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Introduction. This note is a continuation of [2]. By constructing an
invariant distribution for the 2-parameter Markov process we are able to
improve upon previous “double recurrence” result (Theorem 3 in [2]) by
ridding it of unnecessary topological restrictions.

Throughout this paper, X is a Polish space and # denotes the o-algebra
of its Borel sets.. A transition probability on X is a function P: X x# — [0, 1]
such that P(x,-) is a probability measure for every xe X and P(-, A) is
Borel measurable for every A e4. It follows that for every bounded Borel
function f the function

Pf(x) = (£ () P(x, dy)
is also Borel. If P, and P, are transition probabilities, then
P, P,(x, A) = .[Pz(y, A) P, (x, dy)
is another transition probability and (P, P,)f = P, (P,f).

1. Distribution of a 2-parameter process. Let N, ={0,1,2,...} and
consider the partial order in Ny x Ny defined by
i, )<k,) < i<kand j<I.

A finite subset n = {ag, @y, ..., a,} of Ny xN, will be called a path if a n°
—(0,0) and oy—a,_, =(1,0) or (0, 1) for k=1, 2, ..., n. Let = X"*¥o
and X be the product o-algebra in . For a given path n and Borel sets A,
Ay, ..., A, the set

Clax, A; k=0,1,...,n) ={we: w()ed; k=0,1,...,n
is called a path cylinder based on =.

TueorEM 1. Let P, and P, be transition probabilities on X. If P, P,
= P, P,, then for every xo€ X there exists a probability measure Q,, on (2, 2'.')

such that for every path cylinder
C= C(ak, Ak, k= 0, l, ey n)
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we have

(1) on(C) = XAo(xo) Aj f I P, (x,- 1, dx,) Py _ (Xp-2,dx,_y) ...
1

Ap—1 4,

oo Py (X0, dxy),

where iy =1 or 2 depending on whether o, —a,_, = (1, 0) or (0, 1).
Proof. Observe that the right-hand side of (1) is the same as the
Markov measure P, of C for a one-parameter Markov chain with transition

probabilities Py, Py,,..., P (the Ionescu-Tulcea theorem; see, eg., [3],
V.2.1). Now P, is defined on the o-algebra generated by the path cylinders
on == {xg, @, ..., a,}. In particular, for a jointly measurable function
f(x;, x5) we have

”f(xh x3) Py, (xy, dx;) P; (xo, dx,) = Exof(w(al)’ w(x2))
= E, (B, (f (0@), 0@))] 0 (@,))
= ,fExo(f(w(ax)’ w(az))l w(ay) = xz) P;, P;,(xo, dx;),

where E, | is the expectation with respect to P, . Choosing a regular version
of the conditional probability P, (xo, dx,|x;) defined by
Ig(xn)Pt,(an dx,|x;) = Exo (g(w(al))l o) = xz)
we obtain
”f(xna x2) Py, (x4, dxz)Pi,(xo’ dxn)v
= ”f(xu x32) Pi, (xo, dx; | x,) Py, Py, (xo, dx;).

In particular, for A, B, Ce # the following formula holds:

(2 IIsz(XOOa dxoy | X11) Py(x10, d%1,) Py (Xo0, d%10)

ABC

= f,”l’z(xoos dxoy | x11) Py (X00, dX101X11) Py P3(X00, dxyy).
BacC

Now we are in a position to define Q. on the cylinders based on the initial
square

Tiw = {€€No x No; a < (m, m)}.

First choose an arbitrary path n = {«o, a,, ..., @,} (n = 2m) joining (0, 0)
with (m, m). For the.o-algebra based on =, Q, is defined by (1). If.
(i, )en,\n and, say, (i,j—1) =aq,en and (i+1, j) =a,,,€n (so that = has a
corner at a,,,), then we extend Q, to the cylinders based on n U {(i, j)} by
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letting

G Q0,00 = X"m‘""' Voo ¥ P (X, s dXa) oo Piy (X, 50 dXay )
X P2 (xdk’ dx(l'.j) | x¢k+2) P2 (x¢k+l’ dx¢t+ 2) Pl (xak’ dxak.,. l)
X Pi,‘ (xak_ 1 dxak) LR Pil (xo’ dxal)a

where C = C(a, A,; xenu {(i, j)}) and ... | stands for

4a, Aoy Aap gy Aagyg AidAayry Ay
Note that A, and A4, , are declared conditionally independent given x,,
and x,, , ,. An analogous extension formula applies to (7, j) if (7', j/+ 1) and

(’—1,j) are in n. Since P, P, = P, P,, we have

I I I P2 (xak’ dx(l,j) I x‘k"' 2) Pl (xap dxdt.'. 1 Ixak+ 2)
Aay 4 g Aag 4y A6

XPI PZ(xaka dx¢k+ z)

= I I _“ Pl (xak’ dxa....l I xak.,.z) P2 (x"k’ dx(i,j)lxdh.}.z)
Aay 42 A Aay sy
XP2 Pl(xat’ dxa

so, by (2), we could have started from =’ =(nu {(i, j)})\ {o}, and the
extension to 7' LU {a,} would have produced the same measure on cylinders
based on n' L {o,} =7 U {(i, j)}. We also note that formula (3) is obtained
from the integral formula (1) by simply inserting the integral

ke 2)

j P2 (xat’ dx(l.])lxak..,z)-
)

In the same manner we fill out all the remaining corners of the path n and,
subsequently, of all the newly obtained paths n’ contained in the so far
constructed subset. Each time a new integral with an appropriate conditional
transition probability is inserted. After a finite number of steps we cover =,
by the paths and obtain a formula for the measure Q. of any cylinder based
on x,,. The resulting set function is clearly independent of the initial choice of
n. That Q,  is o-additive on the.algebra based on =, follows from the fact
that o-additivity is preserved for each one-step extension. For a one-step
extension, however, the proof is standard (see, e.g., [3], I11.2.1). By letting m
— o0 we obtain a consistent family of s-additive measures, thus extending to
a single probability measure Q, on Z. This completes the proof of the
theorem.

