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Abstract. Some conditions generalizing the classical stability (in the Lapunov
sense) of motions are introduced and certain connections between them and regularity
properties of limit sets are established.

Introduction. The purpose of the present paper is to study regular
dependence of limit sets on points moving semi-stable in semi-systems
and dynamical semi-systems on metric spaces. Some results presented
below cover and generalize results given by the author in [7] and [9].
Certain results on upper semi-continuity of limit sets in so-called generalized
(multivalued) pseudo-dynamical systems have been obtained independently
by J. Klapyta [4], [6]. There are given also some results about non-empti-
ness of limit sets under suitable assumptions; few remarks on such question
are presented below in Section 5.

In order to present certain natural motivation for problems treated
here we would like to make some general introductory remarks on stabil-
ity and limit sets. The classical theory of stability, foundations of which
are due to A. M. Lapunov (cf. [6]) has been begun originally with respect
to solutions of differential equations and then extended by many authors
for dynamical systems and generalizations of them. The fundamental
question of the Lapunov stability of motions is now treated in very general
various versions as well as several problems of Lapunov stability of trajec-
tories and — in more general formulations — stability of sets. Some natural
complements to stability problems are investigations of so-called limit
sets. Stability theory, in a strict sense, examines mainly asymptotic
behaviour of solutions of differential equations (or, generally, motions in
abstract dynamical systems) when the independent variable, interpretated
usually as time, tends to infinity; properties of limit sets, reached by cor-
responding points “att = o” could be (and even — as one can expect —
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should be) some consequences of stability properties, or other properties
of motions “for large 7”. So in particular regular dependence of limit sets
on given points should be expected to be established if motions of those
points are regular. Since regularity properties of motions “near infinity”
are those of stability type (continuity is here not quite adequate) and, on
the other hand, a very natural regularity property for set-valued mappings
is semi-continuity, it seems to be obvious to ask about connections between
stability-like conditions assumed for motions and regular (semi-continu-
ous) dependence of limit sets on stable-like moving points. Such a problem
and some modification of it, are discussed in the present paper.

We limit ourselves to semi-systems generalizing the classical dynamical
systems and dynamical semi-systems on metric spaces, but some results
can easily be generalized and cxtended for Hausdorff topological spaces
satisfying the first axiom of countability. Obvious modifications could
be made in order to get similar results for systems (see Definition 1 below).

For a rich bibliography concerning stability of motions in various
versions and limit sets we refer to (for example) [1]-[3] or [8].

We will use the classical form of logic notation (especially for impli-
cations). The sets of real numbers, real non-negative numbers and positive
integers will be noted by R, R, and N, respectively. The first two of them
will be considered usually together with their natural topological group
or semi-group structures. The sign “:=" stands for “equal by definition”.
The notation used for moticns, trajectories and limit sets is generally
in accordance with the classical one (see, for instance, [1]-[3], [8]). If
(Y, p) is a metric space, ¥y € Y and r > 0 are given then by B(y, r) we shall
denote the open ball centered at the point ¥ with the radius ».

1. General terminology, fundamental definitions, notation. We shall
discuss dynamical systems and semi-systems and some generalizations of
them. Let us recall fundamental definitions which will be given below
together with some comments concerning the terminology simplifying
slightly that used by the author in other papers.

Let Y be a non-empty set, (¢, +) an abelian semi-group with a neutral
element 0, and let = be a mapping from the cartesian product G x ¥
into Y.

DEFINITION 1. The triple (Y, G; =) is said to be a semi-system if and
only if

(I) n(0,y) =y for every ye ¥,
(IT) nft, n(s,y)) = n(t+s,y) fori,se@@, ye¥.

A semi-system (Y, G; n) is said to be a dynamical semi-system if
and only if Y is a topological space, (G, +) is a topological semi-group and

(I1I) z is continuous.
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If (G, +)is a group then any semi-system (Y, G; =) is called a system.
Such a system which is simultaneously a dynamical semi-system is called
a dynamical system.

Remark 1. The above terminology coincides fully with the general
one used by many authors (compare, for instance, [1]-[3], [13]) in the
case of dynamical systems (called also often continuous flows). Note that
the classical theory is developed in particular with respect to systems of
the type (Y, R; =n). In the case of semi-groups (in particular, if @ = R.)
some authors use other terminology slightly different from the above
one. In particular, dynamical semi-systems in the meaning of our Defi-
nition 1 are called in [1] semi-dynamical systems. In the author’s mono-
graphs [8]-[9] there was used some “richer” terminology: semi-systems
(systems) were called there pseudo-dynamical semi-systems (respectively:
pseudo-dynamical systems) in order to underline that they are general-
izations of classical dynamical systems. In papers [10]-[12] there were
considered only semi-systems in the sense of Definition 1 and they were
called pseudo-dynamical systems. Here we propose for simplicity short
names: systems and semi-systems, keeping the traditional names: dy-
namical systems and — consequently — dynamical semi-systems for regular
(continuous) ones.

