VOL. LVI 1988 FASC. 2

REMARKS ON THE PERMEABILITY OF SUBMEASURES ON FINITE ALGEBRAS

BY

MIROSŁAW BĄK (OPOLE)

Introduction. Let \mathscr{A} be an algebra of subsets of a set X. A subadditive set function $\varphi \colon \mathscr{A} \to [0, \infty)$ is called a *submeasure* if φ is increasing and $\varphi(\emptyset) = 0$. We follow Bandt [1] and define the *permeability* of a submeasure φ as

 $\alpha(\varphi) = \sup \{\mu(X): \mu \text{ is a finitely additive measure on } \mathcal{A}, \mu \leq \varphi\}.$

It is useful to express $\alpha(\varphi)$ in terms of multiple coverings of X as follows (see [5]):

(1)
$$\alpha(\varphi) = \inf \left\{ \frac{1}{k} \sum_{i=1}^{m} \varphi(A_i) : \sum_{i=1}^{m} 1_{A_i} = k \cdot 1_X \right\},$$

where $A_i \in \mathcal{A}$ and I_{A_i} denotes the indicator function of A_i .

In this note we consider the permeability on finite algebras. More precisely, we take into account the numbers α_n defined by

$$\alpha_n = \inf \{ \alpha(\varphi) : \varphi \text{ is a normalized submeasure (i.e., } \varphi(X_n) = 1) \text{ on } \mathscr{P}(X_n) \},$$

where $\mathscr{P}(X_n)$ is an algebra of all subsets of an *n*-point set X_n . The interest in these numbers comes from a construction of a pathological submeasure (i.e., a non-trivial submeasure φ with $\alpha(\varphi) = 0$; see [3] and [5]). It is clear that there do not exist pathological submeasures on finite algebras because for any normalized submeasure on $\mathscr{P}(X_n)$ we have $\varphi(\{i\}) \ge 1/n$ for some *i*, so that the measure μ such that $\mu(A) = 1/n$ for $A \supset \{i\}$ and $\mu(A) = 0$ otherwise satisfies $\mu \le \varphi$, $\mu(X_n) = 1/n$. Let us note that $1/n \le \alpha_n$. On the other hand, we take into consideration the normalized submeasure $\varphi(A) = \frac{1}{2}$ for $A \in \mathscr{P}(X_n) \setminus \{\emptyset, X_n\}$. Then if we notice that all (n-1)-point sets from $\mathscr{P}(X_n)$ form an (n-1)-fold exact covering of X_n , from (1) we obtain

$$\alpha_n \leqslant \alpha(\varphi) \leqslant \frac{n}{2(n-1)}$$
.

Tops ϕ [5] gave the inverse inequality for any normalized symmetric submeasure φ on $\mathcal{P}(X_n)$ (i.e., a submeasure φ for which $\varphi(A)$ depends only on the cardinality of A). However, it can be proved that $\lim \alpha_n = 0$ (see [3] and [5]). The reader can find more information about convergence of α_n 's in [1]. In that paper the author followed Vasak and asked:

What is the smallest number q with

$$\alpha_q < \frac{q}{2(q-1)}?$$

Bandt proved $6 \le q \le 11$ and suggested that this number is 11. In the present note we prove $q \le 9$ (see Example 3). It is clear that $\alpha_{n+1} \le \alpha_n$. We suppose that $\alpha_{n+1} < \alpha_n$. If this conjecture is true, then the same example will imply $\alpha_{10} < 10/18$.

An upper bound of q. At the first sight Bandt's example (see [1], Example 2) seems to be incidental. The following method allows us to obtain Bandt's covering as well as a better result. This method is based on some combinatorial idea. To make use of it we have to acquire enough information on the numbers

$$B(k, p, r) = \min \{ \operatorname{card} \mathcal{B} : \mathcal{B} \subset [B]^p, \forall E \in [B]^r \exists A \in \mathcal{B}, A \supset E \},$$

where the natural numbers k, p, r satisfy the inequality k > p > r and B is a k-point set (we define $[B]^m$ as the set of all m-point subsets of B). We are especially interested in B(k, p, r) for small values of k, for instance k = 10.

Let $\mathcal{D} \subset [B]^p$ be a family satisfying the above equality. For \mathcal{D} we construct the following $(k \times B(k, p, r))$ -matrix:

- (1) In k rows of this matrix we write in a sequence all numbers from 1 to B(k, p, r).
- (2) We cross out the *i*-th row number from the *j*-th column of this matrix if $i \in D_j$, $D_j \in \mathcal{D}$.

