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The controllability of a quasilinear functional
differential system

by VitaLi C. DanNoN (Rock Hill) and AtrHAaNassios G. KArTsaTtos (Tampa)

Abstract. Functional control systems of the type:
(S) X' =A(t, x, u, X, u)x+B(r, x, u, x,, w)u+Q(t, x, u, x,, u,),
Xo=¢, Ug=y

are studied. A, B, Q are nxn, nxp, nx1 matrices, respectively.
The controliability of such systems is shown under assumptions involving the control-
lability of the associated linear systems.

The method involves the Schauder-Tychonov theorem in connection with a result of Opial
concerning the compactness of certain sets of L, matrices.

1. Introduction. Preliminaries. This paper is concerned with the control-
lability of quasilinear systems of the type:

(S) x'=A(t, x, u, X, ) x+B(t, x, u, x,, u)u+Q(t, x, u, x;, u,),

where x,(s) = x(t+s), se[—r,, 0], te[0, T], u(s)= u(t+s), se[—r,, 0],
te[0, T]. Here r,, r,, T are three fixed positive constants. We denote by R’,
R, the sets (—o0, o), [0, + ), respectively. We use the symbol C’[a, b],
j=1,2,..., to denote the space of all continuous functions f: [a, b] — R’
with the sup-norm ||-||,. The matrices A, B, Q have dimensions n xn, n xp,
n x 1, respectively, where n, p are fixed positive integers. For every vector
x€ R™ and every matrix 4 = [q;;] of dimension nxm we set

Ixl =X Ixl,  N4ll= X Y layjl.
i=1 i=1j=1

The symbol LT stands for the space of all x: D — R™ (D = [0, T]) such that
x(t) is measurable and ||x(¢)|| is Lebesgue integrable on D. The space LT is
associated with the norm:

Ixit = [ llx (@l de.
D
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Similarly,
Lm={A@) =[a;®), i=1,....,n j=1,..,m
a;;(t) is defined and Lebesgue integrable on D}.

We associate L}™™ with the norm

Al = max (X X fay(s)ds]}.

i=1j=10

In L7*™ we also consider the norm:
Al = [HAG dt.
D

From Opial [12] we quote the following result:
LemMMA 1. Let a: D— R, be Lebesgue integrable. Then the set
K={AeLy™; |A(| < a(t) a.e. in D}
is compact in the norm ||-||,,.
Actually Opial proved Lemma 1 in the case m = n, but his proof carries
over in the present case with the obvious modifications.
Condition (I) below will be assumed to hold throughout the sequel
(I) For each (x;, x5, @, Y)eR"xR? xC"[—r,, 0] x C°[ —r,, 0] the func-
tions A(t, x,, x2, @, ¥), B(t, x,, x5, @, ¥), Q(t, x;, x5, ¢, Y) are integrable
in t. On the other hand, these functions are continuous in x,, x,, ¢, ¥ for
almost all teD.
System (S) is said to be controllable if for every pair of points Xy, Xr€ R"
and every pair of functions e C"[—ry, 0], Yy € C?[—r,, 0] with ¢(0) = X,,
¥ (0) = O, there exists a continuous control function ue C?[ —r,, T] such that
uy = ¢ and such that system (S) has a response xe C"[—r,, T] such that
xo = ¢ and x(T) = xr.
It is evident that under Condition (I), the initial value problem

Sy, X@O=A( 1), g0, % g)x@®+B(t, £ (), g}, fi, g)u@®)+
+0(t, /), g (), £, 1),

x(0) = X,

has a solution x(f) (in the Caratheodory sense) on [0, T] for every
(f, 99eC"[—ry, T] xCP[—r,, T], every ue C?[0, T], and every X,c R". We
set I(f; Pl =111l o+ lgll o

Our purpose in this paper is to prove the controllability of (S) via a
fixed point theorem applied on an operator associated with the linear control
system (S);,,-

Although the interval [0, T] here is fixed, our controllability results can
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be eastly modified to include arbitrary intervals [tq, t;] = R'. An interesting
aspect of the study of (S) is that the control u(t) can be chosen to equal an
arbitrary continuous function { on [—r,, T] with ¥ (0) =

The reader is referred to the book of Conti [4] and paper [3] for an
excellent account of results in linear control theory. For a nonfunctional
result about (S) we cite the paper of Kartsatos [5]. For other related results
on the subject, the paper of Anichini [1] and the references therein are
suggested. Various quasilinear results concerning ordinary differential systems
are contained in Opial [12], Kartsatos [5]-[8], Kartsatos and Parrott [9]-
[10] and Becker [2]. Interesting quasilinear problems were also considered
by Sager in his dissertation [13]. Sager has an excellent bibliography of
relevant results in finite as well as infinite dimensional spaces.

