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On local derivatives

by KrystyNa SkOrNIK (Ruda Slaska)

Abstract, This paper deals with local derivatives of [unctions of several variables having
values in a fixed Banach space. If the local derivative of a function of one real variable vanishes
almost everywhere, then so does its first difference. This theorem can be generalized to any
number of variables and to any order of the derivative, and this is the subject of this note. It is
also shown that the local derivative (of order m =(l,...,1)) of an integral equals to the
integrand.

Local derivatives of functions of one real variable having values in a
Banach space were considered by J. Mikusinski in [3]. Such derivatives have
an advantage as compared with the concept of almost everywhere deriva-
tives. Namely, if the local derivative of a real function vanishes in some
interval, we may conclude that the function itself is constant almost every-
where in that interval. This property is of crucial significance in the
investigation of differential equations. It can be equivalently formulated as
follows: if the local derivative of a function vanishes almost everywhere, then
so does its first difference. In this formulation the theorem can be easily
generalized to any number of dimensions and any order of derivation, and
this is the subject of this note.

Local derivatives of functions of g real variables having values in a
Hilbert space have been considered in [6].

1. Notation and basic definitions. In this paper we are concerned with
distributions in the g-dimensional Euclidean space which admit their values
in a fixed Banach space 2. The g-dimensional Euclidean space is denoted by
R% and its points by x = (¢,,...,&,). The set of all non-negative integer points
of R? will be denoted by P?. Moreover, we shall use the following notation:
x+y=(¢, +r’11"'a§q+nq)3 X=y =(él_171v"-=’:q_71q)s Ax =(/1¢1,---qu), xy
= (&1 ny,.0, Eqny), Xm =E41 .. &, whete y = (11,...,1g), m=(Hy,..., h)EPT
and A1 is a real number. The symbol ¢ denotes the point whose i-th
coordinates is 1 and all the remaining ones are 0. If a point x has
the coordinates ¢y, ..., £, then the point x+4e;y; differs from x only by
the i-th coordinate, which is equal to & +y,. It will be also convenient to
write e =(1,..., 1).
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Let a = (y,...,a,) and b =(B,,...,B,). The set of all points xeR? such
that a; < &; < B; (j=1,...,q) will be called a g-dimensional open interval and
denoted by a < x < b or (a, b). Infinite values for «, and §; are admitted. If
and f; are finite, then the set of all points xeR? whose coordinates satisfy
the inequality o; <&, < f; (G=1,..., q) will be called a g-dimensional closed
interval and denoted by a < x < b or [a, b].

We say that a function defined in R? is smooth if it is continuous in RY,
as are its partial derivatives of any order.

If ¢(x) is a smooth function and k = (x,...,%,) is a system of non-
negative integers, i.e., k€ P9, then by its derivative of order & we shall mean
the function

('m.-f—...'i A

D* ¢ (x) =F‘n’—;""_§q{p(él' cs Gl

A function f is of class C" in [a, b] (m=(py,..., )€ PY), if all its
derivatives of order < m exist and are continuous functions in [a, b].

It is known that if a function f is of class C" and two mixed derivatives
of order m differ only by the ordering of differentiation, then the two
derivatives are equal (see [2], [3]).

We first consider the 1-dimensional case, 4 = 1. We adopt the delinition

ACNf(x) =f(x), AMPf(x)=flx+h)—f(x),
A f = ACH QLB £) g =2 3,

The symbol 4" will be called the difference operator of the first order, and
S(x+h—f(x) is usually called a first difference of a function y = f(x) (see
[5D.

It is easy to check, by induction, that the following equality

m

A(m.h)f(x) - _Z (_l)m-j (’;‘)f(‘('hlh)

holds for each meN.
If fis a function defined in RY, then we adopt the definition

A f(x) = flx+e ) —flx),  4eNf = Afrx) | glar f,

where h = (y,,...,%,), and the symbol on the right-hand side denotes the
composition of operators.

As regards functions of one variable, we extend the definition of the
difference of order e =(l,...,1) to the difference operator of order m
= (H1,.-, 4g). Namely, we put

A(m.h)f = A(ln,.x,) Af,“a"‘v’f,
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where

Hi
AHn f(x) =Y (- 1)"“'_"’(#.'.)‘/'(«‘ e -
i

i=0

By the m-th local derivative of a function fin R we mean the local limit
of the expression

1
(m,h) .
i 4™ f(x)

as h—0. In other words, g is the m-th local derivative of f if

(1) lim | —%A""""f(x)—g(x) dx =0
Ir—*()'[ h

holds for every bounded interval I in R9. In order that this definition should
make sense, we always assume that the integrand in (1) is a locally integrable
function of x. If /' is locally integrable, then its local derivative is locally
integrable, because the limit of a locally convergent sequence of locally
integrable functions is locally integrable. The m-th local derivative of f will be
denoted by Dy f.

