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Functions with -bounded nth differences

by MicHaeL ALBerT(!) and JoHN A. Baker(?) (Watcrloo, Canada)

Abstract. Let A be a commutative semigroup under addition and let Y be a Banach space.
For each natural number n, there exists &, > 0 with the property: if >0 and f: A - Y such
that

IS (=0 (S (x+kh)| <6 for all x, he A,
k=10
then there exists g: A — Y such that

11 (x)=g(x)| < k,0

and

Zn: (=) *Pg(x+kh) =0 for all x, he 4.

k=0

1. Introduction. Throughout this paper A denotes a commutative semi-
group under addition and Y denotes a real Banach space with the norm of
yeY denoted by |y|. Let Y be the real vector space of all functions from A
to Y. For heA, the linear difference operator 4,'1: Y4 > Y4 is defined by

zhlf(x) = f(x+h)—f(x) for feY? and x, he A. The nth iterate of 4’ f",

satisfies the identity
Ah"f(x) =Y (—1)"‘*<:)f(x+kh) for x, he A and feY".
k=0
Whitney [9] has shown that if Y= R (the real numbers), A = R (or
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(0, + ), 6 > 0, n is a natural number, f: A — Y is bounded on an interval
and lii"f(x)l < 6 for all x,he A, then there is a polynomial g of degree at

most n—1 such that

If (x)—g(x)| < k,0 for all xe A4,

where k, <1 if A = (0, +00) and k, < l/sup(:') if A=R.

With no regularity assumptions on f, Hyers [4] showed that if § > 0, n
is a natural number, 4 is a cone in a rational vector space and f: A =Y
such that

|hA...§f(x)|<6 for all x, h,,....,h, € A,
1 (]

then there exists a unique g: A — Y such that g(0) =0, ‘,f",';’ g(x) =0 and

F(x)—f(0)—g(x)) <& for all x. hy,...,h,€A.

The aim of this paper is to generalize and give a short proof of Hyer’s
theorem and to show how it can be used, together with a theorem of
Djokovic [2] to give a short proof of a generalization of Whitney’s result.
Whitney [9] also obtained a similar result in case the domain of fis a
bounded interval but our methods are not applicable in this case.

The relationship between the theorems of Whitney and Hyers can be
seen by noting the following well-known result (see for example [1] or [S).
If /- R—> R is such that e"f(x) =0 for all x, heR and if f is bounded on a

set of positive Lebesgue measure (for example, if f is Lebesgue measurable),
then f is a polynomial of degree at most n—1.

2. Background. We will use the following results which were proved for
mappings between vector spaces by Mazur and Orlicz [6] and [7] and, in
greater generality than required here, by Djokovi¢ [2].

A function a: A" — Y is called n-additive provided it is additive in each
variable, i.e. )

a(x; +x7, X3,..0, %) = a(Xxy, X3, ..., X))+ a(X], X3, -0y Xp),

Xy, X,y ey Xy + X)) = B(Xg, Xgs o0y Xp)+a(X1, X35 000y Xp)

for all x,, x},..., X,, X, € A; it is said to be symmetric provided a(x,, ..., x,)
=a(yy, ..., y») whenever (x,, ..., x,)eA" and (y,, ..., y,) is a permutation
of (x4,...,x,). If a: A">Y is symmetric and n-additive we let a*(x) =
a(x, x, ..., x) for all xeA4.
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THEOREM A. If a: A" - Y is symmetric and n-additive, then for all
x,hy,.... €A,

A...Aa*(x)=

hy b

nla(hy,...,h) if k=n,
{0 if k>n.

THeoreM B. To each natural number n there correspond natural numbers
s and p and integers m,, ..., m, with the property: for every hy, ..., hye A there
exist uy, ..., U,, vy, ..., b,€A such that

P
M) A...4f(0 =Y mAf(x+0v,)
hy by =1 ug
for all xecA and fe YA

14
For future reference, let M, =(n!)"% ) |m,.
k=1

THeEOREM C. If n is natural number and f: A — Y, then the following are
equivalent :

(i) e"f(x) =0 for all'x, he A,
(i1) ,f‘ ...fif(x) =0 for all x,h,,....,h,€eA,
1 n

(ili) there exist age Y and symmetric, k-additive a,: A* > Y, 1 <k<n-1,
such that

n—1
f(x)=ao+ Y at(x) for all xeA.
k=1

It is easy to check that 4 —A—A4=A44= 44 for all h,ke A.
h+k 1] k h & k A

3. Main results. First we will generalize and give shorter proofs of the
theorems of Hyers in [3] and [4]. The proof of the first theorem, on which
our analysis rests, is essentially the same as the proof given by Hyers [3] but
is short and included here for completeness.