2. Continuity with respect to 4, B, Q. We denote by X(t; A) the
fundamental matrix of solutions of the system

(N xX+A(t)x=0, te[0, T],

where Ae L7™" 1s a given matrix. We further assume that X (0; A) = I (= the
n xn identity matrix). We also set, for te[0, T],

T
U(t; A4, By= | X(T. A) X '(s; A)B(s)ds
Tt

S(A, B) = jU(s; A, ByU*(s; A, B)ds,

T
V(t; A, B)= [ U*(s; A, B)ds,
-t

T
t

W(t; A, B) = [X(t; A) X" '(s; A)B(s)V(s; A, B)ds,
0

where Be L™ is another given matrix:
Now, let X;, Xy R"” be fixed and consider the operator F: (A4, B, Q)
— (x, u), where

x(t) = X(t; A)Xo+W(t; A, B)y(A, B)+}X(t; A X 1(s; AQ(s)ds,
0
u(t) = V(t; A, B)y(4, B),
y(A, By=S"'(4, B)[X; - X(T; A)x,]1-

T
—S1(4, B) [ X(T; A) X~ '(s; A)Q(s)ds,
0

te[0, T] for Qe L]. The following lemma establishes the continuity of the
operator F on certain subsets of L7*" x L7*? x Lj.
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LEMMA 2. Assume that L < LY*", M < L{*P are such that

(i) there exists a constant o > 0 such that |J|A||l, <a, AelL;

(i) there exists ‘a constant f >0 such that !Blll, < B, Be M;

(111) S(A, B) is invertible for all (A, B)e L x M.

Then F: LxM xL}3(A, B, Q) — (x, e C"[0, T] xC?[0, T] is continu-
ous. The space LY™" xL1*P xL} is associated with the norm ||-|,+1l-ll,
+|[1*|ll and the norm of the space C"[0, T] xCP[0, T] equals the sup-norm of
C"[0, T] plus the sup-norm on C?[0, T].

Proof. Let (A,, By, QmelL xM xL] be given with (A,, By, Q)
—(A, B, Q) as m— . Let F(A,, Bn, Om) = (Xn, 4, We first notice that if
X.(t) = X,(t; A,), then X,, — X (-; A) uniformly on D as m — co. This has
been shown by Opial in [11]. From Corollary 1 of the same paper we also
obtain that X' — X~ '(-; A) uniformly on D and that |det X,,(f)) > d > 0
for all m=1,2,... and all teD. It is now evident that U(-; 4,,, B,)
— U(-; A, B) and that S(A,,, B,) — S(A, B). This implies that detS(A, B) is
a continuous function on L x M which is a compact subset of L]™" x L.
Since detS(A4, B) >0 on LxM (S(A, B) is symmetric and positive semi-
definite), there exists a constant d, > 0 such that detS(4, B) > d,, (A, B)e
LxM. This in turn implies (see Kartsatos [5], p. 143) that S™!(A4,, B,)
— S~ !(A, B). Since Y,,— Y uniformly on D, where

Ya(t) = }X..(t) X2 () Qm(s)ds,
0

YO = [X (64X (53 Q) ds,
0

teD, it is easy to see that (x,, u,) — (x, u) which completes the proof.

3. The existence result. For each (f, g)e C"[—r,, T] xCP[—r,, T], we
denote by X(t;/f, g) the fundamental matrix of the system
X = A(l’f(t)v g(t),f,, gt)x

with X(0;f,g)=1. As in Section 2, we define in the obvious way the
symbols U(t;f, g9), S(f,9), V(t;f. 9, W/, 9), y(f, 9, in which B(r)
=B(t,f (1), g(t) fi» g} Q1) = Q (2, £ (1), g(), f;, g,)- We are planning to show
that the operator G: (f, g)e C"[—r,, T} xCP[—r,, T] = (x, weC"[-r,, T]
x CP[—r,, T] with

x() =X L, 9+W(; f, 9)y(f, 9)+
+£X(t;f,g)X“(s;f,g)Q(s,f(s),g(S),L,gs)ds, teD,

X(I)=(p(t), IE[—TI,O],
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uy=V(.f,9y(f, 9, teD,
u(t)=.p(t)a IE[—"z, O]

(for a fixed pair (¢, Y)e C"[ —r,, 0] xC?[ —r,, 0] with ¢(0) = X, and ¥ (0)
=0 and fixed x,, xre R"), has a fixed point in a certain ball of its domain
under certain assumptions. As in Kartsatos [5], it is easy to see that for each
(f, g) the function x(t) is continuous on [ —r;, T] and satisfies system (S); ,
and x(T) = xr. Moreover, u(t) is continuous on [ —r,, T} and such that
u(0) =

Our existence result is contained in the next theorem.