This definition of the m-th local derivative does not just reduce to
iterated derivatives, because it is more general. For instance, let f be the
Weierstrass function. nowhere differentiable. Then the mixed derivative
D [f (x)+f(y)] does exist, whereas the first partial derivatives do not.

2. Theorems on convolutions. By the convolution of two functions f and
g we mean the integral

(2) [ fx=ng(dt.
R"

The convolution exists at a point x, whenever the product f(x—1t)g(r) is
Bochner integrable with respect to . We assume that the values of f and g
are in Banach spaces A and B, respectively, and the values of the product
f(x—1t)g(r) are in a Banach space C. Therefore, if the convolution exists at
some point x, its value is in C.

In order to have the convolution defined at as many points as possible,
we adopt the following convention: if one of the factors f(x~t) or g(f) is O
for some x and ¢, then the product f(x—1t)g(t) is taken to be O, even if the
second factor is not defined. We shall denote the convolution (2) by f*g (see
[3D). ,
For the values of the product ab, where ae A and beB, we admit
elements of a third Banach space C.
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We shall assume that the product of two vectors has the following basic
properties: _

1° (ag +ay) (b, +by) = arby +a1by +ayby +a3b,,

2° Aa-pb = Apu-ab (4, p — real numbers),

3° |ab} < |a|b].

TueorReM 1. If the functions f and g are locally integrable and one of them
vanishes outside a bounded interval, then the convolution fxg is defined almost
everywhere and it is a locally integrable function of x. Moreover, if at least one
of the functions is locally bounded (i.e., bounded in every bounded interval), then
the convolution fxg is defined everywhere and is continuous.

Proof. By Corollary 3.2.2 ([1], p. 125) the convolution fxg exists
almost everywhere and it is a locally integrable function. To prove the
second part of the theorem, let k(x) = (f*g)(x).

1° Consider the case where f is locally bounded and g has a bounded
support.

For every fixed x the product f(t)g(x—t) is integrable, since the function
Sf(t) is bounded on the set where g(x—t) # 0. Thus the convolution k exists
everywhere. Moreover, we have

[k (x)~ k (x0)] < [1f ()19 (x—1)~g(xo—1)ldt.
There is a number g > 0 such that g(t) =0 for jt] > o. If x4 is fixed and
[x—xo| < 1, then the difference g(x—1t)—g(xo—t) vanishes for t satisfying
the inequality |t—xg > o—1. Hence

Ik (x) =k (xo)l < M Jlg(x—1)—g(xo—2)ldt = M f|g (t+(x~xo0))— g (1)|dt

for |x—x,| < 1. By the Lebesgue Theorem (see [3]), the last integral tends to
0 as x — x,, which proves the continuity.

2> Consider the case where g has a bounded support and is locally
bounded.
By the assumption it follows that there are a real number M > 0 and an
integrable characteristic function h(f) of the support of g such that
lg () < Mh(r).

For every fixed x, the product f(x—t)g(t) is a measurable function of ¢ and
bounded by the integrable function | f(x—t)|Mh(t). Thus it is integrable and
the convolution k = fg exists for every x. Moreover, we have

|k (x)~k(xo)l < M [|f(x—1)=f(xo—t)|h(r)dt.
It is easy to see that

LN (x—8)—f(xo— 1)k (1)
SIf(x=0h(t)—=f(xo—= 1) h(t+x—Xo)l +|f(xo— ) |h(t +x—x0) — h(t)].
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Let u(t) = f(x—1) h(t); then u(t+x—x0) = f(xo—1) h(t+x—x,) and

|f(x—t)—=f(xo—=)fh(t) < |u(t+x—xo)—u(t)+]f(xo— ) |h(t+x—xg) —h(t).
Thus

lfe (x) =k (xoll < flu(t+x—xo)—u(t)dt+ [ |f(xo—1t)ldt,
zx
where Z, = |h(t+x—xq)—h(t).
Let us remark that u and Z, are integrable with respect to t and that all
the sets Z, with |[x—x,] < 1 are contained in a bounded interval I. Thus

[1f(xg—t)ldt =0 as x - x,,
Zx

by Theorem 1, Chapter XI (see [3], p. 106). Also,
[lu(t+x—x)~u(f)dt -0 as x — x,,
by the Lebesgue Theorem (see [3], p. 165). This implies the continuity of k
= f*g.
Lemma 1. If f, and g, are locally integrable functions with f,, — f loc. and

g. — g loc., and, moreover, if g, vanish outside a common interval, then f,*g,
—f*g loc.

