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On a criterion of uniqueness for periodic solutions
of linear second order difference equations

by ZDZ1SEAW DENKOWSKI (Krakow)

1. The purpose of this note is to establish a uniqueness criterion
for periodic solutions of linear second order difference equations, which
is a discrete analogue of the criterion for differential equations given
by A. Lasota and Z. Opial in [3]. Section 2 contains the notations and
preliminaries. In Section 3 three lemmas are given. The first of them
provides formulae for the solution of the second order difference equation
by means of a discrete analogue of Green’s function. The second one is
a discrete analogue of the well-known inequality of Beurling ([1], p. 124).
In Section 4 these lemmas are used to state Theorem 1, from which im-
mediately follows the above-mentioned criterion (Theorem 2). Finally,
Section 5 contains an example which shows that this criterion is the
best possible in a certain sense.

The results of this note will be utilized in [2].

2. By a net we will mean any sequence 7 = {{;};,, of real numbers
satisfying the inequalities

ti—l<ti’ iGZ,

where Z denotes the set of all integers. In the vector space R” of all
sequences of real numbers we define the difference operators 4®, V).
R? - R?, as follows:

ARy = (., AW ABp  AFy L),
PRy = (.., 7®y_ |, VB, PO ),
where, for ie¢ Z we set
A(o)’v; == V{D)v.' = 1’,7:7
A(l)lbi == A'vi = ,vl'+l—/l','i, VU)’D.L- = V’"i = 'l’i""'vi_l,
and for £ >1 we put
AWy, = A(A% V), Vg, = (kD).
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Similarly for a net r we define difference operators A%, F¥®: RZ . R?
putting for the coordinates (ie Z)

AS:O),vi = V(ro)’"i =7

1 . 1
AV, = Av; = = Ao, VDo =V, 0, = ———po,,
bi—b b=t
and for k >1

AVv; = A (A% V), VP =V (V¥ D)),

Composing several times in arbitrary succession the difference operators
of the same kind, we obtain so-called mixed difference operators.
From the above definition we have

(21) A‘r’vi = Vtvi+l!

dq
and in consequence (under the assumption that » a;, =0 for ¢ < p,
i=p

a;e R) we get for any se¢ Z and i¢e N (N ={0,1,2,...}) the following
formulae:

s$+1—1
Iv + 2 A H—l ])

(2.2) vi={ o
Vs + 2 Voot —t_),

j=s8+1

s—1
v— D At

(2.3) Dy_; = =

8
Y Voolti—t).
j=8—1i+1

Similarly, the equality
(2.4) AV 0t — 1) = AV ool —1t )

and formulae (2.2), (2.3) yield the following formulae:

3+‘l—

Z AV 0581 — ) (beys— 1),

j=8+1
s+i—1

D) VAt =) (i — 1),

\j=s+l

(2'5) Vs = Vs T Arvs(ts+i_ ts) + 3

s—1
(0

AVt —1) (t;—ts—s),
(2.6) Vg—g = Vs — Vt,vs(ts_ts—i) _ (I

s—1

V. Ar’l’j (G =40t —1t_,).

J=3—141
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Finally, one can easily obtain the summation by parts formula

s+n-1 s+n
2.0 D (At —t)+ D w (Vo) —1,)
j=s j=8+1

st+tn—1
= 2 (Arujvj)(t7'+l —1;),
j=s

which will be needed in the sequel.
Throughout the paper, by a solution of the difference equation

(2.8) V. Ao, =g(i,v, Aw), i=s8+1,...,84+n—1

(g is a real function defined on the set {s+1,...,8+7n—1}x R* = is an
integer > 1, and s is a index from Z) we mean a vector ve R? with the
coordinates v, ..., v, , satisfying equations (2.8) and with the remaining
coordinates equal to zero.

3. We start with a Lemma, which will be applied also in [2].

LEMMA 1. If for a fized t-net, integer w > 1, and se Z, the vector ve R*
is a solution of the differemce equation

(3.1) VtAtvi+qi :0, i=8+1,...,8—{—’l’b—1, inR,
satisfying the condition ,
(32) Vg = Vgqn = 0!

then the coordinales of the vector v are given by the formulae

n—1

(3.3) Vst = 2 F?+i,s+qu-{-j(ts+j_ts+j—l)’ t=1,...,n—1,
i=1

or

(3.4)

n—1

_ m s
Vgpn—r = E, I jsin-iQsin-Csinj—tsin-i—1)s t=1,...,m—1,
j=1

where the function I'y: {1,...,n—1} — R defined by

(ts+n - ts+i) (ts+j - ts)
?

(3.5) T4y = e
(ts+n—ts+j)(ts+i_ts)’ igj gn—l,
ts+n—ts

is the discrete analogue of Green’s function in the theory of differential equations.