THEOREM 1. Let I, M be a closed subsets of L1"", L1™P, respectively.
Assume that the mappings

A’ = Ao(f, g) t— A(taf(t)’ g(t)’ﬁ’ gt),
B® = B°(f, g): t — B(t, £ (1), 9(t), £, 9)

are such that A°cL, B°eM for every (f, 9)eC"[—r,, T} xCP[—r,, T].
Moreover, det S(A, B) > 0 for (A, Bye L x M. Then system (S) is controllable
provided that

(1) the functions
a(t) = sup {{lA(t, xy, X3, @, Y5 (X1, X2, @, ¥)
ER"xR? xC"[—r,, 0] xCP[—r,, 0]},
B(t) = sup {IB(t, x1, X2, @, ¥)I;
(X, X2, @, Y)eR" xR? xC"[—r,, 0} xCP[—r,, O]}
are Lebesgue integrable on D;
(1) for each integer k > 0, the function

@ (t) = suplIQ (¢, xy1, xz, @, Y)I5 lIxill, X2l < &, N@ll, Wl < K}
is Lebesgue integrable on D and such that

liminf(1/k) jqk (t)dt =

k— o

Proof. Let
L° = {A°(f, 9); (f, 9)eC"[—ry, TIXCP[—r,, T]},
MO = {Bo(f’ g); (f’ g)EC"[—Tl, ﬂ >(C,’,l:_r21 T]},

and let L°, M° be the closures of L° M?° in L™, L7*P, respectively. Then
from the proof of Lemma 1 of Opial [12] we obtain that |A(0)jf < a(),
IB ()l < B(¢) for every (4, Bye L° x M°. Thus, Lemma 1 in Section 1 implies
that the set L% x M® is a compact subset of L7*" x L7, hence a compact
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subset of L x M. Without loss of generality we set L% xM° = L x M. We also
have

1Allla < fa(e)dt, lIBIll, < [B(r)dt
D D

for all (A, B)e L x M. In view of Lemma 2 and its proof, in order to show
the continuity of the operator G (preceding the statement of the theorem), in
the sum-norm of C"[—r,, T]xCP[—r,, T], it suffices to show that

(for Gm)€C"[—ry, T} xC?[—r,, T] with || fr,—fllw, [|gm—9llc — 0 as m — o0
implies that

14° (fms Gm) —A°(f, @lla— 0  as m— o0,

1B® (fm> gm)—B°(f, 9)ll, =0 as m— o,

11Q°(fm» gm) —Q°(f, DN =0 as m— oo,
where 0° =0°(f,9): t—Q(:,f(®), g, £, 9)-

To this end, we first note that

”fm‘_f;”cn—'o and ||gm1—g,||®—'0 as m— oo,
Thus,

A(t, fu () G (1), Soms Gm)) — AL, £ (1), g (1), £, 1),
B(t’ fm (I)a gm(t)s fm,’ gm,)_’ B(t’ f([), g(t)’ j;, gt)s
Q(t, (), Gm(2), fom» Gm) = (£, S (D), g (0), £ 91)

a.e. on D as m — oo . By Lebesgue’s dominated convergence theorem, we have

”Ao(fm’ gm)_Ao(f’ g)“n
< [)|A(, S 0), G (), fins Gm) = A (. £ (D, G(O), frn,. G )| dE — O
D

as m— oo. Similar inequalities prove our assertion for B® and Q°.

Now, following the proof of the main result of Kartsatos [5], we see
that there exists an integer ke{l, 2, ...} such that the ball E, = {(f, g)e
C'[—ry, TIxCP[—ry, T1; li(f, 9)ll < k} is mapped into itself by the oper-
ator G. It also follows as in [5] that the set {(x,, u,); (f, g)€ E,} is equi-
continuous and uniformly bounded. This implies that the operator G is
compact on E,. The Schauder-Tychonov theorem implies now that G has
a fixed point in E,, which completes the proof of the theorem.