Proof. By Theorem 1 the convolution f, *g, exists almost everywhere
and is locally integrable.

We can find an interval —a < x < a such that the functions g, vanish
outside it. Let f,, denote a function which coincides with f, on the interval
—va< x<va and vanishes outside it. Then the equality f,,*g, = f,*g.
holds on the interval
(3) —(v+l)agsx<(v+1)a.

Since
[1fon*gu=fy % gl < [1fon=11"flgn—gl+ [ =1l - flgl + [ 1A - flgn—al
and
§lfn=f1=0, [flgn—gl—>0 as n— oo,
we have
[1fin*gu—1i*gl >0 as n— oo,
i€, fun*g, —Jf,*g in norm as n— oo. This implies that f, g, —f*g loc.

3. Local derivatives of convolutions.
THEOREM 2. Let f and g be locally integrable functions and let one of
them have a bounded support. If the m-th local derivative of f and the k-th local

7 — Annales Polonici Mathematici XLI.3
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derivative of g exist, then there also exists the (m+k)-th local derivative of the
convolution fxg and we have

Dtk (f+g) = (D f) *(D,.9)-

Proof. By Theorem 1 it follows that f*g exists almost everywhere and
is a locally integrable function.
Assume that g has a bounded support. Observe that

| 1 1
hm+kA(m+k ")(f*g) ( A(m h)f) (hkA(k h)g)

Let 1,—» 0 as n—co and let

Lm0, fux) =

(m,h
= hmA 2f (9.

dn (x) =

By the assumption we have f,— D f loc. and g, — D}, g loc., as n— co.
Since g has a bounded support, so do the g,. By Lemma 1 we have

(fa%gn) = (D] ) *(Df_g) loc. as n— oo,
which proves that
1

h"'+"A(m+k ) ( (f*g)—= (DI f) *(Dﬁcg) loc. as n-—» o0.

This means that D7**(f+g) exists and is equal to (D f)=(Df_g
From Theorems 1 and 2 follows

CoRroOLLARY. Let f and g be locally integrable functions and let g be
bounded and with bounded support. If f has its m-th local derivative, then the
convolution fxg has its m-th local derivative, which is continuous.

Lemma 2 (see [6]). If a real valued function ¢ defined in R? is of class C™
in the interval [x, x+mh] and if g = D™, then there exists a point y in
[x, x+mh] such that

loc

1
g(y) = A"" " o (x),

Lemma 3. If a vector valued function ¢ of class C™ is such that D™¢p =0,
then

A™P p(x) =0

for each h and x in R4,

Proof. Let h and x be arbitrary fixed points in R?%. Without loss of
generality we may assume that h > 0.
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1° Consider the case where ¢ is a real valued function. By Lemma 2
there exists ye[x, x+mh] such that

1
g(y) = ;I—A""""rp(x), where g = D"¢.

m
Hence, by assumption, it follows that
A™P g (x) = 0.

2° Let ¢ be a vector function from R? to a Banach space 2 and let F be
any continuous linear functional on #. Then

F(0)=F(D™ @)= D"(F¢p) = 0.
Hence, by the first part of this proof, it follows that

A™PF (¢ (x)) = 0.
This implies that
F[4™P p(x)] = 0.

The last equality is true for any F; thus 4" ¢(x) = 0.

Since x and h were arbitrary fixed, this proves the lemma.

Lemma 4 (see [6]). If a real valued function f defined in R? is of class C™
in RY, then there exists its local derivative of order m and it is equal to the
ordinary derivative, D] f = D™f.

