ON STEINER MANIFOLDS

BY

L. SZAMKOŁOWICZ (WROCŁAW)

Introduction. The notion of TS-quasigroups is important in the theory of quasigroups developed by R. H. Bruck, A. Sade, S. K. Stein, V. D. Belousov and others (see e.g. [1] and [4]). A quasigroup is called a TS-quasigroup if the equation xy = z implies the equation x'y' = z', where x', y', z' is any permutation of elements x, y, z. Put another way, this means that we always have xy = yx and x(xy) = y. An idempotent TS-quasigroup is called a $Steiner\ quasigroup\ [1]$.

The notion of a TS-quasigroup was introduced by Bruck [2] who also pointed out the analogy between the idempotent TS-quasigroups and the triple systems of Steiner. Some results about Steiner quasigroups and their generalizations can be found in [3] and [5]-[7].

In [8], I have considered the notion of an A^k -algebra—a generalization of Steiner quasigroups. Each A^k -algebra is determined by a finite system of equations. The existence of an A^k -algebra of n elements implies the existence of at least one system $\sigma(2, k, n)$ of Steiner that is completely determined by this algebra.

In this paper, I shall generalize the notion of an A^k -algebra and hence also of an idempotent TS-quasigroup, by introducing the notion of a Steiner (k_1, k_2, \ldots, k_n) -manifold.

These manifolds appear to correspond precisely to such $\sigma(2, k, m)$ systems of Steiner which can be described algebraically as finitely equationally axiomatizable groupoids.

We get a further generalization by introducing the notion of a Steiner quasimanifold.

1. Let $k_1, k_2, ..., k_n$ be an increasing sequence of integers and let $k_1 > 2$.

Definition 1. The $(k_1, k_2, ..., k_n)$ -groupoid of Steiner is the groupoid $G = \langle A, \circ \rangle$ for which the following conditions hold:

 (W_1) Each pair of different elements of A generates some subset of A consisting of k_1 elements.

 (W_i) (i = 1, 2, ..., n) Each system of i+1 independent (in the sense of generating) elements of A generates some subset of A consisting of k_i elements.

It is easy to see that in the case when A is a finite set, each (k_1) -groupoid of Steiner is equivalent with some $\sigma(2, k, m)$ -system of Steiner.

Let $G(X, \circ)$ be the groupoid of words $t_a = t_a(x_0, \ldots, x_n)$, where $x_i \in X$ are free generators. Denote by $T^{(n)}$ the set of all words of $G(X, \circ)$, and by $T^{(i)}$ a subset of $T^{(n)}$ generated by x_0, x_1, \ldots, x_i . Let π be a relation of equivalence in $T^{(n)}$ satisfying the following conditions:

$$(\mathbf{M}_{j}) |T^{(j)}/\pi| = k_{j} (j = 1, 2, ..., n);$$

(RP₀) for each triple of words t_1 , t_2 , $t_3 \in T^{(n)}$ if $t_1 \pi t_2$, then $(t_3 \circ t_1) \pi (t_3 \circ t_2)$ and $(t_1 \circ t_3) \pi (t_2 \circ t_3)$;

(RP) for each system of i+1 words $t_0, t_1, \ldots, t_i \in T^{(n)}$ and for each pair of words $t_a, t_\beta \in T^{(i)}$ if $t_a(x_0, x_1, \ldots, x_i) \pi t_\beta(x_0, x_1, \ldots, x_i)$, then $t_a(t_0, t_1, \ldots, t_i) \pi t_\beta(t_0, t_1, \ldots, t_i)$ for $i = 1, 2, \ldots, n$;

(RJ) for each system of i+2 words $t_0, t_1, \ldots, t_{i+1} \in T^{(i)}$ such that $\sim (t_j \pi t_s)$ for $j \neq s$ and $j, s = 0, 1, \ldots, i$ there exists a word $t \in T^{(i)}$ for which $t(t_0, t_1, \ldots, t_i) \pi t_{i+1}$.

Conditions (M_j) , (RP_0) , (RP) and (RJ) are a scheme of a system of axioms. We get a well defined system $\langle T^{(n)}, \pi \rangle$ of axioms by specifying $T^{(n)}$ and π . By a Steiner (k_1, k_2, \ldots, k_n) -manifold we shall mean the class of algebras satisfying a system $\langle T^{(n)}, \pi \rangle$ of axioms.

We call a finite axiom system of a Steiner $(k_1, k_2, ..., k_n)$ -manifold a submodel $\langle \tau, \pi \rangle$ of $\langle T^{(n)}, \pi \rangle$ if $\tau \subset T^{(n)}$ is finite and the relation π in $T^{(n)}$ is well defined by its own restriction to τ .