The compactness of the set L° xM°® in L7*"xL3*P in the above
theorem is crucial for the proof because it ensures that S™!(f, g) exists for all
(f, 9)eC"[-ry, T] xCP[—r,, T] and that det S(f, g) is bounded below by
a positive constant for all such (f, g). If this last condition is assumed to
hold, then we have, as a corollary to Theorem 1, the following result
(S(A, B) has the obvious meaning).
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THEOREM 2. Let assumptions (i), (ii) of Theorem 1 hold. Assume in ad-
dition that there exists a positive constant d such that detS(A, B)>d
for all (4, B)e P = {A°(f, 9); (f, 9)e C"[—ry, TIxCP[—r,. T} x{B°(/, g);
(f, 9)eC"[—ry, T} xCP[—r,, T]}. Then system (S) is controllable.

Proof. We only note that the closure P of the set P in L}™"x L3"?
satisfies the condition:

Alll. < lj;a(t)dt, IIBlll, < fB(t)dt
D

for every (A, Bye P. The rest of the proof follows as in Theorem 1. It is
therefore omitted.

It is, in general, a pretty tedious task to check the condition on S(A, B)
in Theorem 2. However, if the matrices A°(f, g), B°(f, g) are sufficiently
close to the matrices A, B, which are independent of f, g and for which the
associated system satisfies the above condition, then system (S) is control-
lable. This fact is esfablished in the following theorem.

THEOREM 3. Let assumptions (1), (i) of Theorem 1 be satisfied. Let
(A, B)e LY*" x L}*? be such that the system

(Sy) x' =A(t)x+B(t)u

has detS(A, B)>0. Then there exists n >0 such that whenever
(A, B)e L™ x LI)*P with
lA-A'll,<n and ||B—B|,<n
then detS(A’, B) > 0. Also, if A°(f, g), B°(f, g) are such that, for every
(fs g)eC"[—rl, Tj xcp[_"za T]a
14°(f, 9)—All. <n and  |IB°(f, 9)—Bll, <n,
then system (S) is controllable.

Proof. The first assertion follows from the continuity of S(A, B) in
(A, B). In order to show the second assertion, recall that given ¢ > 0 there
exists d(¢) > 0 such that [|A°(f, g)— All, < (), |IB°(f, 9)—Bll, < 5(¢) imply
that |det S(f, g)—det S(A, B)| <e.

If we fix ¢ <detS(A, B) and n = é(¢), then we have that

0 <detS(A4, B)—¢e <detS(/, 9)
for all (f, 9)eC"[—r,, T} xC?[—r,, T]. The proof now follows from
Theorem 2.
4. A necessary and sufficient condition for time-dependent controllabiity.
In what follows, (A4, B)e L7*" x L1*?, We say that the system

?) X =A@ x+B(t)u



378 V.C. Dannon and A. G. Kartsatos

is K-controllable on [0, T] if S”!(A, B) exists. If (2) is K-controllable, then
one control function u(t), te[0, T], is given by u(t) = V(¢; A, B)y(A, B)
with Q =0. The following theorem provides a necessary and sufficient
condition for K-controllability in case p =n, which is simpler than the
existence of S™!(A4, B).

THEOREM 4. If p = n, then system (2) is K-controllable if and only if there
exists t,€(0, T] such that

T
3) det[ | X~ '(s; A)B(s)ds] # 0.
T—1t1
Proof. System (2) is not K-controllable if and only if S = S(A, B) is
singular. Since S is positive semi-definite, this happens if and only if (Su, u)
= 0 for some nonzero vector uec R" (the symbol {-, -) denotes the inner
product in R"). This is equivalent to

T
(fU(s; A, ByU*(s; A, B)ds u,u) =0
0

or
T T
[<U(s; A, BYU*(s; A, B)u, upds = [ (U*(s; A, B)u, U*(s; A, B)u)ds
0 0

T
fllU*(s; 4, Byul|ds =0,
0

where the subscript E denotes the Euclidean norm on R". Since

||[U*(t; A, B)u||g is a continuous function on [0, T], the above equality is
equivalent to

T
det [U*(t; A, B)] =det[X(T; A) | X '(s; A)B(s)ds]"
T-1

= det [X(T; A)]*det[ } X~'(s; A) B(s)ds]*
T-t

T

=det[X(T; A))det[ { X~ '(s; A)B(s)ds]
T

=0

for every te[0, T]. This completes the proof.
It is easy to see that Condition (3) does not necessarily imply that the
n xn matrix B(t) is invertible. In fact, if n =2, A(f) =0 and

I e +1)
B (‘)=[z3(z2+1) ' ]
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then Condition (3) becomes, for ¢t; = T,

173 -1
3T tan™ " (T)
det[%]rﬁ_‘_%]_‘t 172 ]<0 for every T> 0,

although det B(t) =0 for all ¢t > 0.