If (Y, G; n)is a semi-systems then there are two families of mappings
{m)iee and {2}y given by

(1.1) Yoy m(y)i=at,y)eXY
(for every fixed t € @) and

(1.2) al: Gat-a'(t):=n(t,y)eY
(for every fixed y € Y).

Let us recall the classical

DEFINITION 2. Let ¥y € ¥ be given. The mapping (1.2) is called the
motion of the point y or the motion through the point y.

Recall also the classical notation:

(1.3) n(y):= {n(t,y): teG}
and if @ = R

(1.4) ﬂ+(?!) 1= {n(t, y): tER*}:
(1.5) 7_(y) := {n(t,y): te R, t<0}.

The sets (1.3)—(1.5) are called : the trajectory of y, positive semi-trajectory
of y and the negative semi-trajectory of y, respectively. If @ = R, and so
we have a semi-system (Y, R,; n), then the trajectory =(y) coincides
clearly with (1.4).
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2. Limit sets and generalized semi-stability of motions in semi-systems
on metric spaces. Let us take under consideration a semi-system (X, Ry; 7)
where (X, p) is a metric space. This semi-system we shall consider as fixed
throughout this paper. Some particular suitable assumptions concerning the
space X and the mapping = will be introduced and added in the sequel
if it will be necessary in certain further particular problems. We shall
admit the usual definition of limit sets (compare, for instance, [2], [3] or
[8], [9]) with respect to semi-systems in metric spaces, namely:

DEFINITION 3. Let # € X be given. The set

(2.1) A(x):= {y € X: there is a sequence {t,} of elements of R, such
that ¢, - oo and y = lim=n(t,, z)}
is the limit set for .

Remark 2. In the general theory of semi-systems of the type
(Y, R,; n) (where Y is a topological space) by a limit set for # we mean
the set

(2.2) N {7 (=(@): t e R}.

In systems (Y, R; n) there are considered positive and negative
limit sets given by formulae

(2.3) A* (@) := (M {m (7, (2)): t € R}
and

(2.4) A= (@) 1= (N {m(7_(2)): te R},
respectively.

The set (2.2) is equal to (2.1) if ¥ = X is a metric space provided
with the natural topology induced by the metric (see, for instance, [2],
[3]). More general statement says that the sets (2.1) and (2.2) (with X
replaced by Y) are equal if the topology on Y is Hausdorff and satisfies
the first countability axiom (for details see, for instance, [8]). It is obvious
that in a system (Y, R; =) with a metric space (Y, ) we have

(2.5) At (2) = A(z)
when A(z) is given by (2.1) (with X replaced by ¥Y) and
(2.6) A~ (z) = {y € X: there is a sequence {¢,} = R such that
t, > —oo and y = lima(t,, z)}.

From the above observations it directly follows that results obtained
for limit sets in semi-systems can be modified in such a natural way that
parallel theorems for positive limit sets in systems will be obtainable
by that modifications.
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Remark 3. Directly from observations mentioned above in Remark
2 it follows that for every # € X the set A(z) defined by (2.1) is closed.
In order to make our paper reasonably self-contained we give, however,
a short outline of a known direct proof of the closedness of /4 (x) (compare,
for instance, the method presented in [2], [3]).

Let y,, € A(z) for m = 1,2, ... and let y = limy,,. For every m e N
there is a sequence {{;’} of elements of R, such that
i —>o00 and =(f,2)—>y as k— oo (for every m).

For each m there is k,, such that
9(””%", z), ?/m) <1/m;
without loss of generality we can assume that

it —>oc0 as m — oo.
m

‘We have

Q(“(tiTmy z), y) < oY) Ym) + Q(?/mv n(tkmm! w)) < oY, Ym)+1/m
which gives
:m(t,"’:n, ) >y as m —> oo
and proves that y e A(x).

The technics applied above (with a slight modification in some details)
will be used below in the proof of Theorem 1.

We shall discuss some stability-like properties of motions, infro-
ducing first of all the following

DEeFINITION 4. Let a be a non-negative real number and let x € X
be given. The motion = is said to be a-semi-s?abls if and only if
2.7 for every ¢ > 0 there exist 6 > 0 and % € R, such that
o(m(t+u, x), m(t+u,y)) < at¢ for every y e B(x, 6),1>0.
The motion #* which is 0-semi-stable is called semi-stable.