The sets given as rows in the resulting matrix form an exact (k-p)-fold covering \mathscr{C} of $X_{B(k,p,r)}$. Let us note that any r of them do not cover $X_{B(k,p,r)}$. If some r+1 cover $X_{B(k,p,r)}$, then putting the value 1/(r+1) on every set from \mathscr{C} we can generate a normalized submeasure φ on $X_{B(k,p,r)}$ as follows:

$$\varphi(A) = \begin{cases} 0 & \text{for } A = \emptyset, \\ \min \{h/(r+1): \bigcup_{i=1}^{h} A_i \supset A, A_i \in \mathscr{C} \} & \text{for } A \neq \emptyset. \end{cases}$$

Using the above-mentioned remarks we obtain from (1) the equality

$$\alpha(\varphi) = \frac{1}{(r+1)} \frac{k}{(k-p)}.$$

Example 1. We use the above procedure to the matrix

Taking into consideration the columns of the above matrix as members of \mathcal{Q} we obtain Bandt's example (see [1], Example 2).

Some known theorems give fragmentary information about the numbers B(k, p, r). In our consideration we shall use the solution of the following problems:

For what integer n is it possible to form a triple system S(2, 3, n) (quadruple system S(2, 4, n)), out of n given elements, in such a way that every pair of elements appears in exactly one triple (quadruple)?

It is clear that a necessary condition for the existence of a system S(2, 3, n) is

$$(n-1) \equiv 0 \pmod{2}$$
 and $n(n-1) \equiv 0 \pmod{6}$.

and, respectively, a necessary condition for the existence of a system S(2, 4, n) is

$$(n-1) \equiv 0 \pmod{3}$$
 and $n(n-1) \equiv 0 \pmod{12}$.

Reiss [4] and Hanani [2] proved that these conditions are also sufficient. It is obvious that the system S(2, m, n) consists of $\binom{n}{2}$: $\binom{m}{2}$ different triples or quadruples, where m = 3 or m = 4.

EXAMPLE 2. Let us consider the triples of a system S(2, 3, 9) as a family \mathscr{G} . Then B(9, 3, 2) = 12 and we can construct the (9×12) -matrix as above. The sets given as rows form an exact 6-fold covering \mathscr{C} of X_{12} . It is clear that there are three of them which cover X_{12} and no two do. Putting the value $\frac{1}{3}$ on every set of \mathscr{C} we can generate a normalized submeasure φ on X_{12} with

$$\alpha_{12} \le \alpha(\varphi) \le \frac{1}{3} \cdot \frac{9}{6} = \frac{1}{2} < \frac{n}{2(n-1)}$$
 for every $n > 1$.

Applying repeatedly the above procedure to a system S(2, 4, 13) we obtain a 9-fold covering \mathscr{C} on X_{13} and a normalized submeasure φ with

$$\alpha_{13} \leqslant \alpha(\varphi) \leqslant \frac{1}{3} \cdot \frac{13}{9} = \frac{13}{27} < \frac{1}{2}.$$

Let us note that n/2(n-1) is not a good approximation of α_n for $n \ge 1/2$.

238

Example 3. We use the above method to the matrix

Considering the columns as members of \mathcal{D} we obtain the following 6-fold exact covering \mathscr{C} of X_9 :

No two rows cover X_9 . Assigning the value $\frac{1}{3}$ to every set we can generate a normalized submeasure φ on X_9 with

$$\alpha_9 \leqslant \alpha(\varphi) = \frac{1}{3} \cdot \frac{10}{6} = \frac{10}{18} < \frac{9}{16}.$$

Then Example 3 implies that $q \leq 9$.

Acknowledgement. The author is thankful to Dr. B. Aniszczyk for stimulating and helpful suggestions.

REFERENCES

[1] Ch. Bandt, On the permeability of submeasures on finite algebras, Colloq. Math. 40 (1979), pp. 311-318.

[2] H. Hanani, The existence and construction of balanced incomplete block designs, Ann. Math. Statist. 32 (1961), pp. 361-386.

- [3] W. Herer and J. P. R. Christensen, On the existence of pathological submeasures and the construction of exotic topological groups, Math. Ann. 213 (1975), pp. 203-210.
- [4] M. Reiss, Über eine Steinersche combinatorische Aufgabe welche in 45sten Bande dieses Journals, Seite 181, gestellt worden ist, J. Reine Angew. Math. 56 (1859), pp. 326-344.
- [5] F. Topsøe, Some remarks concerning pathological submeasures, Math. Scand. 38 (1976), pp. 159–166.

WYŻSZA SZKOŁA PEDAGOGICZNA INSTYTUT TECHNIKI 45-365 OPOLE UL. SZENWALDA 7/9

> Reçu par la Rédaction le 30.7.1986; en version modifiée le 14.4.1987