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A difference method for the non-linear partial
differential equation of the first order
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§ 1. Introduction. This paper deals with the difference method
for the solution of the partial differential equation

: ou ou
(1.1) 55=f(5;"”;“;55)’
and also the equation with an arbitrary number of independent variables.

In the two-dimensional case the corresponding difference equation
is of the form

12) st — o (8, om, oo, ZESE,

h

o#m being the approximate value at the nodal point &+ = uk, o™ = mh
(uym=0,1,2,..), cf, fig. 1.
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Fig. 1. The nodal points. The indices for 4, B, 0 are (u, m~1), (u, m), (g+41, m),
o respectively

8. Lojasiewicz [1] introduced a special system of ordinary dif-
ferential equations (a difference-differential system) approximating partial
differential equation (1.1), f being periodic in @. Then A. Pli§ obtained
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similar (unpublished) results without the requirement of periodicity for
the right-hand member of (1.1), and proposed the difference scheme (1.2).

In this paper we prove the convergence of the difference method
in the p-dimensional case, ¢f. § 4 and Theorem 1, some error estimates
being given.

§2. The mesh and the differences. Let us denote by m the
sequence of p natural numbers

(2.1) m = (Mg, Mgy +.y Mp),
and let
(2.2) M = (u, m),

where # is a natural number.
We shall consider the points 2™ of the real p-dimensional space R"
with coordinates

(2.3) a™ = (e, 27, ..., ¥p) e B¥,

and also the nodal points

(2.4) (&, a™) e B"TY,

the corresponding values é#, o™ being defined by

'5—.“ ) _‘P;=7’h (p=10,1,..; V=0:__]~7'f';j=112’~°'7p):

2.0 .

(&:b) 0<h= const, O < k=const, for (;",_mi,.:.., @p) € B, \
where | i

(2.6) B: 0<6<a, 0<ay<a, a>0(j=1,2,..,7).

There is 2 one-to-one correspondence between the nodal points (2.4)
and the indices (2.2).

We shall consider also the nodal pomts characterized by the follow-
ing sequences of indices:

@.1) (M) = (41, m),3(H0) = (1, )
where :

(2.8) j(m) = (myy v0oy Mjoy, mi—l mi+17 "mp) i=12,..,p).
(2.7) and (2.8) imply the relations
(2.9) j(M,M)=(ﬂ,j(M)), for j=1,2,..,p.

Suppose that to each nodal point with indices (2.1) there corr35ponds
a number

(2.10) oM
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We introduce the differences

1
luM-u — ,_]_G_ (tvm(M) —_ :vM) ,

(2.11) 1 '
o= (ve—vie0)  (G=1,2,..,9),

and also the vector v¥4 with coordinates
(2.12) VMA = (91 M2, pMP),

§ 3. Throughout the rest of the paper we shall use the following
assumptions H:

AssumMpTioNS H. (1) Assume that the scalar function f(%, x, u, q),
@ = (Dyy 0oy Tp)y §= (1, ey o), 18 of the class C' for (&, z,u,q)eD,
where

(81) D:0<¢{<a 0Ky <a —0o<U< 00, —00< 3 < + 00,
e>0(j=1,2,..,p).
(2) The derivatives fy and Jo, fulfil conditions

(3:2) ARISL, fy<0 (=1,2,.,p), !
the mesh size % and % (cf. (2.5)) being defined so as to obtain

P
(3.3) qu’-+%>0' for (¢, @, uyq)eD.

j=1

(3) The scalar funetion u(f, x) of the class ! patisfies the pa,rtla.l
differential eguation '

u

0
£=f(§’ z, “)%)a-

tor (£,2) B (cf. (2.6)), o~ heing defined as

(3.4)

. ow_(w 0w
oz~ \ow, ' émp)’

and the boundary conditions
u(0, ) = @o(@) » ST
“(Erm)=9’l(£;m)7 for (é,x)eB, ;=0 (j=1,2,...,p).

"Remark 1. We call attention to the fact that,. according to (3.3)
and (3.2), the choice of the space interval k places 4 restriction on the
gize of the time interval %. j

(3.5)
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§ 4. The approximate solution v of the partial differ-
ential equation. We accept the following boundary conditions for
the numbers v (cf. § 2):

polom) for M =(0,m),

(4.1) oM = {gt o™, ..., 2], .y ap?)  for . u=0,1,..
i=1,2,..,0; M= (pg,m,..,0,.,my)),

the values v at the remaining nodal points being defined successively
with the aid of the difference equation

(4.2) M~ = f(En, gm, oM, pM3),

We denote by u the value of the solution (&, ) of equation (3.4)
at the nodal point (2.2), and we define the corresponding differences as
in the case of numbers vM, cf. (2.11) and (2.12). .

The boundary conditions (3.5) imply the boundary conditions for u.
They are of the following form: '

@o(am) for M= go, m),.
(4.3)  uM={gy(&" o™, ..., 7)oy 25?)  for p=0,1,..;
1=1,2,.u,0; M= (p, M, .w,0,..,my).