Formulae (3.3) and (3.4) are simple consequences of formulae (2.5)
and (2.6), respectively, and of the assumptions of our lemma. Notice
that the function I is positive and bounded,

tor—1
(3.6) T2yipy <22,
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LEMMA 2. If for a fixed net 7, integer n > 1 and index se Z, the vector
ve R? is a non-trivial solution of difference equation

(3.7) V.4, v;+p;v;, =0, 1=s5+1,...,8+n—1,

then the real numbers p, fulfil the inequality

v 4
(3.8) me v s 2

I’roof. Supposing that [yp) = max |v,,,[ (Where 45e {1,..., n—1}),
: s<i<s+n
we can write, owing to (3.3), the following inequality:

n—1

[Vg 4l < 10g44,] Max I"f+,s+,z PesjlCsyj—tsi50)y ¢ =1,...,m—1.
l<1,)\n 1 Jj=

Now, to complete the proof, it is sufficient to make use of the assumption
that |v,,,| >0 and to apply inequality (3.6).

In order to formulate Lemma 3 we need some additional notions.
A division 7 = {t;};,; will be called an extended net for a net v = {t;};.z
if {t:}iz © {t;}icz and if the set {t;};,\ {t;}icz is finite.

For a r-net and a vector »< R% let the mapping ¢: R — R denote
the piece-linear function whose graph is the polygonal with points (¢;, v;)
(for 7e Z) as vertices.

LEMMA 3. If, for a v-net, v is an extended met such that

te =1 bepm = Tsiny m>n>1

and a vector v is a solution of difference equation (3.7), then the vector v’
with the coordinates

(3.9) ooy Fh=t
. -

ety if tieT N7
satisfies the equation

(3.10) VoA vi4-piv; =0, i =r+1,...,r+m—1,
where
/1 0, L
(3.11) o Tl
if v; =0.

Moreover, the inequality

n--1 n- 1

(3.12) 2 !px+-ﬂ(ts.ij bysj1) Z lprul i rH 1)
i=1

holds true.

In order to prove Lemma 3 we start with the following
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Remark 3.1. If a vector » is a solution of difference equation (3.7)
and if there is an index ie {s+1,...,8+%—1} such that »; = 0, then
V.A,», = 0; this means that the points (f,_,, v;_.), (¢, v;),
of the plane R’ lie on the same straight line.

Proof of Lemma 3. The definition of coefficients p; and the remark
just made immediately imply the first part of the theorem. Thus, to com-
plete the proof, it remains, owing to induction argument, to show that
inequality (3.12) holds true if » = s and m = n+1; i.e. if to the points
tgy .ovy tgyn Of the 7-net we add only one point ¢ such that te(t,, ¢, ,).

Without loss of generality we can assume thatf, <t <t , < ... <t,,,.
In this case the extended net 7 is of the form

(Liv1y Diga)

t; for v <s,
1, =1t for i =s4+1,
t;_, forix=s+2,
and the coordinates of the vector v are given by the formula

V; for + < s,
v; = {p(t) for i =s+1,
v; , for i>s+2.
Let us put I = {ie{s+1,...,s8+n—1}: v; +* 0}, and notice that I,
for non-trivial solutions of difference equation (3.7), is a non-empty set

(the proof in the case of » = 0 is trivial). Now, by the assumption that »
is a solution of difference equation (3.7) we have

Diplt—t) = |-

jeI jel

and by the definition of the set I we can write the inequality

(3.13) Z 1Porittop;—toyj1) 2 Z
=1

jel

bj

_A,v A0

y

Similarly, owing to the first part of our theorem, we obtain

C ’ ’ ’ ’ r ’ |‘ ‘ A ’DH_] A ’U
(3-14) 2 Ips-l-j'(ts+]'_ts-l-1'—1) = |Ps+l|(t-<+l _ts) TZ

jel | ’vJ-I-l

Notice that for je I we have

° ’ ’
A,r’v,-_i_l—ll,,’v,- - A,vj—A,'vj_l
’ - R

Yi+1 K

and that p,,, vanishes also if v,,, — ¢(t) is different from zero.
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Therefore, equality (3.14) takes the form

- ’ ’ ’ A,'v-— A.,'v-_
(3.15) D Bl by =ty = Y S0
=1

jeI Y

and together with inequality (3.13) immediately gives the required ine-
quality (3.12) in the considered case. Thus the proof is completed.

4. The lemmae stated in the preceding section allow us to prove
the main theorem of this paper, namely the following

THEOREM 1. If for a fized r-net such that
(4-1) ti+1_ti = ti+’n+1_ti+n7 te Z

(n denotes an integer > 1) the vector v of R” is a mon-trivial solution of the
difference equation

(4.2) V. Av;--p;m; =0, 1elZ,

satisfying the periodicity condition

(4.3) V; = Viiny telZ,

and if the coefficients p; in equation (4.2) fulfil the inequality

(4.4) | D Pty >0,
i=1

then the inequality

(4.5) Dipit—t) >
i=1

holds true.
The idea of the proof of Theorem 1 was suggested to me by A. Lasota.
We start with the following remark, which is a simple consequence of
Remark 3.1.
- Remark 4.1. If a vector v of R” is a solution of difference equation
(3.7) (but with 7¢ Z) and if there is an index ie Z such that

16
tu - to

v =0y =0,
then the vector » is a trivial solution (i.e. »; = 0 for t¢ Z).
Proof of Theorem 1. Suppose that all coordinates of the vector v

have the same sign. We can assume that v; > 0 for ¢¢ Z (the case of »; < 0
for ie Z is quite analogous). Thus, from equation (4.2) we obtain

V.A,v;

o = —p +=1,...,n.
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Multiplying both sides of this equality by ({;—t,_,) and summing with
respect to “i', we get
n

V.A.mw; .