Remark 4. Let a> 0 be given. The following three conditions
are cquivalent:

(A) a" is a-semi-stable;

(B)  for every sequence {u,} of elements of R. such that u, — oo and for
every ¢ > 0 there exist 6 > 0 and k € N such that
o(w(ttyy ¥), (U, ¥)) < @+ for every y € B(z, 8) and n >k,

(C)  if {s,} is a sequence of elements of R, s, — c and {z,} is a sequence
of elements of X such that x,, — x, then

limsup g (z(s, 2,) , 7(s,, 2)) < a.

n—>oo
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Proof. I: (A) = (B). Let {u,} be such that u, - co and let 6> 0
be given. There are é > 0 and % € R, such that

e(nt+u,s),n(l+u,y)<aete for yeB(z,d) and 1> 0
and then there is ¥ € N such that
o(n(ty, @), w(t,, ¥)) < a+& for y e B(x,d) and n>k

(it is enough to take % such that , > u for » > k).

II: (B) = (0). Let {s,,} and {z,} be such that s, - o, z, — = and let
e > 0 be given. We can find é > 0 and % € N such that

[y e B(z, ), n > k] = 9(”(‘%1"”)’ ”(snyy))< a--¢.

Take m so large that m >k and o(w, z,) < é for » > m; so x, € B(z, 0)
and then o(n(s,, 2,), 7(s,, #)) < a+¢ for n > m. Thus

Limsup o (7(8,, ,), 7(8,, #)) < a+e.
This is true for every & > 0 and then finally
iimsupg(n(sn, %)y 7(Sn) m)) <a.

ITI: (C) = (A). Let (C) be satisfied. Suppose that (A) does not hold
true. So there is ¢* > 0 such that for every 6 > 0 and every u € R, there
exist ¥y € B(z, 8) and s > 0 such that

e(r(s+u, ), m(s+u,y) > ats.

Hence there exist sequences {z,} of points of X and {s,} of elements
of R, such that z, -z, s, - co and

(2.8) (7 (8ns %), (8, #)) = a+6*  form =1,2,...

(it is enough to consider d = 1,3,4%,..., v =1,2,...).
The last condition (2.8) contradicts (C). Thus (A) must be satisfied.
The proof is completed.
Remark 5. The a-semi-stability defined above is a special case

of the general (8, &, E)-semi-stability of motions considered in [12]. If »
can be taken as equal to zero, so if the following condition

(2.7")  for every &> 0 there exists § > 0 such that
el=(t, ¥), =(¢, ¢)) < a+¢ for every y e B(z, 8) and each £> 0

is satisfied, then we get a special case of so-called (8, &, E)-stability of
motions considered in [10]. If ¢ = 0, then condition (2.7') coincides with
the usual stability of =" (see, for instance, [2], [3], [8], [9])-
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3. Some regularity conditions for set-valued mappings and certain
compaciness conditions for the space. Recall that a mapping F defined
in X and ranged in the family CL(X) of all closed subsets of X is said
to be upper semi-continuous at a given point 2 € X if and only if

(3.1) {z: ila; : 3@’;; e_f’y‘"”n)} = y e F(q).
It is clear that applying the usual notation
{3.2) d(z, A) := inf{o(z, w): we A}
for ze X and A <« X, A = A and admitting the convention
{3.3) d(2,0):= oo,
we can replace in (3.1) the relation
y € F(z)

by the condition
d(y, F(x)) = 0.

This suggests the following natural generalization of upper semi-conti-
nuity of set-valued mappings:

DeriNrTION 5. Let F be a mapping from X into CL(X), let a be
a non-negative real number and let # € X be given. The mapping F is said
to be a-upper semi-continuous at the point z if and only if

z,eX, y,cl(x,)

Yn —> Yy Ty > }:d(y,F(w))<a.
n n

(3.4) {

Remark 6. Usually it is supposed that F about which we are talking
above takes values being non-empty closed subsets of X. We do not assume
it however, admitting formally also the case F(z) =@ for some z e X.
Hence in particular it is possible that F(z) = O for 2z € B(x, 8) with some
d > 0; in such a case ¥ is (trivially) e-upper semi-continuous at x for every
a> 0 (so we have also the trivial upper semi-continuity corresponding
to the case a = 0). This is true in the both cases: F(z) = @ and F(z) # @.
In the present paper we discuss F being the mapping x — A(x) which
can take in general also empty values. In some cases, however, it will
be excluded by some additional assumptions. Moreover, we shall observe
that semi-stability of motions will imply (under suitable additional
assumptions on the space X) that in a neighbourhood of such a point
for which A(z) # @ all points have the same property: limit sets are non-
empty (see Sec. 5 below).