THEOREM 1. If 8 >0 and f: A—>Y such that |f (x+y)—f(x)—f () <é
Jor all x, ye A, then there exists a unique a: A — Y such that

a(x+y) = a(x)+a(y)
and

f(x)—a(x) <8 for all x, yeA.
Moreover, a(x) = lim f(kx)/k for all xe A.

k—+ o
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Proof. For every xeA, | f(2x)—f(x)| = Y (2x)—2f(x)| < . If nis a
natural number and xe< A, then
P—J( )‘

2n+1 2 2n
Y(znﬂ y(( D am
<5/2"“+‘/—(@—f( )

It follows by induction that for every natural number n and every xe€ A,

29 (b t)s

Il n and p are natural numbers and xe A, then

[f@2"*x) f (2"x)| 1 (2"x)) .
' n+p n I T on f(”

S@™)

Hence, for every xe A, { > } 1s a Cauchy sequence in Y and if we
n=1

denote its limit by a(x) we have

—f(x)| <

<8/

a(x+y)=a(x)+a(y) for all x,yeAd

since

f(2"(x+y) f(2) f(2")
| 2 2" 2

for all x, ye A and every natural number n. Also, since
(2"x) 1
.+=]0,
+ >

If (x)—a(x)) <& for all xeA.

Since a is additive, for every natural number k& and each xe€ A,

i,

| < 9/2"

—f(x) <

it follows that

- %[f(kx)—a(kx)l < 3k,

so that

a(x) = lim £(Ii(—x) for each xe A.
k—-+ o

This calculation also proves the uniqueness of a and the proofl is complete.
We will need
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THEOREM 2. Suppose A,,..., A, are additive commutative semigroups,
015-.,0,>0 and f: A;x ... XA, = Y such that

lf(xl +x'1a'°"xn)_f(xl’""xn)—j'(x’l""’xn)' < 61!

................................

If(xl’ s xn+x:|)_f(xl, RS xn)_f(xla S x:l)l Sén

Jor all x;, x;e A;, 1 i< n. Then there exists a unique a: A; x ... xA, > Y
which is additive in each variable and such that

lf(xl g reny x,‘)—'a(xl, veay x”)l s mi.l‘l (61, PERRY (5,,)
for all (x,,...,x,)eA, x ... xA,. Moreover, if A=A =...=A, and f is
symmetric, then a is symmetric.

Proof. Without loss of generality, assume é, <9, for 1 <k <n. By
Theorem 1 we may let

KXy, Xz, oo X
a(xy,X3,...,X,) = lim S lkxy, x, x,)
A+ +x k

for (x;,x3,...,x,)€ A; x ... x A, and conclude that g is additive in the first
variable and

I_f(xl,xZ,..-, xu)—a(xl,xz,..., x,,)l S 61

for all x;eAd;, 1 <i<n.
To show that a is additive in the second variable notice that

lf(kxl’x2+x’2’"”xn)_f(kxlvxly'-"xn)_f(kxl’xlz""!xn)l < é
| k k k | =k

for x,€A,. x5, Xs€A,, ..., x,€A, and every natural number k. Letting
k - + oo shows that a is additive in the second variable. Similarly, a is
additive in each of the remaining variables.

The uniqueness of a is clear and the last assertion is trivial.

THEOREM 3. Suppose n is a natural number, & > 0 and f: A - Y such that
|f1 ...ﬁif(x)l <6 for all x, hy,...,heA.
1 ]

Then there exist symmetric, k-additive a,: A* - Y, 1 <k <n—1, such that

n—1

Izhl(f— Y af)(x)<é for all x, he A.
k

=1

Proof. f n=1, the conclusion is to be interpreted simply as
|/;'l f(x)I <6 for all x, he A. Thus the assertion is trivially true if n = 1.