(4.6) Z—-—;—— (t; =ty = —Zm(t;—tm)-
i=1 t i=1

The left-hand side of this equality can be transformed by the summation-

by-parts formula (2.7),

n—1

C 1 Y A ”i
— V. (d0) (8, — 1 *2 i —1 .
g{’v. (At =1 ) ( )( . )+Z P

¢ i=

Hence, by a.ssumption (4 3) and by (4 6) we obtain

(4.7) 5’ v Zp, by

H ’U ’v1+1

which, by (4.4), is 1mpos31ble.

This contradiction excludes the case considered above.

Thus, suppose that there exists a pair of indexes, k¥ and I (k, le Z),
such that »,-v, < 0.

By Remark 4.1 and the non-triviality and periodicity of » we can
assume without loss of generality that

2, <0, v,>0.

Let ke {2, ..., n} be the smallest index such that v, < 0. The existence
of such an index easily follows from assumption (4.3) (in the case of v, = 0
it follows from Remark 3.1 that v_; < 0).

We thus have the following inequalities:

’UOQO, v, >07 ’vk<07 vng-oy 'vu+l>0'

Now, we introduce the function ¢ defined in the preceding section
and we extend the z-net by adding all zeros of ¢. Let the points t,t,, 1,
of the extended net be equal, respectively, to the points ¢, {,,?, of the
7-net.

Introducing the vector »' and the coefficients p; (i Z) in the same
way as in the proof of Lemma 3, we have

1° v, = ¥,_; = ¥,y = 0 in the case v, < 0 and

2° v, = v,_, = v, = 0 in the case v, = 0.

Now, a,pplying successively Lemma 3 and Lemma 2 to the vectors
(...) 0, ’l);+1,. ’vr 1,0,...) and (...,0,v, ,,.. ’vm+17 ..) in case 1°
and using the eVLdent equa.llty Pt —1p_)) = po(t,— ,_1), we obtain the

following inequalities:
k-1 r—2

Nttt > > Bty >

t,_,—1
=1 i=g+2 r-1 841
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and

St S5
Pllti—ti) Pull i

By a similar reasoning on vectors (...,0,v,,...,v._;,0,...) and (ceey 0
Tryy eeey Uryy 0, ...) in case 2° we can get the following two inequalities:
r-2

Tt = Nt —t st
g;lp‘)utt f‘z -l)—f“ AJ IP,]( 1 tz—]) == t;_l—-t L]

s+1

» i

n—1 m—1

’ 14 ’ 4
D it = Y i >
ik =7 T

From these inequalities and from the evident equality

t;n+l—t.;+1 = tm—t; = tn—to’

it easily follows that

-1

led(t i) > ,,.g_:t;

which completes the proof of our theorem.
From this theorem we obtain by contraposition the following

COROLLARY. If the vector v of R” is a periodic solution of difference
equation (4.2), where the t-net is such that (4.1) holds true and the coefficients
p; satisfy inequality (4.4) and are such that

16
(4.8) Z P —10) < -
tn, - to

then v is a trivial soiution (i.e. v; = O for ie Z).

The corollary just stated is a discrete analogue of the well-known
criterion of uniqueness for periodic solutions of linear differential equations
(see [3], p. 86). Such a criterion in the discrete case, as a simple conclusion
from the above corollary, may be stated as follows:

THEOREM 2. If the coefficients p;, q; (i€ Z) of the linear difference
equation

(4.9) ViAo, +pivy = ¢, e Z,
satisfy the condition
(4'10) Pirn = Piy Qiyn = 4

and if inmequalities (4.4), (4.8) are fulfilled, then equation (4.9) has at most
one periodic solution.
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For the proof it suffices to notice that the difference of two periodic
solutions of equation (4.9) is a periodic solution of equation (4.2) and,
by the corollary, it is equal to zero.

9. The example presented below proves that inequality (4.8) is the
best possible in the sense that, if we replace the number 16 by any greater
number, then the corollary fails (moreover, it i3 impossible to replace
the sign “<” by “<”).

Consider, namely, the difference equation

V,A,'v,-+p,-’v,- = 0, t€ Z,
where
Py =0, Pup=—2 (ieZ), 1= {i}z.
For this equation we have

. 16
Dbt ti) =4 ————,
i=1

t4—t0
but there exists a non-trivial periodic solution ve RZ of the form
Vyy =0, Uy = (—1)%.

In a similar way one can show that inequality (3.8) (a discrete analogue
of Beurling’s inequality) is the best possible.
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