A difference method for the non-linear partial differential equation of the first order

by Z. Kowalski (Kraków)

§ 1. Introduction. This paper deals with the difference method for the solution of the partial differential equation

(1.1)
$$\frac{\partial u}{\partial \xi} = f\left(\xi, x, u, \frac{\partial u}{\partial x}\right),$$

and also the equation with an arbitrary number of independent variables.

In the two-dimensional case the corresponding difference equation is of the form

1.2)
$$v^{\mu+1,m} = v^{\mu,m} + kf\left(\xi^{\mu}, x^{m}, v^{\mu,m}, \frac{v^{\mu,m} - v^{\mu,m-1}}{h}\right),$$

 $v^{\mu,m}$ being the approximate value at the nodal point $\xi^{\mu} = \mu k$, $x^m = mh$ $(\mu, m = 0, 1, 2, ...)$, cf. fig. 1.

Fig. 1. The nodal points. The indices for A, B, C are $(\mu, m-1)$, (μ, m) , $(\mu+1, m)$, respectively

S. Łojasiewicz [1] introduced a special system of ordinary differential equations (a difference-differential system) approximating partial differential equation (1.1), f being periodic in x. Then A. Plis obtained similar (unpublished) results without the requirement of periodicity for the right-hand member of (1.1), and proposed the difference scheme (1.2).

In this paper we prove the convergence of the difference method in the p-dimensional case, cf. § 4 and Theorem 1, some error estimates being given.

§ 2. The mesh and the differences. Let us denote by m the sequence of p natural numbers

$$(2.1) m = (m_1, m_2, ..., m_p),$$

and let

$$(2.2) M = (\mu, m),$$

where μ is a natural number.

We shall consider the points x^m of the real p-dimensional space R^p with coordinates

$$(2.3) x^m = (x_1^m, x_2^m, ..., x_p^m) \in \mathbb{R}^p,$$

and also the nodal points

$$(2.4) \qquad (\xi^{\mu}, x^m) \in \mathbb{R}^{p+1},$$

the corresponding values ξ^{μ} , x^m being defined by

$$(2.5) \begin{array}{lll} \xi^{\mu} = \mu k \,, & x_{j}^{\nu} = \nu h & (\mu = 0, 1, ...; \ \nu = 0, 1, ...; \ j = 1, 2, ..., p) \,, \\ 0 < h = {\rm const}, & 0 < k = {\rm const}, & {\rm for} & (\xi^{\mu}, x_{1}^{\nu}, ..., x_{p}^{\nu}) \, \epsilon \, E \,, \end{array}$$

where

(2.6)
$$E: 0 \leq \xi \leq \alpha, \ 0 \leq x_j \leq \alpha, \ \alpha > 0 \ (j = 1, 2, ..., p).$$

There is a one-to-one correspondence between the nodal points (2.4) and the indices (2.2).

We shall consider also the nodal points characterized by the following sequences of indices:

(2.7)
$$\omega(M) = (\mu + 1, m), \quad j(M) = ((\mu, j(m)),$$

where

(2.8)
$$j(m) = (m_1, ..., m_{j-1}, m_{j-1}, m_{j+1}, ..., m_p)$$
 $(j = 1, 2, ..., p)$.
(2.7) and (2.8) imply the relations

(2.9)
$$j(\mu, m) = (\mu, j(m)), \text{ for } j = 1, 2, ..., p.$$

Suppose that to each nodal point with indices (2.1) there corresponds a number

$$(2.10) v^{M}.$$

1

We introduce the differences

$$v^{M\sim} = \frac{1}{k} \left(v^{\omega(M)} - v^{M} \right),$$

$$v^{Mj} = \frac{1}{k} \left(v^{M} - v^{j(M)} \right) \quad (j = 1, 2, ..., p),$$

and also the vector $v^{M\Delta}$ with coordinates

$$(2.12) v^{MA} = (v^{M1}, v^{M2}, \dots, v^{Mp}).$$

§ 3. Throughout the rest of the paper we shall use the following assumptions H:

Assumptions H. (1) Assume that the scalar function $f(\xi, x, u, q)$, $x = (x_1, ..., x_p)$, $q = (q_1, ..., q_p)$, is of the class C^1 for $(\xi, x, u, q) \in D$, where