7 — Annales Polonici Mathematici XLIIL |
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Suppose the theorem is true for n=m>1. Let f: A > Y such that
|.'/;1...hA f(x)<é forall x, hy,...,h,,. €A

1 m+1

For each hy,...,h,€ A,

I'th(hdl---ﬂ)f(x)l <90

or

1) |A...f1f(x+h)—hA...hAf(x)I <6 for all x, he A.

hy

But, for any x, hy,h,, h,,...,h, €A,
| 4 A...Af(x)—-ﬂ:iz...fif(x)—éll,{_lz...if(x)l

hy 0y by LT m

=( 4 —4 —ﬂ)(ﬂ---fn)f(xn =Iﬂﬂﬂ---£ﬂf(x)l5-

’ll+h'l hl

Thus, for each xe A4, the mapping (h,, hz,...,hm)q;‘dhA...ff(x) of A

into Y is “almost” additive in the first variable. But,l since difference
operators commute, for each xe A the mapping is symmetric and thus
“almost” additive in each variable. Applying Theorem 2 we find that for each
x€ A there is a unique a,: A™ — Y which is symmetric, m-additive and such
that

2 4.4 f(x)=ay(hy,....hp)l <O

h

for all hy,...,h, € A.
From (1) and (2) we find

3) 4. A4S (x+B)—a(hy,.... )| < 25

for all x, h, h,,..., h, € A.

Now replace x by x+y in (3) and then replace h by y+h in (3) and
compare the resulting inequalities to conclude that

(4) Iax(hli“'shm)_ax+y(h1’---ahm)| 64‘5

for all x, y, hy,...,h,€ A. Thus, for every x, ye A, a,—a,,, is bounded and
m-additive. It easily follows that a, = a,.,. Hence a, = a, for all x, ye A. Let
a, = mla,, x€A, to conclude from (2) that

(5) IhA"‘kAf(x)—m!am(hls""hm)lS‘S

for all x, hy,...,h, € A.
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Let f; = f—a%. Then, by Theorem A,
— — *
lhA,---flfllx)l —I;.A,"'J.A_f(x) :.A,A an (x)|

h
m

= I,‘.d ...';Af(x)—m!a,,,(hl,...,h,)l <90
1 m

for all x, h,,...,h, e A. By our inductive 'hypothesis, there exist symmetric k-

additive a,: A*> Y, 1 <k <m-—1, such that Izhi(fl— Y ah(x)| <8 for all
k=1
m-—1
x, he A. Butf Z at = f, Z a¥ so we are done.

Theorem I of [4] fol]ows from Theorem 3 by applying (b) of

Lemma 1. Suppose f- A—Y and & >0 such that Iilf(x)l < é for all
x, he A. Then

(a) there exists age Y such that |f (x)—aq| < 28 for all xe A;

(b) if A has a zero (a member 0 of A such that 0+ x = x+0 = x for all
xe A), then |f(x)—f(0)] <6 for all xeA;

(c) if for x, ye A there exists he A such that either y=x+hor x=y+h
and if Y= R, then there exists age Y such that |f(x)—a,| < /2 for all xe A.

Proof. (a) Fix yoeA and let ay = f(yo). For any xeA
UV(x+yo)—f(x)| = l;dof(x)l <4
and
I (x+yo)=f (ol =14 f(yoll <0
SO
If (x)—aol < 20
(b) For any xed, |f (x)~f(0O) =140 < d.
(c) Let x, ye A and suppose that y = x+h for some he A. Then
FO) 1 = 147N < 3

Then f is bounded and we can let

ao = sup f(x)+inf f(x);/2.

xeAd xcA

We now use Theorem 3 to generalize the theorem of Whitney referred to
in the introduction.
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THEOREM 4. Suppose n is a natural number, 6 > 0 and f: A — Y such that

lzhi"f(x)l <é Jor all x, he A.

Then
(i) there exist symmetric, k-additive a,: A* - Y, 1 <k < n—1 such that

n-1

|4h1 =Y aH(x) <M, for all x, he A;

k=1
(i) if in addition A admits division by n! (for every ke A there exists he A
such that k = n'h), then

n—1
|éh|(f— Y af)(x) <26 for all x, he A,
k=1
(i) if in addition A is a group and admits division by n!, then
n—1

. Ichi(f— Y ah(x) < 26/sup(;) for all x,heA.

k=1
Proof. By Theorem B,
|ﬁ1 ...ff(x)l <M for all x, hy,...,h,eA
1 n

and (i) follows from Theorem 3.
n—1

Let f; = f— ) a} so that f; is bounded and |4h1’fl () = |zhl"f(x)| < 6 for
k=1

all x, he A. Let x, ke A. Choose he A such that k = n'h. Then the argument

used by Whitney on pages 83 and 84 of [8], and attributed to A. Beurling
(see [9] also) shows that

14 £(0] = Ify (x+nth) = £ ()] < 28

in case (i) and

14 £, (0l < 28/sup ()
k m \m
in case (iii).