2. Let ϱ be a relation of equivalence in $T^{(n)}$ for which $(\mathbf{M}_n) \mid T^{(n)}/\varrho \mid = k$

and

(RP₀) for each triplet of words t_1 , t_2 , $t_3 \in T^{(n)}$ if $t_1 \varrho t_2$, then $(t_3 \circ t_1) \varrho (t_3 \circ t_2)$ and $(t_1 \circ t_3) \varrho (t_2 \circ t_3)$.

Definition 2. The *natural sequence* of subsets $T_0, T_1, ..., T_i, ...$ of $T^{(n)}$ is the sequence constructed as follows:

- 1. T_0 consists of all free generators of $T^{(n)}$,
- 2. T_j consists of all words of the form $t_i \circ t_s$, where either $t_i \in T_{j-1}$ and $t_s \in T_p$ $(p \leq j-1)$ or $t_s \in T_{j-1}$ and $t_i \in T_p$.

Definition 3. A basis of the natural sequence of subsets T_0, T_1, \ldots of $T^{(n)}$ is a sequence of words τ_1, \ldots, τ_k such that 1^o $\tau_i \varrho \tau_j$, $i \neq j$ $(i, j = 1, 2, \ldots, k)$, and 2^o if $\tau_i \in T_r$, then for each $t \in T_s$ (s < r) we have $\sim t \varrho \tau_i$.

Having chosen a basis, let T_q be the last among those elements of the natural sequence which contains some elements of the basis. Put

$$T=\sum_{p=0}^{q+1}T_p.$$

In virtue of (RP₀) it is easy to prove by induction that the relation ϱ in $T^{(n)}$ is well defined by its own restriction to T. Therefore:

For each axiom system $\langle T^{(n)}, \pi \rangle$ there exists a finite axiom system $\langle \tau, \pi \rangle$.

3. Let $\langle T^{(1)}, \pi \rangle$ be an axiom system of a Steiner (k_1) -manifold. Free generators of $T^{(1)}$ will be denoted by x and y.

THEOREM 1. For the axiom system $\langle T^{(1)}, \pi \rangle$ we have $(x \circ x) \pi x$. Proof. Suppose that

$$(*) \sim (x \circ x) \pi x.$$

Moreover, let each coset of π contain an element $t_i(x, x)$. Let the word t(x, y) belong to the coset containing $t_j(x, x)$. By (RP), $t(x, y)\pi t_j(x, x)$ implies $t(x, x)\pi t_j(x, x)$. Hence all words that are equishaped with t(x, x) are in relation π with t(x, x) (words $t_1(x, y)$ and $t_2(x, y)$ are equishaped if $t_1(x, x)$ is identical with $t_2(x, x)$). Since x and y are equishaped, we have $x\pi y$. But by (RP) we have $x\pi t$, where t is an arbitrary word. Hence $x\pi(x\circ x)$ which contradicts (*).

Hence there exists a coset not containing a word which could be written by means of x only. Denote such a class by K. It follows form (RJ) that if K contains the word t(x, y), then there exists a word $t_1(x, y)$ such that $t(x, y)\pi t_1(x, x \circ x)$. But $t_1(x, x \circ x)$ is written by means of x alone — a contradiction. Thus $(x \circ x)\pi x$, which completes the proof.

THEOREM 2. For the axiomatics $\langle T^{(1)}, \pi \rangle$ we have:

- (Q₁) for each triplet of words t_1 , t_2 , $t_3 \in T^{(1)}$ if $t_1 \circ t_2 \pi t_1 \circ t_3$, then $t_2 \pi t_3$;
- (Q'₁) for each triplet of words $t_1, t_2, t_3 \in T^{(1)}$ if $t_2 \circ t_1 \pi t_3 \circ t_1$, then $t_2 \pi t_3$;
- (Q₂) for each pair of words t_1 , t_2 there exists a word t_3 such that $t_1 \circ t_3 \pi t_2$;
- (Q_2') for each pair of words t_1 , t_2 there exists a word t_3 such that $t_3 \circ t_1 \pi t_2$.

Proof. We start with the proof of (Q_1) . If $x\pi y$, then, by (RP), $x\pi t$ for each t, which is impossible. If $x\pi x\circ y$, then by (RP) we have $y\pi y\circ x$, whence $k_1=2$, a contradiction. In the same way we obtain $\sim x\pi(y\circ x)$. Thus

(i) $\sim x\pi(x\circ y)$, $\sim x\pi(y\circ x)$ and $\sim x\pi y$.

Let $t_1 \circ t_2 \pi t_1 \circ t_3$. By (i) and (RJ) there exists a t such that $y\pi t(x, x \circ y)$. Hence by (RP) we have first $t_2\pi t(t_1, t_1 \circ t_2)$ and $t_3\pi t(t_1, t_1 \circ t_3)$, which by

(RP) and the assumption of the theorem implies $t_3\pi t(t_1, t_1\circ t_2)$, and, finally, $t_2\pi t_3$.