(3.1)
$$D: 0 \le \xi \le a, \ 0 \le x_j \le a, \ -\infty < u < +\infty, \ -\infty < q_j < +\infty,$$

$$a > 0 \ (j = 1, 2, ..., p).$$

(2) The derivatives f_u and f_{q_f} fulfil conditions

(3.2)
$$|f_u| \leqslant L, \quad f_{q_j} \leqslant 0 \quad (j = 1, 2, ..., p),$$

the mesh size h and k (cf. (2.5)) being defined so as to obtain

(3.3)
$$\sum_{j=1}^{p} f_{q_j} + \frac{h}{k} \geqslant 0 \quad \text{for} \quad (\xi, x, u, q) \in D.$$

(3) The scalar function $u(\xi, x)$ of the class C^1 satisfies the partial differential equation

(3.4)
$$\frac{\partial u}{\partial \xi} = f\left(\xi, x, u, \frac{\partial u}{\partial x}\right),$$

for $(\xi, x) \in E$ (cf. (2.6)), $\frac{\partial u}{\partial x}$ being defined as

$$\frac{\partial u}{\partial x} = \left(\frac{\partial u}{\partial x_1}, \dots, \frac{\partial u}{\partial x_n}\right),\,$$

and the boundary conditions

(3.5)
$$u(0, x) = \varphi_0(x),$$
 $u(\xi, x) = \varphi_j(\xi, x),$ for $(\xi, x) \in E, x_j = 0 \ (j = 1, 2, ..., p).$

Remark 1. We call attention to the fact that, according to (3.3) and (3.2), the choice of the space interval h places a restriction on the size of the time interval k.

§ 4. The approximate solution v^M of the partial differential equation. We accept the following boundary conditions for the numbers v^M (cf. § 2):

$$(4.1) \quad v^{\underline{M}} = \begin{cases} \varphi_0(x^m) & \text{for} \quad M = (0, m), \\ \varphi_j(\xi^{\mu}, x_1^{m_1}, ..., x_j^0, ..., x_p^{m_p}) & \text{for} \quad \mu = 0, 1, ...; \\ j = 1, 2, ..., p; \quad M = (\mu, m_1, ..., 0, ..., m_p), \end{cases}$$

the values v^{M} at the remaining nodal points being defined successively with the aid of the difference equation

$$(4.2) v^{M\sim} = f(\xi^{\mu}, x^{m}, v^{M}, v^{M\Delta}).$$

We denote by u^M the value of the solution $u(\xi, x)$ of equation (3.4) at the nodal point (2.2), and we define the corresponding differences as in the case of numbers v^M , cf. (2.11) and (2.12).

The boundary conditions (3.5) imply the boundary conditions for u^{M} . They are of the following form:

$$(4.3) \quad u^{\underline{M}} = \begin{cases} \varphi_0(x^m) & \text{for} \quad \underline{M} = (0, m), \\ \varphi_j(\xi^{\mu}, x_1^{m_1}, ..., x_j^0, ..., x_p^{m_p}) & \text{for} \quad \mu = 0, 1, ...; \\ j = 1, 2, ..., p; \quad \underline{M} = (\mu, m_1, ..., 0, ..., m_p). \end{cases}$$

The values u^{M} satisfy the equation

(4.4)
$$u^{M^{\sim}} = f(\xi^{\mu}, x^{m}, u^{M}, u^{M\Delta}) + \eta^{M},$$

where

$$\max_{M} |\eta^{M}| \to 0, \quad \text{as} \quad h \to 0,$$

at all nodal points $M = (\mu, m)$ in the region E (cf. (2.6)), for $m_j \ge 1$ (j = 1, 2, ..., p).

Equation (4.4) is the consequence of (3.4) since $u(\xi, x)$ is of the class C^1 .

Remark 2. Procedure (4.2) can be applied to digital computers. To explain this possibility we observe that (4.2) can be rewritten in the form

$$v^{\mu+1,m} = v^{M} + kf\left(\xi^{\mu}, x^{m}, v^{M}, \frac{v^{M}-v^{1(M)}}{h}, \dots, \frac{v^{M}-v^{p(M)}}{h}\right),$$

where $M = (\mu, m)$, because of (2.11) and (2.12). This formula enables one to calculate $v^{\mu+1,m}$ with the aid of the preceding values only (cf. fig. 2).