LemMmA 5. If f is a locally integrable vector function and g is a real
function of class C™ with bounded support, then the convolution fxg is also of
class C™ and the equality holds

D" (f=g)=f+D"g.
The proof of this lemma is similar to the proof of Theorem 24
in [6].
4. Theorems on local derivatives. By a delta-sequence in R? we mean any
sequence of smooth functions d, with the following properties:

1° There is a sequence of positive numbers a, tending to 0 such that
6,(x)=0 for |x| = a,, neN;

2 [8,(x)dx =1 for neN;
R‘l

3* For. every keP? there is a positive integer M, ‘such that
ok [ 18%5(x)|dx < M, for neN.
Rq

THEOREM 3. A locally integrable function f has its m-th local derivative
equal to 0, iff, for each fixed h, the equation

AW f(x) =0
holds for almost all xe R%.
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) 1
Proof. If A™™®fis the null function, then so is h—mzl‘"""’ f. Hence

lim I dx

h-=07y

A ()

is null. This means that the null function is the m-th local derivative of f
Assume now that the function f has its m-th local derivative equal to 0.
Take a real delta-sequence §,. In view of Lemma 5, Lemma 4 and Theorem 2

D™ @, =f*(D"4,) = f* (D, 8, = (Di, ) %0y,
where ¢, = f*9,. Since D] f =0, we have D" ¢, = 0. Hence, by Lemma 3,
(4) _ A g =0,
Let us remark that
4"P g, = A" (fx5,) =(A™P ) x4,
By Theorem 2.2.3 (see [1], p. 118)
A™M g — A™B f 1oc.

Hence and from (4) it follows that A" f(x) =0 for almost all xeR? and
any fixed heR".
LemMA 6 (see [6]). If f is a locally integrable function, then

x+h

4@ jf (Hdt = j f(t)dt

where e =(1,...,1), h=(xl,...,xq) and xeR4,
Using Lemma 6 we shall show

THEOREM 4. If f is a locally integrable function, then the indefinite
integral

= Jj: f(t)dr

is a local primative for f, ie, D} F = f.
Proof. We have '

b
f %A(""”F(x)—f(x) dx
b 1 x bl1x+h
= EA(E B f(x)dt—f(x)|dx = | ; { f@dr—f(x)|dx
a X0 a x
b 1 h 1 h b‘
=[EIU(x+r —f(x)]dt|d Ejdt.||f(x+t)—f(x)ldx.
a 0 o a
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The last expression tends to 0. Indeed, by Corollary 1.2 (see [3], p. 166),
given any ¢ > 0, there exists an index h, such that

?If(x+t)—f(x)|dx<g for 0 <t<hy

Hence
b 1 lh
j}—lA("""F(x)—f(x) dxs—};jsdt=s for h < hy.
p 0

This proves that the local derivative of F is f. Consequently F is a local
primitive of f.

THEOREM 5. If a function f has the locally integrable local derivative
D¢ f, then

loc
x+h

Aehfixy="[ DS f(dt

Jor each fixed heR? and almost all xeR".
Proof. The function

F(x) = j D¢ f(bdt

loc:
0

is continuous and Df_f is its e-th local derivative (see Theorem 4). Thus the

difference F—f has its e-th local derivative equal to 0. By Theorem 3 we
have

AP (f—F) =0

for each fixed he R? and for almost all xeR?. Hence

X x+h
AN f(x) = ACPF(x) = A®M [ D¢ f(tydt = | D f(t)dt
xo . X
for almost all xeR%, which proves the theorem.
THeOREM 6. If a function f and its local derivative D; f are continuous,
then

L4 ) - D7, £

almost uniformly as h— 0.
Proof. By Theorem 5

x+h

4N f(x)= | D f(0)dt
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for xeR? and for each he R4 Hence
' h

O [AMI0-DLS0| < 1D fl+0=DE, fdr.

Given any bounded interval I and a'number ¢ > 0, we can choose, owing to
the continuity of Dj f, a number » > 0 such that

\D; f(x+8)—D; f()) <e for xel and |t] <.

Thus we obtain from (5)

4R 1(3)— D2, £ ()

<e for xel and 0<|h <7,

which proves the theorem.

References

[1] P. Antosik, J. Mikusinski, R. Sikorski, Theory of distributions. The sequentional
approach, Amsterdam—Warszawa 1973.

[2] J. Dieudonné, Foundations of modern analysis, Paris 1960.

[3] J. Mikusifiski, The Bochner integral, Birkh¥user 1978.

[4] —, O ciaglych pochodnych funkcji wiely zmiennych (On continuous derivatives of the function
in many variables) (in Polish), Comment. Math. (Prace Mat.)) 1 (1962), p. 55-58.

[5] W. Sierpinski, Analiza I (in Polish), p. 223-233, 1925.

[6] K.Skornik, Postaé funkcji lokalnie calkowalnej, ktérej m-ta pochodna lokalna znika prawie
wszedzie (The form of locally integrable function whose in-th local derivative vanishes almost
everywhere) (in Polish), Zeszyty Naukowe WSP 5, Katowice 1966, p. 127-152.

Re¢u par la Rédaction le 20. 2. 1979