We will use in the sequel some conditions assumed with respect to
the spacc X which are weaker than compactness but stronger than local
compactness. We shall introduce them formally giving the following
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DEFINITION 6. Let a > 0 be given. We say that X satisfies at a point
y the condition Comp(a) if and only if there is a positive number g such
that the ball B(y, a-+ ) is relatively compact.

If a > 0, then X satisfies the condition Comp[a] at the point y if and
only if the ball B(y, a) is relatively compact

Remark 7. It is clear that every compact space satisfies the condi-
tions Comp(a) and Comp[a] for all ¢ > 0. Local ecompactness is equivalent
to the existence of a function z +— a(x) such that the space satisfies at
every point z the condition Comp (a(a:)). We will need in some particular
problems the condition Comp (a) (or Comp [a]) for certain fixed (and given
previously) a; this cannot be assured by local compactness. In particular,
the assumption that X satisfies at every point y the condition Comp(a)
(a is the same for all y) is essentially stronger than local compactness.

4. Regularity of the mapping z > A(z). We shall discuss now some
connections between semi-stability conditions for motions and semi-con-
tinuity properties of the mapping

(4.1) Xoy - A(y) e CL(X).

THEOREM 1. Let a> 0 and x € X be given. Suppose that the motion
n° is a-semi-stable. Assume that {x,} and {y,} are sequences of elements of
X such that

(4.2) x,—>x as N —> oo,

(4.3) Yo —~Y a8 m > oo,

(4.4) Y, € A(x,) for every n.

Then there exists a sequence {8,} of elements of R, such that

(4.5) 8, >0 as M —> oo

and

(4.6) limsup ¢ (x(8,, z), ¥) < a.

N~>00

Proof. Relations (4.4) mean that for every m € N there is a sequence
{te}k=1,s,... Of elements of R, such that

(4.7) m—>o00 as k—-o00 (m=1,2,..)
and

(4.8) a(ly,2) >Y, a8 k—>o00 (m=1,2,...).
We have (see (4.2))

(4.9) e(®,, ) >0 as m—> oo

and (see (4.8))
(4.10) g(u(t',’,‘,wm),y)—>0 as ko> (m=1,2,..).
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On the other hand, we get by (4.3)

(4.11) 0Ymr¥) >0 2as m — oo.

By virtue of (4.7) we can find a strictly increasing sequence of positive
integers {k,} such that

(4.12) mgtgm for every m.

From (4.10) and (4.12) it follows that for every m € N there is p(m) e N
such that

(4.13) 0 (AU iy Tm) s Ym) <1fm  (m =1,2,..).
Without loss of generality we can assume that

(4.14) m<pm)<pm+l) (m=1,2,...).
This gives in particular

(4.15) p(m) >oc0 as m — oo,

Now put

(4.16) sm:=t?p(m), m=1,2,...

We have obviously

(4.17) 8, —>0C0 a8 M —>

and

0((Sms Tm)s Ym) < 1/m  for every m,
which gives
(4.18) e(%(8pms Tn)y Ym) =0 a8  m —> oco.

Using the triangle inequality we get

(419)  o(n (8, 2), ¥) < e(Um» ¥) + € (Ym» 7(8m» %)) +

+ 9(7‘(31»7 T}y (8 ‘”))
for every m. .
By virtue of (4.11), (4.18) and a-semi-stability of #” (compare (C) in.
Remark 4) we obtain from (4.19) our assertion
limsup g (% (8, ), ¥) < a.
The proof is completed.

THEOREM 2. If n” is semi-stable then the mapping (4.1) is upper semi~
continuous at the point x.

Proof. Let {#,} and {y,} be sequences of elements of X such that
conditions (4.2)—(4.4) are satisfied. By virtue of Theorem 1 we can find.
a sequence {s,} of real non-negative numbers such that 8, - oo and

(4.20) limsup ¢ ((s,, #), ¥) <0
N—-00

(compare Definition 4; semi-stability means 0-semi-stability).
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Inequality (4.20) means however that

limg(n(sn, x), y) =0
and then y e A(x).

This completes the proof.

COROLLARY. If n” stable then the mapping (4.1) is upper semi-continuous
at x.

Remark 8. The result established by the Corollary has been pre-
sented previously in [7], [9]. Similar results with respect to generalized
pseudo-dynamical systems were obtained independently by J. Klapyta
[4], [6] (compare remarks in Introduction).

THEOREM 3. Suppose that X satisfies al every point the condition
Comp(a). If " is a-semi-stable then the mapping (4.1) is a-upper semi-conti-
-‘nuous at the point x.