Fig. 2. $M = (1, 1, 1), \ \omega(M) = (2, 1, 1), \ 1(M) = (1, 0, 1), \ 2(M) = (1, 1, 0)$

§ 5. LEMMA 1. Suppose that the numbers sr satisfy the non-homogeneous linear difference inequality

(5.1)
$$s^{\mu \sim} \leqslant L s^{\mu} + \varepsilon \quad (\mu = 0, 1, ...),$$

and the initial condition $s^0 = 0$, where

$$s^{\mu \sim} = rac{1}{H}(s^{\mu+1} - s^{\mu}), \qquad 0 < H = \mathrm{const}, \qquad 0 < L = \mathrm{const}, \qquad 0 < \epsilon = \mathrm{const}.$$

Under these assumptions

(5.2)
$$s^{\mu} \leqslant \frac{\varepsilon}{\overline{L}} (e^{LH\mu} - 1) \quad (\mu = 0, 1, ...).$$

(5.2) can be proved with the aid of finite induction.

Remark 3. If the numbers 2" satisfy the inequality

(5.3)
$$z^{\mu \sim} \geqslant L z^{\mu} - \varepsilon \quad (\mu = 0, 1, ...),$$

and the initial condition $z^0 = 0$, then

(5.4)
$$z^{\mu} \geqslant -\frac{\varepsilon}{L} (e^{LH\mu} - 1) \quad (\mu = 0, 1, ...)$$

- (5.4) can be proved also with the aid of finite induction.
- § 6. LEMMA 2. Suppose that the assumption H are fulfilled, and the values u^{M} and v^{M} (cf. § 4) satisfy (4.3), (4.4) and (4.1), (4.2), respectively, at the nodal points in the region E (cf. (2.6)).

Let us write

$$(6.1) r^{M} = u^{M} - v^{M}$$

(6.2)
$$s^{\mu} = \max_{m} r^{\mu,m}, \quad z^{\mu} = \min_{m} r^{\mu,m} \quad (\mu = 0, 1, ...),$$

in the region E. Obviously $s^{\mu} \geqslant 0$ and $z^{\mu} \leqslant 0$.

Under these assumptions the numbers s^{μ} and z^{μ} satisfy respectively the non-homogeneous linear difference inequalities

$$(6.3) s^{\mu \sim} \leqslant L s^{\mu} + \varepsilon(h), z^{\mu \sim} \geqslant L z^{\mu} - \varepsilon(h) .(\mu = 0, 1, ...),$$

and the initial conditions $s^0 = 0$, $z^0 = 0$, where $0 \le \varepsilon(h) \rightarrow 0$, as $h \rightarrow 0$.

Proof. There exist an $a = (a_1, ..., a_p)$ and $a b = (b_1, ..., b_p)$ such that

(6.4)
$$s^{\mu+1} = \max_{m} r^{\mu+1,m} = r^{\mu+1,a},$$

(6.5)
$$s^{\mu} = \max_{m} r^{\mu,m} = r^{\mu,b},$$

whence

(6.6)
$$s^{\mu \sim} = \frac{1}{k} (s^{\mu+1} - s^{\mu}) = \frac{1}{k} (r^{\mu+1,a} - r^{\mu,b}).$$

The right-hand member of (6.6) can be written in the form

(6.7)
$$s^{\mu \sim} = \frac{1}{k} (r^{\mu+1,a} - r^{\mu,a}) + \frac{1}{k} (r^{\mu,a} - r^{\mu,b}).$$

Now we obtain

(6.8)
$$\frac{1}{k}(r^{\mu+1,a}-r^{\mu,a}) = \frac{1}{k}(u^{\mu+1,a}-u^{\mu,a}) - \frac{1}{k}(v^{\mu+1,a}-v^{\mu,a}),$$

because of (6.1).

If for some $j: 1 \le j \le p$, $a_j = 0$, inequalities (6.3) are evident, and for $a_j \ge 1$ (j = 1, 2, ..., p) we have

(6.9)
$$\frac{1}{k}(r^{\mu+1,a}-r^{\mu,a})=f(\xi^{\mu}, x^{a}, u^{\mu,a}, u^{(\mu,a)\Delta})+\eta^{\mu,a}-f(\xi^{\mu}, x^{a}, v^{\mu,a}, v^{(\mu,a)\Delta}),$$

because of (4.2) and (4.4).