We prove (Q'_1) in the same way.

From (Q_1) , (Q'_1) , (RP) and (M_1) we immediately obtain (Q_2) and (Q'_2) .

Theorems 1 and 2 lead to the

COROLLARY. Each Steiner $(k_1, k_2, ..., k_n)$ -manifold is an idempotent quasigroup.

4. Example of a construction. Let $t(x_1, x_2, ..., x_n) \in T^{(n)}$ and $y_1, y_2, ..., y_n$ be coordinates of points of the hyperplane $y_1 + y_2 + ... + y_n = 1$ in the n-dimensional affine space over the field GF(p). Let h be the mapping $\rightarrow (y_1, y_2, ..., y_n)$ defined as follows:

$$h: x_i \to (y_1, y_2, ..., y_n), \quad \text{where } y_i = 1, \ y_j = 0 \text{ for } j \neq i.$$

If $h((t_1(x_1, x_2, ..., x_n)) = (y_1', y_2', ..., y_n')$ and $h(t_2(x_1, x_2, ..., x_n)) = (y_1'', y_2'', ..., y_n'')$, then

$$h(t_1(x_1, x_2, \ldots, x_n) \circ t_2(x_1, x_2, \ldots, x_n)) = (y_1, y_2, \ldots, y_n),$$

where $y_i = qy'_i + (1-q)y''_i$, q being any element of the field different from 0 and 1.

Define now relation π as follows:

$$t_1(x_1, x_2, \ldots, x_n) \pi t_2(x_1, x_2, \ldots, x_n)$$

if and only if $(y'_1, y'_2, ..., y'_n) = (y''_1, y''_2, ..., y''_n)$.

The pair $\langle T^{(n)}, \pi \rangle$, thus defined, is an axiom system of a Steiner $(p, p^2, \ldots, p^{n-1})$ -manifold. It is easy to verify that each Steiner (p)-manifold obtained in this manner satisfies the condition of elasticity:

$$x \circ (y \circ x) = (x \circ y) \circ x.$$

A Steiner (p, p^2) -manifold is a distributive quasigroup, i.e. it satisfies the following conditions:

$$x \circ (y \circ z) = (x \circ y) \circ (x \circ z),$$

$$(y \circ z) \circ x = (y \circ x) \circ (z \circ x).$$

A Steiner (p, p^2, p^3) -manifold is a medial quasigroup (according to Stein); this means that it satisfies the equation

$$(x \circ y) \circ (u \circ v) = (x \circ u) \circ (y \circ v).$$

5. Examples of axiom systems.

I. $x \circ x = x$.

II.
$$x \circ y = y \circ x$$
.

III. $x \circ (x \circ y) = y$.

4

This is an axiom system of Steiner (3)-manifold. From II the elasticity follows.

IV.
$$x \circ (y \circ z) = y \circ (z \circ (x \circ y))$$
.

I-IV are axioms of Steiner (3,9)-manifold. It is easy to prove that they imply the distributivity conditions.

$$V. \ x\circ (y\circ (z\circ u))=z\circ (y\circ (x\circ u)).$$

I-V are axioms of Steiner (3, 9, 27)-manifold. They imply the condition of mediality.

6. The review of Steiner (k_1) -manifolds for $k_1 \le 7$. There exists one and only one Steiner (3)-manifold:

$$[\mathbf{A}^{\mathbf{3}}] \qquad x \circ x = x, \quad x \circ y = y \circ x, \quad x \circ (x \circ y) = y.$$

There exists one and only one Steiner (4)-manifold:

$$[A4] x \circ x = x, x \circ y = y \circ (y \circ x), x \circ (x \circ (x \circ y)) = y.$$

There exist three Steiner (5)-manifolds:

$$[A^5] x \circ x = x, x \circ y = y \circ x, x \circ (x \circ y) = y \circ (y \circ (y \circ x)),$$
$$x \circ (x \circ (x \circ (x \circ y))) = y.$$

 $[\mathbf{A}^{5''}]$ dual to $[\mathbf{A}^{5'}]$ -with the operation $x \times y = y \circ x$.

There exist five Steiner (7)-manifolds:

$$egin{aligned} \left[\mathbf{A}^7
ight] & x\circ x = x, \quad x\circ y = y\circ \left(y\circ \left($$

 $[A^{7'}]$ dual to $[A^{7}]$.

$$[B^7] \qquad x \circ x = x, \quad x \circ y = y \circ x. \quad (x \circ (x \circ y)) \circ (y \circ (y \circ x)) = x \circ y,$$
$$(x \circ y) \circ (y \circ (y \circ x)) = y \circ (x \circ (x \circ y)), \quad x \circ (x \circ (x \circ y)) = y.$$

$$[C^7] x \circ x = x, x \circ (x \circ y) = y, (y \circ x) \circ x = (x \circ y) \circ y,$$
$$((y \circ x) \circ x) \circ x = y, (x \circ y) \circ (y \circ x) = y \circ (x \circ y).$$

 $[C^{7'}]$ dual to $[C^{7}]$.