Proof. Suppose that {z,} and {y,} are such that (4.2)-(4.4) hold
true. Let > 0 be such that the ball B(y, a4 ) is relatively compact;
such % exists because of the condition Comp(a). Let {s,} be a sequence
of real non-negative numbers such that s, - oo and (4.6) holds true.
‘There is k € N such that

g(n(sn, x), y)< at+n for n>k.
Since B(y, a+7) 18 compact, we can assume without loss of generality

that the sequence {7(s,,®)} is convergent to some y*. Because of (4.6)
we get

(4.21) ey, ¥") < a.
‘On the other hand, we have
(4.22) y* e A(x).

‘The relations (4.21) and (4.22) give directly
d('y: A(w)) e
which finishes the proof.
COROLLARY. If X is compact and a” is a-semi-stable, then the mapping
(4.1) is a-upper semi-continuous at x.

. TuHrEOREM 4. Suppose that X satisfies at every point the condition
Comp [a]. If there is B << a such that a* is f-semi-stable then the mapping
(4.1) is a-upper semi-continuous at x. )

. Proof. Let {«,} and {y,} be such that (4.2)-(4.4) hold true and let
{s,} be such that (4.5) is satisfied and '

(4.23) ]imsupg(n(sn, x),y) < B.
Take 7 = }(e—p) and find k € N such that
{4.24) o(m (s, @), y) < B+ for n>k.
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From (4.24) it follows that

7n(s,, ) eB(y,a) for n=k.

So, without loss of generality we can assume that the sequence
{n(s,, )} is convergent to some y* which must belong necessarily to the
limit set A(z). So d(y, A(a:))< a {see (4.23)) which finishes the proof.

5. Weak a-semi-stability of motions and non-emptiness of some
limit sets.

DEFINITION 7. Let ¢ > 0 and =z € X be given. The motion =" is said
to be weak a-semi-stable if and only if

(5.1)  for every e > 0 there is 8 > 0 such that for every z € B(x, d) there is
u € R, for which

e(n(t+u, ), a(t+u,2)<ate for1=0.

If »® is weak 0-semi-stable then it is said to be weak semi-stable.

THEOREM 5. Assume that x € X is such that A(z) # O and suppose
that X satisfies the condition Comp (a) at every point of A(x).

If 2® is weak a-semi-stable then there is r > 0 such that A(z) # G for
every 2 e B(x, r).

Proof. Let us take some fixed y € 4A(x) and y > 0 such that the ball
B(y, a-+ty) is relatively compact. Let {s,} be a sequence of non-negative
numbers such that s, — oo and =(s,, #) >y as n - co. We have

(5.2) o(n(sn) @), 9) < a+}y
for n sufficiently large.

On the other hand, we can find 7 > 0 such that for every z € B(xz, 7)
there exists 'u e R, for which

gttt u, ), m(@+u,2)<atdy for t>0.
So for z € B(z, r) and n sufficiently large we have
(6.3) (7 (8ny @), w(8,, 2)) < @+ }y.
From (5.2) and (5.3) we get for n sufficiently large:
7(S,,2)eB(y,aty) for zeB(z,7)

which permits us to assume that {n(s,, 2)} is convergent (since B(y, a-y)
is relatively compact). The limit belongs to A(z); so A(2) # @ and the
proof is completed.

COROLLARY. If n" is a-semi-stable, A(x) # O and X satisfies Comp(a)
at every point of A(x), then there is r > 0 such that A(z) # O for every
ze B(z, r).

18 — Annales Polonicl Mathematict XLII
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In order to justify this statement it is enough to observe that:a-semi-
stability implies clearly the weak a-semi-stability.

THEOREM 6. Assume that X is locally compact and suppose that x € X
18 such that A(z) # B. If a° is weak semi-stable then there i8 r > 0 such that
A(z) # O for ze Bz, r).

In order to prove this theorem we apply the same method as that

used in the proof of Theorem 5; details concerning some little obvious
modification will be omitted.

COROLLARY. If X is locally compact, n* is semi-stable and A(x) + O,
then there exists r > 0 such that A(z) # O for z € B(wx, r).

6. Regularity of the mapping z - /A(z) in dynamical semi-systems.
In the present section we shall make some observations about the regu-
larity of the mapping (4.1) if = is continuous. First of all we shall state
and prove two lemmas.

LEMMA 1. Let z € X be given. Suppose that
(a) for every t € R, the mapping m, given by (1.1) is continuous at the point x;
(b) for every € > 0 there exist 6 > 0 and u € R, such that if % € B(z, 9), then

(6.1) d(n(t,2), n(@)<e for every t=u.
If {z,} and {y,} are sequences of elements of X such thai
(6.2) z, >,
(6.3) Yn =Y,
(6.4) Yn € A(@y),
then
yen(z).