The right-hand member of (6.9) becomes

(6.10)
$$\frac{1}{k}(r^{\mu+1,a}-r^{\mu,a})=\eta^{\mu,a}+f_{u}(\sim)r^{\mu,a}+\frac{1}{h}\sum_{j=1}^{p}f_{q_{j}}(\sim)(r^{\mu,a}-r^{\mu,j(a)}),$$

in view of (6.1), (2.12) and the mean value theorem, the derivative being taken at some point (\sim) . Therefore (6.10) and (6.7) imply

$$(6.11) \quad s^{\mu \sim} = \eta^{\mu,a} + f_u(\sim) r^{\mu,a} + \frac{1}{h} \sum_{j=1}^{p} f_{aj}(\sim) (r^{\mu,a} - r^{\mu,j(a)}) + \frac{1}{k} (r^{\mu,a} - r^{\mu,b}) .$$

Now we majorize the right-hand member of (6.11). From the definition (6.5) of $r^{\mu,a}$ follows $r^{\mu,\beta(a)} \leq r^{\mu,b}$, whence

$$(6.12) r^{\mu,a} - r^{\mu,j(a)} \geqslant r^{\mu,a} - r^{\mu,b},$$

and

(6.13)
$$\sum_{j=1}^{p} f_{qj}(\sim) (r^{\mu,a} - r^{\mu,f(a)}) \leqslant \sum_{j=1}^{p} f_{qj}(\sim) (r^{\mu,a} - r^{\mu,b}),$$

since $f_{q_i} \leqslant 0$ by assumptions H.

Therefore (6.13) and (6.11) imply

(6.14)
$$s^{\mu \sim} \leqslant \eta^{\mu,a} + f_{u}(\sim) r^{\mu,a} + \frac{1}{h} (r^{\mu,a} - r^{\mu,b}) \left[\sum_{j=1}^{p} f_{q_{j}}(\sim) + \frac{h}{k} \right].$$

The last term of the right-hand member of (6.14) is non-positive because of (3.3) and condition $r^{\mu,a}-r^{\mu,b} \leq 0$, cf. (6.5). Hence by (6.5)

$$s^{\mu\sim}\leqslant Ls^{\mu}+\varepsilon(h) \qquad (\mu=0\,,1\,,\ldots)\,,$$

where

$$\varepsilon(h) = \max_{M} |\eta^{M}|,$$

which completes the proof of the first inequality of (6.3).

The second inequality of (6.3) for z^{μ} can be proved in a similar way. The initial conditions for s^0 and z^0 follow from the identity of the boundary values for u^M and v^M .

This completes the proof of Lemma 2.

§ 7. THEOREM 1. Suppose that the function $f(\xi, x, u, q)$ fulfils assumptions H, the values u^M and v^M at the nodal points being defined by (3.4), (3.5) and (4.1), (4.2), respectively (cf. § 4).

Let $\varepsilon(h) = \max_{M} |\eta^{M}|$ for all nodal points in the region E, η^{M} being taken from (4.4).

Under these assumptions

(i) the error estimate

$$|r^{\mu,m}| \leqslant \frac{\varepsilon(h)}{L} (e^{Lk\mu} - 1),$$

holds for $\mu = 0, 1, ...$

(ii) the difference method (4.2) is convergent, i.e.

$$\lim_{h\to 0} \dot{r}^M = 0.$$

Remark 4. The expression $\varepsilon(h) = \max_{M} |\eta^{M}|$ can be evaluated in terms of constants estimating the derivatives of $f(\xi, x, u, q)$ and $\varphi_0, ..., \varphi_{\mathcal{D}}$ (up to second order).

Proof of the theorem. (7.2) follows immediately from (7.1) and $\lim_{h\to 0} \varepsilon(h) = 0$; consequently, all that remains to be proved is that relations (7.1) are satisfied.

From (6.2) and Lemma 2 it follows that s^{μ} and z^{μ} satisfy difference inequalities (6.3) and conditions $s^0 = z^0 = 0$.

Replacing H in Lemma 1 by k we get by (6.3), (5.2) and (5.4)

$$egin{align} r^{\mu,m} \leqslant s^{\mu} \leqslant & rac{arepsilon(h)}{L}(e^{Lk\mu}-1), \ & r^{\mu,m} \geqslant z^{\mu} \geqslant & -rac{arepsilon(h)}{L}(e^{Lk\mu}-1) \end{array} \ (\mu=0\,,1\,,\,...)\,,$$

which implies (7.1).

This completes the proof of Theorem 1.

Reference ·

[1] S. Lojasiewicz, Sur le problème de Cauchy pour les systèmes d'équations aux dérivées partielles du premier ordre dans le cas hyperbolique de deux variables indépendentes, Ann. Polon. Math. 3 (1956), pp. 87-117.

Reçu par la Rédaction le 1.6.1964