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1. Let a real Hamiltonian system with n degrees of freedom
(1) X;=O0H/dy;, y;j=—0H/0x;, j=1,...,n

have the Hamiltonian function H(x, y) which is analytic at the point x =y
= 0 and its Maclaurin series begins from quadratic members. Then zero is a
fixpoint of the system (1). Let 4,, ..., 4,, —4,, ..., —4, be eigenvalues of the
matrix of the linear part of the system (1). We assume that all Re4; = 0 and
we consider the Liapounov stability of the fixpoint x = y = 0 of the system
(1).

There exists [1, § 12, Theorem 12] a formal canonical transformation of
coordinates x, y »w, z which reduces the Hamiltonian function to the
normal form
(2 . h=3Y h,wtz?, <(p—q,2>=0

containing only reasonant members, for which the scalar product {(p—gq, 1>
= 0. Here we use the following notation: w, z, p, q, A are n-vectors: w
=Wy, ..., Wn)’ D =(pl’ v+vs Pn)s A= (/11, cevy )*n)

WP=W’;1W‘2,2...W5", <p’j'>=pl'll+"'+pn)'n°

If the coordinates x, y are real then the complex coordinates w, z satisfy a
" simple reality relation. As a rule the normalizing transformation x, y —»w, z
is given by divergent series. So the stability of the origin in the system with
the Hamiltonian function (2) does not guarantee the stability of the origin in
the system (1). Nevertheless the normal form (2) is convenient for a formula-

tion of conditions which guarantee the stability of the origin in the system
(1. If

3) {p, A) # 0 for all integral p with 0 <|p,|+ ... +|p, <4
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then the normal form (2) has the form

where all occurring symbols are real: 4; = ia;, g; = |w;z;| is the square of the
polar radius; a = (a4, ..., a,) and ¢ = (g, ..., @,) are vectors; g =(f;) is a
symmetric matrix.
If the equation (a, 9> = 0 has no solution ¢ = 0, ¢ # 0, then the fixpoint
x =y =0 is stable in the Liapounov sense. This is well known (see [1]).
Suppose that this condition is not fulfilled. Let us consider the condi-
tion:

(4) The system of equations <&, ¢> =0 and {g, o) = 0 does not have a
solution ¢ 2> 0, ¢ # 0.

2. Now we shall consider the case n = 2. In 1968, Moser [2, Theorem 7]
formulated the theorem: Conditions (3) and (4) are sufficient for stability of
the origin in the system (1). However, other statements have preceded
Moser’s theorem. Thus Arnold [3] announced the stability if the number
Ai/A, is irrational, is badly approached by rational numbers and condition
(4) is fulfilled. Next, Moser [4] noticed that Arnold’s condition for the
number 4,/4, can be weakened up to condition (3). In the statement by
Arnold [5] the stability is guaranteed by condition (3) and either condition
(4) or the condition

&) det B # 0

But it was shown that conditions (3) and (5) are not sufficient for the stability
(see [1, § 12, Section IV]). Then Arnold [6] demanded that the three
conditions (3), (4), (5) be fulfilled.

Whatever be the exact formulations of the theorems on stability, their
original proofs were incorrect because they used the following statement: A
fixpoint is stable if invariant tori are in every small neighbourhood of it in
each hypersurface H = const. A counterexample to this statement is given in
[1, § 12, formulae (37)] and is considered in detail in [7, 8]. Namely, let

1
= 5“ [1—ug, +2Re(x; +iy,)* (x,+iy,) %],
(6)

Uu=0a,0,+u02, 0= Xf‘}')’f, a1 q;+a, 49, =0,

where g; are integers.

THEOREM. Solutions of the system (1), (6) have two properties:

A. Invariant tori are in every small neighbourhood of the fixpoint x =y
= 0 in each hypersurface H = const.
B. The fixpoint x =y =0 is not stable in Liapounov sense.



A. D. BRUNO 363

The linear transformation

brings the Hamiltonian (6) into the normal form (2) with h = 2H. Hence the
system (1), (6) has two independent integrals ,

u=const, 2Hu '-—1=const,

and it is integrable. Thus, the solutions of the system (1), (6) can be studied
by means of elementary analysis. Results can be explained as follows. The
phase space consists of four domains S;, U; (j = 1, 2) such that §; consist of
invariant tori (stable domains), U; consist of unbounded solutions (unstable
domains) and their boundaries consist of bounded solutions. The projection
of the phase space x, y onto the first quadrant g,, ¢, = 0 is shown in Figure
1. Here the regions P;u Q; are projections of the stable domains §;, the
regions Q; U R; are projections of the unstable domains U;. We see that
_unstable domains U; approach the origin. Hence it is not stable in Liapou-
nov sense. The level H =0 consists of invariant tori and each level H
= const # 0 intersects a stable domain S; (i.e. it contains invariant tori).
Projections of the levels H =c and H = —c are shaded in Figure 1.

Fig. 1

The first correct proof of the stability of a fixpoint under conditions (3)
and (4) was given by Moser [9].

3. Now let us consider the case n > 2. For that case, Thai [10] has published
a proof of the Liapounov stability of a fixpoint of the system (1) under
conditions (3) and (4). However, his proof considers only one case of a
possible disposition of integral curves and does not consider other possible
cases. For example, in Section 3 in the hypersurface |H,| = y*, he considers a
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curve S, (y) and its dynamical image S,(y). He thinks that S,(y) must be a
single curve, but it can be a more complicated set (such as a union of several
curves). He also thinks that curves S, (y) and S, (y) must have a common end
(the point B), but this is an additional restriction.

Note that under conditions (3), (4), there is formal stability [11] and
conditions of steepness [12] are fulfilled. Hence if there is an instability it is
very slow. Up to the present (1986) there are no examples of Liapounov
instability for cases of formal stability.

4. Gavrilov [13] has proved a weak stability (not Liapounov one) of
solutions of a perturbed Hamiltonian system with n degress of freedom. But
his proof uses the statement: A real continuous function does not change its
sign. Namely [7, Section 4], in the second step of the proof of Lemma, he
says that in formula (16) the sign before the square root cannot change. If we
denote

—w=1+2(H,-HY)/o

then (16) takes the form w = + . /w?, where \/F = |w|. If real w varies
continuously in an interval (—a, ) with & > 0, then the sign before the root
must change. Arguments with complex branches in p. 226-227 are correct
only if the point w = 0 is deleted. But here it is not deleted and a continuous
passage from one branch to the other is possible. '

As a consequence of that mistake, Lemma and Theorem in [13] are not
proved. Moreover, they are a base for Theorem [14] on stability of Solar
system, which is also not proved. Similar defects are in the first variant [15].
In [16] there is a counterexample to Theorem in [13].

For a general approach see in [17, 18].
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