The values »M patisfy the equation

(4.4) uM~ = f(£n, gm, uM, uMA) - 9M

where
max |7¥|—-0, as k-0,
M

at all nodal points M = (u,m) in the region E (cf. (2.6)), for m; > 1
(? =1’ 27 '--’.'p)-

Equation (4.4) is the consequence of (3.4) since u(&,z) is of the
class (O

Remark 2. Procedure (4.2) can be applied-to digital computers.
To explain this possibility we observe that (4.2) can be rewritten in
the form

' pM __ pl(M) oM _ pp(M)
et — ot i (g9, om, o, )

W y ey 7

where M = (u,m), because of (2.11) and (2.12). This formula enables
one to calculate v++'m with the aid of the preceding values only
(cf. fig. 2).
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v;(H).
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Fig. 2. M =(1,1,1), o(M) = (2,1, 1), 1{M)=(1,0,1), 2(M) = (1,1,0)

§ 5. LeMmA 1. Suppose that the numbers s» satisfy the non-homo-
geneous linear differemce inequality
(5.1) g~ L Lsk+e  (u=0,1,..),
and the initial condition $° = 0, where

gH~ = %(slﬁl—-sﬂ), 0 <H=const, O0<L=const, O<e=const.
Under these assumptions

(5.2) gk < %(ewn—l) (1=0,1,..).
(5.2) can be proved with tht; aid of finite induction.
‘Remark 3. If the numbers 2# satisfy the inequality

(5.3) g~ >Ieb—e  (u=0,1,..),

and the initial condition 2° =0, then

(5.4) zﬁ;—%(em"—l) (u=0,1,..).

(6.4) can be proved also with the aid of finite induction.

§ 6. LemmA 2. Suppose that the assumplion H are fulfilled, and the
values uM and vM (cf. § 4) satisfy (4.3), (4.4) and (4.1), (4.2), respectively,
at the nodal poinis in the region H (cf. (2.8)).

Let us write
(6.1) rM = yM— oM,

(6.2) §# = maxrsm, g6 =minr»™ (up=0,1,...),
m ™

in the region E. Obviously s# >0 and 2+ < 0.
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Under these assumptions the numbers s+ and z¢ salisfy respectively
the mon-homogeneous linear difference inequalities

(6.3) sw~ Loote(h), 2+~ >Ler—e(h) (u=0,1,..),

and the initial conditions $* = 0, 2° = 0, where 0 < e(h)->0, as h—0.
Proof. There exist an @ = (ay, ..., ap) and a b = (b, ..., bp) such that

(6.4) gatl = max pa+lm — putle

(6.5) sh =1:na,xg-n.m =ud
whence "

(6.6) gh~ = % (s#+1—gb) = %(rﬂ+1.a_ rib)

The right-hand ‘member of (6.6) can be written in the form
1 1
(6 .7) SA™ — 7‘ (frﬁl+1,ﬂ_ ,r,u.a) +Tc (rﬂ.ﬂ_ ’-u,b) .
Now we obtain
(6,8) % (rl‘+"1l4—“r”lu) = %.(uﬂ‘l‘lna_ uP.G) —_ %(vl['{'l.d_ U"'“) R

becaunse of (6.1).
If for some j: 1 <j < p, a; =0, inequalities (6.3) are evident, and
for a;>1 (j=1,2, ..., p) we have

(8.9) T (rwtbo—pue) = f(£#, a7, whe, ubnld) -y (£, g, oo, oald)

because of (4.2) and (4.4).
The right-hand member of (6.9) becomes

P
(610) (rtio—pua) = graf fy( ~)mha 3 D o mi)(rma—pad@),
' =1

in view of (6.1), (2.12) and the mean value theorem, the derivative being
taken at some point (~). Therefore (6.10) and (6.7) imply

B P
(6.11) 84~ = gl-f fy( ~)r#o %Z fa(~) (wi.a_ pmf@) L % (r8— by |

1=1

Now we majorize the right-hand member of (6.11). From the def-
inition (6.5) of r#2 follows r=f#@  rub, whence

(6.12) il — ginf(@) > puo__ yud
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and

P »
613) D) ful (o @) < D f () (rio—pmt),
J=1 f=1
since fq, < 0 by assumptions H.
Therefore (6.13) and (6.11) imply

P
(6.14)  sr~ St fuf )rhet 3 (rma—yud) [ jZ Fol~)+ %]
The last term of the right-ha,nd member of (6.14) is non-positive
because of (3.3) and condition r»é—r#b <0, cf. (6.5). Hence by (6.5)

sr~ L Lstte(h) (u=0,1,..),
where
o 8(h) = max [nM],
M

which completes the proof of the first inequality of (6.3).

The second inequality of (6.3) for 2# can be proved in a similar way.
The initial conditions for s° and 2° follow from the identity of the bound-
ary values for ¥ and ¥,

This completes the proof of Lemma 2.

§ 7. TarorEM 1. Suppose that the function f(&, @, u, q) fulfils assump-
tions H, the values uM and v™ at the nodal points being defined by (3.4),
(3.8) and (4.1), (4.2), respectively (cf. § 4).

Let e(h) = mﬁ,xlnM[ for all modal points in the region H, nM being
taken from (4.4).

Under these assumptions

(1) the error estimate

(7.1) rem) < (eM4»—1),

e(h)
L

holds for p=0,1, ...
(ii) the difference method (4.2) is convergent, i.e.

(7.2) lim7¥ =0.
0

Remark 4. The expression e(h) = max|yM| can be evaluated in
’ M
terms of constants estimating the derivatives of f(&, =, 4, q) and @4y ..., Pp
(up to second order).

Proof of the theorem.'(7.2) follows immediately from (7.1) and
lim e(h) = 0; consequently, all that remains to be proved is that re-
h—0

lations (7.1) are satisfied.
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From (6.2) and Lemma 2 it follows that s# and 2# satisfy difference
inequalities (6.3) and conditions s*=2"=0.
Replacing H in Lemma 1 by % we get by (6.3), (65.2) and (5.4)

rom 88 < %}Q(e"’"‘-—l),

G(h) (F’= 0’1’ "‘)’

FHT > ZH > ——L—' (GLk"—'l)

which implies (7.1).
This completes the proof of Theorem 1.
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