Proof. There is a family {{{f}i_1... }me1e... Of sequences of real
non-negative numbers such that '

i >o00 as k-—>oo (for every m)
and
7(tPy %,) >%, as k—>oo (for every m).

Using the method presented in the proof of Theorem 1, we construct
a sequence {s,} such that

(6.5) 8, —> 00
and
(6.6) Q(n(sm‘wn); yn) -0 as n-—> o0

(compare (4.16)-(4.18)). By virtue of the fact that
Q(y’ yn) - 0
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we get from (6.6) |
(6.7) o(7(8,, 2,), ¥) — 0.

Let £ > 0 be arbitrary fixed and let 4> 0 and % € R, Be chosen in
such a way that if 2z € B(w, d), then

(6.8) a(m(ty 2), m(x)) < 3¢ for t>u
(see condition (b)). Let now »* € N be such that

(6.9) o(e,, )< 8 for m>n*,
(6.10) u<s, formn>n*

and

(6.11) o(n(8ss @,), ) < 3¢ for n>nt.

The relations (6.9) and (6.10) give (compare (6.8))
(6.12) a(n(s,, 7,), w(2)) < e for m>n*
and then there exists w e n(x) such that

(6.13) 0 (7 (Spes1y Tpoyr)s w) < }e.
From (6.11) and (6.13) we ggt |

ey, w)<e
which gives

(6.14) B(y,e)nn(z) #9.

Since (6.14) holds true for every ¢ > 0, we have our assertion

VKA
LEMMA 2. Let @ € X be such that 2° is continuous. If {z,} and {y,}
satisfy (6.2), (6.3) and :

(6.16) Yn € w(Z,),
then

Y € m(x).

Proof. For every m there is ¢, such that y, = n(i,, #). There are two
possible cases: (1) {t,} contains a subsequence {t, } convergent to some
t* e R,, (2) {t,} contains a subsequence {t " tendmg to infinity. In the
first case we have y = lim=(?, ,2) = m(t*, m) € n(z), while in the second
one we obtain y = lim (¢ 2, %) € A(z). This means that everywhen

y e n(x)VA(z).
It is enough to apply now a well-known formula

n(7) = n(x)V A(x)
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which is true under our assumptions (see, for instance, [2], [3] or [8], [9]),
from which we get immediately our assertion.

Remark 8. In [11] there is introduced the so-called semi-stability
of sets; the general definition restricted to our case will have the form:
A set M is semi-stable if and only if

(6.16) for every y € M and every & > 0 there are § > 0 and % € R, such that
if z€B(y, d) then d(=(t,2), M) < & for t> u.

It is obvious that condition (b) considered abovein Lemma 1 is satisfied
if the trajectory =(x) is semi-stable in the sense of definition (6.16). The
implication (b) = (6.16) is mot true in general (even if (a) is satisfied).
We have however the following easy

ProPosITION 0. If for every t the mapping 7, is open then for M = z(x):
(b) = (6.16).

CorOLLARY. If (X, R; =) i8 a system such that for every t the mapping
m, 8 continuous then:

(%) {(b) is fulfilled for m(x) replaced by =, (x)}
= {(6.16) s fulfilled for M = = (x)}.

In particular, () holds true if (X, R; ») is a dynamical system.

THEOREM 7. Assume that X s locally compact and (X, R,; =) is
a dynamical semi-system. Let © € X be such that condition (b) from the as-
sumptions of Lemma 1 holds true and moreover

(¢) for every e > O there is 8 > 0 such that for every z € B(x, 0) and every
t € R, there is u € R, for which

e(n(t+u,x), n(t+u,2) <s.

If {z,} is a sequence of elements of X such that

(i) z, >,

(id) A(z,) = {y,} for every n,
where

(iii) Ya Y,

then

(iv) y e A(z).

Proof. By virtue of Lemma 1 we get

Yy € n(x)
and so

(6.17) y e n(z)VAd(x).
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We have to prove that y € A(z). Assume the contrary; so

(6.18) y € n(w)\A(x).
Since y € m(x), there is s € R, such that
(6.19) Yy = n(s,x).

We shall prove now the following

ProrosITION 1. If {r,} i8¢ a sequence of non-negative real numbers
tending to infinity, then there exist f > 0 and n* € N such that

(T ¥) ¢ By, B) for n>n.

Proof. Suppose the contrary. So for every § there is a subsequence
{rn,} of {r,} (the sequence {n,} depends on B) such that

7(7y,,Y) € B(y, ) for every k.