Notice that the assumptions of Theorem 4 are weaker than those of
Theorem 3 but the estimate is not as good in case (i). Using Lemma 1, the
result can be sharpened.

The next theorem generalizes Whitney’s result.
THEOREM 5. In addition to the assumptions of Theorem 4, suppose A is a

cone in a normed linear space X with nonvoid interior and suppose f is bounded
on a nonvoid open subset of A. Then a,,...,d,_, are continuous.
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n—1
Proof. Let g= ) a}. Then zhl"g(x)=0 for all x, he A and, by
k=1

Theorem 4 (i), chi(f—g)(x) is bounded for x, he A. By Lemma 1 (a), f—g is

bounded and so ¢ is bounded on a nonvoid open subset of A.

Now a,: A— Y 1s additive. Since A has nonvoid interior, X = A— A4
=1x—y| x,yeA|. If x, x;,y,y,€A and x;,—y, = x,—y,, then x,+y,
=x3+y; s0 a,(x)+a,(y;) = a,(x;)+a,(y)) or a;(x))—a;(y,) =a,(x))-
—a, (y;). Thus we may define @,: X — Y by letting d,(x—y) = a, (x)—a,(y)
for all x, ye A. It is easy to check that d, is the unique additive extension of
a, from A to X. Similarly for each k=1, 2,...,n—1, there is a unique
symmetric k-additive @,: X — Y such that g,(x,,...,x,) = a,(xy,..., x,) for all

n—1

X1y, X,€A. Let g = Z ay so that g extends g, g is bounded on a nonvoid
k=1

open subset of X and

Ahl"g(x) =0 for all x, heX.

From a theorem of Mazur and Orlicz {7] it follows that a, is con-
tinuous for I <k <n-1. '

A similar argument, using a theorem of Kemperman [5] instead of the
theorem of Mazur and Orlicz, can be applied to prove the following
theorem, thereby partially answering a question raised in [9].

THEOREM 6. In Theorem 4, suppose A is a cone in R? with nonvoid
interior and Y = R. If [ is bounded on a subset of A having positive Lebesgue
measure (in particular, if f is Lebesque measurable), then a, is continuous for
l<k<g<n-1.

4. Related functional inequalities. For real valued functions on abelian
groups, many of our results hold assuming only one-sided boundedness.

LEMMA 2. Suppose n is a natural number, A is an abelian group and f: A
—-Yand § >0 If hA ...ﬁlf(x) <6 for all x, hy,...,h,€ A, then
i n

|hA...fIf(x)| <6 forall x, hy,... heA.
t n

If nis odd and ﬁl"f(x) < 4 for all x, he A, then I.il"f(x)l <0 for all x, he A.
Proof. For any x, heA and any g: A >R, z)g(x) = —fihg(x+h).
Thus, in the first case

Ad. Af(x)=—A4A4...Af(x+h)=>2 -8 for all x, h,,... . h,eA.
hky k, ~hhy h,

The second assertion follows from the fact that if n is odd, and g: 4 — R,
then 4"1"g(x) = -flh"g(x+nh) for any x, he A.
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We now turn to inequalities associated with equations considered. for
example, in [2].

- THeorem 7. Suppose n is a natural number, 6> 0 and f, g: A~ 'Y such
that
|th"f(x)—g(h)| <6 for all x, he A.

Then there exist symmetric, k-additive a,: A* - Y, 1 < k < n, such that

4~ T a9 < 2M, 6

k=1
and
lgth)—ntat (B} < (1+2"M,,,)d for all x, he A.
Proof. For all x, he A,

Hence, by Theorem 4 (i), there exist symmetric, k-additive a,: A* - Y,
1 < k < n such that, for all x, he A,

(- T af) () < 2M,,,8

k=1
and hence
14— T at)(x) < "M, 6.
k=1
But
a"( Y at)(x) = nla}(h)
b=
so that
Iz,]"f (x)—nlay(h)| < 2"M,,, (6
and hence

[g(h)—ntar(h) <(1+2"M,;,)0 for all x, he A.
CoRroLLARY. If n is a natural number, 6 >0 and f: A — Y such that
|.§,1"f(x)—n!f(h)| <6 for all x

there exists a symmetric, n-additive a,. A" — Y such that
Vh)y—arh) <(1+2°M,,,)d/n'  for all he A.
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In Theorem 7 and the corollary, the estimates could be improved, if
stronger assumption are made on 4 and Y, by applying (1) or (iii) of
Theorem 4.
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