4) stan napieé w powloce rozpostartej nad prostokatem I,I,J,J, (rys. 1
i 3) zalezy od dwdéch funkeji danych na boku 1,J, tego prostokata, a w druglm (§5)
‘od czterech funkeji, przy czym dwie z nich dane sa na boku I,J,, a pozostale dwie
odpowiednio na bokach I,I,, J,J,. Inacze] méwige, stan napieé zaléZy W pierw-
szym zadaniu brzegowym od napieé S i T, danych na krawedzi czolowej, a w dru-
gim od napieé 8 i T, danych na krawedzi tylnej oraz od napiecia § danegé na kra-
wedziach prostych. W §§ 8 i 9 podano gposéb wyznaczania napieé na krawedziach
powloki dla obu wymienionych zadah brzegowyeh. W tym celu zalozono, ze powloka
wzmocniona jest wzdluz swoich krawedzi pretami. W § 6 wyprowadzono réwnania
réwnowagi tych pretéw przyjmujac, ze prety te sa obciazone dana sila zewnetrzna
oraz napigciami -z powloki, panujacymi w miejscu styku powloki z pretem (rys. 4
i 8). Zakladajac ré6wnosé naprezen na krawedziach powloki i w pretach wzmacnia- -
jacych (w tych samych przekrojach) otrzymano zwigzki miedzy napieciami na kra-
wedziach powloki oraz silami wewnetrznymi w pretach (§ 7). Rozwigzujac réw-
nanie rézniczkowe réwnowagi pretéw wzmacniajacych powloke, przy zalozonych
zwiazkach miedzy napieciami a silami wewnetrznymi w pretach, wyznaczono w pierw-
szym i drugim zadaniu brzegowym napiecia na krawedziach powloki (w §§8 i 9
podano rozwigzania przy ogélnych zwiazkach miedzy sitami wewngtrznymi w pre-
tach a napieciami w powloce, tzn. niekoniecznie wynikajacych z réwnoéci naprezen).

W przykiadach rozwazono dwa przypadki zastosowania powloki konoidalnej,
mianowicie zastosowanie powloki jako pokrycia dachowego oraz zastosowanie do
konstrukeji zapory wodnej (lub muru oporowego), o kapoidalnym ksztaleie &cian
oporowych. W pierwszym przypadku ograniczono sie do powloki przy obciazeniu
pionowym stalym na jednostke rzutu pola, zakladajac, Ze stan napigé w powloce
zalezy od warunkéw brzegowych na krawedzi czolowej. W drugim przypadku zalo-
Zono, ze powloka jest obciazona w kierunku osi # (rys. 6) stala sila na jednostke
rzutu pola oraz parciem hydrostatycznym stalym na jednostke rzutu pola, przy
ezym zalozono, Ze stan napieé w powloce zalezy od warunkéw brzegowyech wzdiuz
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krawedzi prostych oraz luku tylnego. W przykladach ograniczono si¢ do powloki
konoidalnej, ktérej kierownica jest parabola. Koficowe wzory podano w tzw. postaci
zamknigtej, przy dowolnych wartodciach liczbowych obciazeh i wymiarach geome-
trycznych powloki.

B, JIBICHUE (Bpomras)
O CTATHYECKOM PACCYHETE KOHOHJOOBPA3HBIX OBOJOYEK
PESIOME

B osroit crarhe OmpeeSeHH HANPAMEHHA B KOHOMA006pasHoit o00odouKe
B 3aBHCHMOCTH OT KPaeBHIX ycaoBui. [IJA BTOr0 COCTABICHH M PEUIGHH [ABE KPaeBLIX
samau Homm pnA cucrTeMsl gu@epeHOUaNbHEIX yPaBHEeHWI, oNucHBanwmel o6mymno
KapTHHY HAUpPsKeHMH B KoHompooOpasHolt 0o0omouKe, mpocTUpawielica Ham mUps-
moyroabHuKOM. IIpemmomaraercs, 4To Kpasd OGOJNOYKH CHEJAHHE RECKHMMN ny¥em
yxpemmenua ux npyreamu. Ilpepmomaras HeROTOPHE 3aBHCHMOCTH MEMIY HAIpH-
HEHHAME HA KPaAx o0GOJO0YKM ¥ BHYTPEHHUMH CHIAMH B NPYTbAX, ABTOP LOJydaer
KpaeBHE YCIOBHA ANA obemx samau Homu. Pemenme mepsoit m BTopo# sagaum Homu
HOoNy4eHO B KBaAparypax naAa udi0olf BHemHel HArpyswum 060I0YKH.

[lony4ennrie ofmume pesyabTarH WIAKNCTPUPYIOTCA npuMepamu. Paccmarpn-
BaeTCA MPUMEHEHHEe KOHOUA000pasHOi 000J0YKM NJA INEePeKPHTHA KPHII ¥ [IIA
TOCTPOEHUS IJIOTHH ¢ KOHOMAOOGPASHLIMA ONOPHBLIMM CTEHHKAMH.