Let us take § =1, 4, %, ... For every m we have a subsequence {r

_
of {r,} such that e

1
(T 0 ¥) eB(y, %—), kE,m =1,2,...

Take now w, : = Ty and find w, among the members of the sequence
{7y Je=1,2,... I Buch a way that w; < w,; then find w, among the members
of the sequence {"ns,k}k—l.z,... in such a way that w, < w,, ... ete.; having
w,_, we can find w, among the members of the sequence {rnp,k},‘_l,z.m in such
a way that w, ;< w,.

We have

(W, y) >y a8 M >0

and, on the other hand,

w,, —> 00
This means that (see (6.19))
(6.20) n(w,+8,z)>y as n->o0
and
(6.21) w,+8—>00 a8 n — oo.
Relations (6.20) and (6.21) give directly

y € A(w)

which contradicts (6.18). The proof of Proposition 1 is completed.

Now we have to repeat the begining of the proof of Theorem 1;
let us recall that
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(j) for every m there is a sequence {13}, ., .. such that &} - oo as k — oo
(for every m),

(ji) selecting in a suitable way a subsequence from the double sequence
{8 e=1,....m=1,0,... We obtain a sequence {s,} such that for n — oo:
8p —> 00, 7(8y, T,) > Y, Q(“(sn;wn)yyn) - 0.

Let » > 0 be such that B(y, y) is relatively compact and let g > 0
and n; be such that

(6.22) 7(s,,y) ¢ By, ) for n>m,
(with {s,} as in (jj) above). Let us put
(6.23) 7 :=min(}8, y).

By virtue of assumption (¢) we have

(jjj) there is & > 0 (chosen for ¢ = %f) such that for every z e B(xz, 8) and
t € R, there is u € R, for which

e(m(t+u, ), n(t+u,2) < 38.
We can choose now n, such that
(6.24) z, € B(z, ) for n> n,.
Since {y,} tends to ¥, there is ny such that

(6.25) Y, € B(y,n) for n> n,.
Let us now put
(6.26) n* := max(n,, Ny, Ng)

and fix some m = m® greater than a*.
From (6.22)-(6.26) it follows directly that

(6.27) n(s,,y) ¢ By, ) for n>n",
6.28) T, € B(x, 0),
(6.29) Yme € B(y; 7).

According to (j) we have

Ypo = UmA(f™, z,.), @ —>o00 as k- oo,
and so there is k* such that
(6.30) a(t™,x,.) eB(y,n) for Ek>Fk"
(recall that m* > n*). Let us take now

(6.31) 7’1 o= t;‘n‘-_‘_l, ml = n*'l"l
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and choose ¢, in such a way that
{6.32) 0(7‘(3m1 1+ 8+ a1y Bps)y A8y, +11+5+ 01,5 z)) < 18;

such a ¢, exists because of (¢) (see (jjj) above) applied for ¢ = }§ and
i = 8m1+7’1+6'- '
Let us now take such an integer &, > m, that #%,, > ¢;; put

(6.33) RE H
and find m, > m, such that
(6.34) Smy > Sy +11+ -

We can then find ¢, such that ¢, > ¢, and
(6.35) Q(“(smz +7 810y Bpye)y (830, + 72+ 8+ 4y, w)) < 38.

Generally, if r,, k,, m, and q, are defined, we choose m,, in such
a way that

Mpyy >m, and Smpy1 > smp-l—'rp-i-qp
and k,,, such that

kp+1 > my, and t;""+kp+l > an
and define

Tp41 1= oty
and finally choose ¢, such that g¢,,, > ¢, and
(4 (n(s’”‘pﬂ +rpt+8+api1, mm‘)y) ”(smp_H F 7o+ 8+Gppas w)) < 8.
Putting
(6.36) Wy, := smp+rp+s+qp,

we get a sequence {w,} such that

(6.37) w, > 00 a8 P> o0

and

(6.38) Q(W(Wpi,mm‘)’ 7 (Wp, m)) < 18, r=12,..
Relations (6.38) imply '

(6.39) w(Wy, Tpe) ¢ B(y,n) for p=1,2,...
On the other hand, putting for simplicity

(6.40) v,i1=10", p=1,2,...,

we obtain

(6.41) Vp > 0 as p — oo,

and.
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(6.42) 7(Vp, Tpe) € B(Y,79), P=1,2,...

From (6.37) and (6.41) it follows that we can assume without loss of gener-
ality that
(6.43) VKW <Vpyyy P=1,2,...