For every probability measure u on X we define a measure Q, on
with initial distribution g by the formula

4 Qy = [Q.du(x).
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It is not difficult to see that u invariant for P, and P, (ie, [P;fdu = [fdp)
implies @, invariant for the shift transformations

in Q. :
Remark. The above construction fails for X"°*"*¥° n fact, let X
= {1, 2, ..., 8} and consider the stochastic matrices
— - — =
004 4 0000 00 3% 4 0000
004 4 00 0 0. 004 4 0000
0 00 0 O0O1O0DO0 00001 O0O0PO
0 0001 0UO0UDO 000 O0O0OT1O0TDO
Pr=lo00000 4 4 Pr=loooo0oo0o0 4 1}
000 O0O0O0TO0OH4 3 000O0O0O0OI4 4
1 00 00 O0ODO 1 000 0 O0O0UPO
01 0 0 0 0 O 0Od 01t 00 0O O 0 O
0000004 3
00000GO04 %
1 00 00 0 O0O
01 00 O0O0O0O0DO
Ps=lo o4 1 0000
00110000
0 0001 O0O0O
000001 0 O

It is easy to see that P,, P,, and P, commute. We show that for x, =1
there is no measure Q. on Q= X °*"0*Yo coinciding with the usual
Markov measures on each path.

Suppose Q, is such a measure. Consider the initial cube

‘ = G, k); 0<i,j, k<1).
Suppose Q, (U) > 0 for
U= \w: oj, k) =a; (j, k) enr,}.

We have a0 = 1, because Q, is supported by trajectories starting from the
state 1. Since U is contained in every path cylinder of length 3 determined
by the values a;;, all the one-step transitions must be positive. Thus,
glancing at P, we obtain ag;o =3 or 4. Suppose it is 3. Then

Go11 =1, @01 =7, @a01=1, G100=3, a110=95, ap0=4,

by P,, P,, P,, P;, P, and P,, respectively (each time looking only at the
previous position). We- have obtained a contradiction at aq,o. T case a0
=4 is dealt with in the same manner. Thus Q,(U) =0 for every such U,
implying Q, =0, a contradiction.
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2. Multiple' recurrence for Feller transition probabilities. A transition
probability P on X x & is called Feller if Pf is continuous whenever f is a
bounded continuous function. Note that if P is Feller, then the function
P(-, U) is ls.c. for every open set U. By U(x, ¢) we denote the open ball of
radius ¢ centered at x. In essentially the same manner as in Lemma 2 of [2]
we prove that if Q,, Q,, ..., Q, are Feller transition probabilities, then the

function
F(x) = infinf &: QF(x, U(x, &) >0 for i=1,2,..., m}
n21
is us.c.
As in [2], we say that a point x is multiply recurrent for a family & of
Feller transition probabilities if there exists a sequence n, — oo such that for
every ¢ >0 and every Qe ® we have

0™ (x, U(x, &) > 0

for all sufficiently large k.

THEOREM 2. Let P,, P, be commuting Feller transition probabilities on X.
Denote by ® the semigroup generated by P, P,. If there exists a common
invariant probability measure u for P, and P,, then the multiply recurrent
points for @ form a dense Gg-subset of supp u.

Proof. We may assume suppu = X. By Lemma 3 in [2], it suffices to
prove that for any finite collection Q,, Q,, ..., Q,, of transition probabilities
of the form P, P4 the multiply recurrent points form a dense G;-set. Consider
the space Q of Theorem 1 and let Q, be the shift invariant measure on Q
defined by (4). Denote by S, the shift transformation corresponding to Q,,
ie, if Qy = P, P}, then

S, @)k, ) = ok+i, 1+)).

Clearly, Q, is invariant with respect to each S,. Given ¢ >0 and xe X
consider the open cylinder

U="'weQ: o0, 0)eU/(x, g).

Since suppu = X, we have Q,,(U) = u(U(x, ¢)) > 0. Applying the Fursten-
berg-Szemeredi theorem ([1], Theorem 7.14) we obtain

Q. (TSN ... nS7"(0) >0

for some n > 1. In particular, there exists y e X with the positive measure Q,
of the same cylinder set. By the construction of Q, we have yeU (x, ¢) and

Qi(y, U(x,e)>0 forall k=1,2,...,m.

This clearly implies F(y) <2¢. We have proved that F assumes arbitrarily
small values in every neighbourhood. It follows that F(x) = 0 if x is a point of
continuity. By the definition of F, this means that every point of continuity is
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multiply recurrent for Q,, Q,, ..., Q.. Since the points of continuity of a
us.c. function form a dense G;-set, this completes the proof of the theorem.

If X is compact, then there is a one-to-one correspondence between
Feller transition probabilities and Markov operators on C(X). Now The-
orem 3 in [2] is covered by the following consequence of our Theorem 2:

CoRroLLARY. Let T, T, be commuting Markov operators on C(X), X
compact metric. Then there exists a multiply recurrent point for the semigroup
of operators generated by T, and T,.

Proof. It suffices to note that there exists a common invariant measure
u and apply Theorem 2. The existence of u follows from the Markov—
Kakutani fixed point theorem. An invariant measure can also be found
directly as a weak®* limit point of the sequence

(Y Y (TH*(TH*5.)

i=1j=1

in the dual space C(X)*.
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