5. An example. Consider the system

, [ ot1] [to
C)) X _[—l O:|x+ [0 l:lu.

Here, we have

X(T A)X“(t-A)B.—-[ cos(T—t) sin(T—t)].

—sin(T—t) cos(T—t)

We let T=2n. It is easily seen that U(2n; A, B) = 0. Thus (cf. Conti [4],
p- 103), the system is not controllable with respect to constant controls .
However, it is K-controllable, according to Theorem 4, because (3) holds for
t, = 1. Of course this fact can be checked by previous results.

We can now apply the result of Theorem 3 to ensure the controllability
of

, _|esint 1+elsin(u(c—ry)
x _l—l ecos(x(t—ry)) Jx+

1+[8/(1+u2(t))] 0 u1/3(t—r2)
+[0 1 — gefostxte—ry)) u+t x3’5(t—r1)

on a fixed interval [0, T] for all sufficiently small ee(0, oo0), where r,, r, are
fixed positive constants. It is easy to see that in this example we have

lim inf(1/k) _[qk(t)dt = lim (1/k) jq,‘(t)dt = 0.
D k—ao D

k— o

6. Remarks. It is rather important to note that Condition (3) not only
ensures the K-controllability of system (2), which in turn guarantees the
existence of controls ue C[0, T] with u(0) = 0, but also it allows us to pick
a control u(t) = Vi (t; A, B)y(A, B) (Q = 0). This form of u(t) is quite suscep-
tible to numerical approximation — a fact that is of considerable importance
in applications.

Condition (3) complements the various conditions of Conti [4], 90-130,
concerning the controllability of linear systems.

It would be interesting to extend these results to the case of Anichini
[1], where controls with given boundary conditions are considered.



380

(1
(2]
(3]
[4]
(5]

(6]
(7]

(8]
(%]
[10]
f11]
[12]
[13]

V. C. Dannon and A. G. Kartsatos

References

G. Anichini, Global controllability of nonlinear control processes with prescribed controls,
J. Optim. Th. Appl. 32 (1980), 183-199.

R. J. Becker, Periodic solutions of semilinear equations of evolution of compact type, J.
Math. Anal. Appl. 82 (1981), 3348,

R. Conti, On global controllability, Intern. Conl. Differential Equations, Edit. H. A.
Antosiewicz, Academic Press, New York 1975.

—, Linear Differential Equations and Control, Instit. Math., Academic Press, New York
1976.

A. G. Kartsatos, Global controllability of perturbed quasilinear systems, Probl. Control
Inf. Th. 3 (1974), 137-145.

—, Stability via Tychonov’s theorem, Int. J. Sys. Sci. 5 (1974), 933-937.

—, Nonzero solutions to boundary value problems for nonlinear systems, Pacific J. Math.
53 (1974), 425-433.

—, Perturbations of m-accretive operators and quasi-linear evolution equations, J. Math.
Soc. Japan 30 (1978), 75-84.

—, M. E. Parrott, Existence of solutions and Galerkin approximations for nonlinear
Junctional evolution equations, Tohoku Math. J. 34 (1982), 509-523.

—, —, On a class of nonlinear functional pseudoparabolic problems, Funkc. Ekvacioj 25
(1982), 207-221.

Z. Opial, Continuous parameter dependence in linear systems of differential equations, J.
Differ. Eqgs. 3 (1967), 571-579.

—, Linear problems for systems of nonlinear differential equations, ibidem 3 (1967), 580-
594,

H. Sager, Boundary value problems for semilinear evolution equations of compact type,
Doct. Dissert., Univ. Cape Town, Cape Town 1982.

WINTHROP COLLEGE
ROCK HILL, SOUTH CAROLINA 29733, USA

and

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF SOUTH FLORIDA
TAMPA, FLORIDA 33620. USA

Regu par la Redaction le 1985.04.20