The mapping = is continuous, so because of (6.39), (6.42) and (6.43) we
can find for every fixed p a real number ¢, such that

(6.44) Wy < Cp < Vpy1

and

(6.45) 7(Cpy Tpye) € OB(y, 7).

It is clear that (compare (6.44)) for p tending to infinity we have
(6.46) ¢, —> 0.

Since n < y (compare (6.23)) we have
/ 0B(y,n) < B(y,v)

and then, because of the compactness of B(y, y), we can assume that the
sequence {z(c,, Z,,.)} is convergent to some y* € dB(y, 7). Relation (6.46)
implies, however, that y* € A(z,.) which gives (see assumption (ii)) the
equality

(6.47) Y = Yms-

The last equality contradicts (6.29). Thus we have proved that condition
(6.18) cannot be satisfied and then y e A(z); this completes the proof.

As a simple corollary of Theorem 7 we obtain the following

THEOREM 8. Assumethat X is locally compact, (X, Ry; 7) is a dynamical
semi-system, x € X is such that conditions (b) and (c) are satisfied and,
moreover,

(U) there is a neighbourhood V of x such that for every z e V the limit set
A(z) has exactly one element.

Then A(z) has exactly one element and the mapping
(6.48) Vayr Ly)eX,

where L(y) denotes the unique element of A(y), is continuous at the point x.
Proof. First we shall prove that the mapping

(6.49) X>y > A(y) e CL(X)

is upper semi-continuous at the point x.
Let {z,} and {y,} be such that #, -z, y, —y and y, € A(z,). For
n sufficiently large we have A(2,) = {y,} for infinitely many » or y, € A(x)
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for infinitely many » (the second case appears if x, = z for infinitely
many #). In the first case we apply Theorem 7 for the subsequence {yn }
of those members of {y,} which are single elements of A(z,), in the second
cagse we obtain directly ¥ € A(x) since ¥ is the limit of a sequence of elements.
of A(x). Thus ¥ € A(x) in every case. '

Now we shall prove that A(x) has exactly one element. Since A(x)
is non-empty it is enough to show that A(x) has at most one element.
Suppose the contrary; let 2, w be two distinct elements of A(z). Put a
= po(2, w) and £* = a/3. Take ¢ so small that the balls B(z, ¢) and B(w, ¢)
are relatively compact. There are two sequences {f,} and {s,} such that
t, - o, 8, — oo and =(t,, z) - 2, while n(s,, ) —w, and so ¢(x(t,,), 2}
< &/2 and ¢(n(s,, %), w) < £/2 for n sufficiently large. On the other hand
there is 6 > 0 such that for y e V\{x} for which ¢(y,2) << é we have
e(n(¢, @), n(t,y))< e/2 for every t>0 and so in particular for every
n: Q(ﬂ(tm Y), ml(ty, w)) < &/2, 9(7‘(31” Y), (8, .’D)) < ¢/2. Thus Q(“( s Y)s 2}
<e and o(n(s,,y),w)<e Since B(z,¢) and B(w,s) are relatively
compact we can assume without loss of generality that {=(t,,v)} and
{m(s,, y)} are convergent. The limits of these sequences, say % and vrespect-
ively, belong obviously to A(y) and so 4 = v. This is, however, imposs--
ible since g(u, ) > 0. The contradiction proves that /(x) has exactly
one element.

In order to finish the proof observe that the upper semi-continunity of
a set valued mapping which takes values being one-element sets is equiv-
alent to the usual continuity of the induced single-valued mapping. So the:
upper semi-continuity of (6.49) implies the continuity of the funection
(6.48). The proof is completed.

COROLLARY. If X is locally compact, (X, R,; n) is a dynamical semi-
system,. w(x) is semi-stable, n” is weakly semi-stable and condition (U)
18 satisfied, then the mapping (6.49) 48 continuous at x.

Remark 9. Condition (b) does not imply (¢), (¢) does not imply
(b); semi-stability of = (x) does not imply weak semi-stability of %, weak
semi-stability does not imply semi-stability of = (z).

As a simple and direct corollary of Lemmas 1 and 2 we get the fol-
lowing

THEOREM 9. Assume that (X, R.; =) 8 a dynamical semi-system,
z € X is such that condition (b) is fulfilled. Then the mapping

(6.50) X3y > n(y) e OL(X)

18 upper semi-continuous al x.

Proof. Let {z,} and {y,} be such that y, e =(x,) for every # and
@ —> &, Y, — Y. There is a subsequence {y, } of {y,} such that y, e 4(z, )
or there is a subsequence {ymp} of (y,} such that Ym, € “(f”mp)i in the first-
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case we apply Lemma 1, in the second one Lemma 2, getting in the both

cases: ¥ € w(z), which finishes the proof.
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