Colloquium Mathematicum XX.1

7. Steiner quasimanifolds. Let $G(X, \circ)$ be a groupoid of words, where X is the set of three free generators: $X = \{x, y, z\}$. Denote by $T^{(2)}$ the set of all words of this groupoid. $T^{(1)}$ denotes the subset of words of this groupoid generated by x and y.

Let π be an equivalence relation in $T^{(2)}$ satisfying the conditions $(M_1) |T^{(1)}/\pi| = k_1;$

(RP₀) for each triplet of words t_1 , t_2 , $t_3 \in T^{(2)}$ if $t_1 \pi t_2$, then $t_3 \circ t_1 \pi t_3 \circ t_2$ and $t_1 \circ t_3 \pi t_2 \circ t_3$;

(RP₁) for each pair of words t_0 , $t_1 \in T^{(2)}$ and for each pair of words t_a , $t_\beta \in T^{(1)}$, if $t_a(x, y)\pi t_\beta(x, y)$, then $t_a(t_0, t_1)\pi t_\beta(t_0, t_1)$;

(RJ₁) for each triplet of words t_0 , t_1 , $t_2 \in T^{(1)}$ such that $\sim (t_j \pi t_s)$ for $j \neq s$ and j, s = 0, 1, 2, there exists a word $t \in T^{(1)}$ such that $t(t_0, t_1)\pi t_2$.

Definition. The words $t_0, t_1, t_2 \in T^{(2)}$ are linearly dependent which we denote by $L(t_0, t_1, t_2)$, if $\sim (t_j \pi t_s)$ for $t \neq s$ and t, s = 0, 1, 2, and if there exists a word $t \in T^{(1)}$ such that $t(t_0, t_1) \pi t_2$.

Let ϱ be an equivalence relation in the set $T^{(2)}$ such that

(W) $t_1\pi t_2$ implies $t_1\varrho t_2$;

 $({
m M_2}) \; |T^{(2)}/arrho| = k_2;$

(RP₂) for each triplet of words t_0 , t_1 , $t_2 \in T^{(2)}$ such that $\sim L(t_0, t_1, t_2)$ and for each pair of words t_a , $t_\beta \in T^{(2)}$, if $t_a \varrho t_\beta$, then $t_a(t_0, t_1, t_2) \varrho t_\beta(t_0, t_1, t_2)$;

(RJ₂) for each quadruple of words t_0 , t_1 , t_2 , $t_3 \in T^{(2)}$ such that $\sim t_j \varrho t_s$ for $j \neq s$ and j, s = 0, 1, 2, 3, and $\sim L(t_0, t_1, t_2)$, there exists a word $t \in T^{(2)}$ such that $t(t_0, t_1, t_2) \varrho t_3$.

A model $\langle T^{(2)}, \varrho \rangle$ is called *axiomatics* of a (k_1, k_2) -quasimanifold of Steiner.

Each Steiner (k_1, k_2) -manifold is a Steiner (k_1, k_2) -quasimanifold. In fact, conditions (RP_2) and (RJ_2) are a weakened form of conditions (RP) and (RJ) for the relation π of section 1.

We give now an example of an axiom system of a Steiner quasimanifold which is not an axiom system of a Steiner manifold.

(3,7)-quasimanifold of Steiner:

I. $x \circ x = x$,

II. $x \circ y = y \circ x$,

III. $x \circ (x \circ y) = y$,

IV. $\sim L(x, y, z) \rightarrow x \circ (y \circ z) = (x \circ y) \circ z$, where $\sim L(x, y, z)$ denotes the independence in the sense of generating.

REFERENCES

- [1] В. Д. Белоусов, Основы теории квазигрупп и луп, Москва 1967.
- [2] R. H. Bruck, Some results in the theory of quasigroups, Transactions of the American Mathematical Society 55 (1944), p. 19-52.

- [3] Contributions to theory of loops, ibidem 60 (1946), p. 245-354,
- [4] A survey of binary systems, Berlin 1958.
- [5] A. Sade, Quasigroupes demi-symétriques, Annales de la Société Scientifique de Bruxelles 79, II (1965), p. 133-143.
- [6] L. Szamkołowicz, On the problem of existence of finite regular planes, Colloquium Mathematicum 9 (1962), p. 245-250.
 - [7] Remarks on finite regular planes, ibidem 10 (1963), p. 31-37.
- [8] Sulla generalizzazione del concetto delle algebre A_n^3 , Accademia Nazionale dei Lincei, Rendiconti, S. VIII, 38 (1965), p. 810-814.

Reçu par la Rédaction le 10.10.1967