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Vector-valued analytic functions
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Abstract. The problems arising in the theory of vector-valued analytic functions
when the topological vector spaces are not locally convex were discussed in this talk.
In this summary, I have chosen to stress a class of “good analytic functions” which
behave as analytic functions do, rather than the counter-examples which one can
meet when the analytic functions are not assumed to be good. Sufficient conditions,
that ensure that a vector-valued function is good are also given.

1. Good analytic functions.

DEFINITION 1. Let U be a complex manifold and ¥ a complete topo-
logical vector space. A mapping f: U—FE is a good analytic function if
we can associate to each ze U a neighbourhood V, of 2, a Banach space 4,
a holomorphic mapping f,: V,—A4, and a continuous linear mapping
¢,: A,—~E.in such a way that f = ¢,0f, on V,.

It is no loss in generality to assume that A, < F, and that ¢,: A,—~F
is the identity. Just replace 4, by A,/Kerg,, and identify this with the
range of ¢,.

If K is compact in U, we find a finite number of z,, ..., 2,¢e K such

r
that the neighbourhoods V,,..., V. cover K, and define 4 = ZAz,-’
1

with the norm
lall = inf { 3" laillla;e 4.,y Y a; = a},

A is a Banach space, it is normed because its unit ball is a bounded subset
of E, and a quotient of the Banach space A, ®...®4, by a closed
subspace. This proves

ProPOSITION 1. Let f: U—E be a good analytic function. We can
associate to each compact subset K = U a neighbourhood V of K and a Banach
space A = E with continuous inclusion, such that fV < A, the mapping
f: V—>A being holomorphic.

Good analytic functions have all the properties we can hope for since
they are, at least locally, and on neighbourhoods of compact sets, ana-
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lytic mappings into Banach spaces. In a way, the introduction of these
analytic functions is a lazy generalization of analytic function theory..

It turns out that I do not know of a generalization of analytic func-
tion theory, where the functions have the properties expected of holo-
morphic functions, but where the analytic functions are not good. This
is not a theorem. It is not even a conjecture, I have not said what a reason-
able class of analytic functions would be, nor what part of standard
theory should generalize. It is an observation.

2. The galb of a topological vector space. 1

DEeFINITION 2. Let E be a topological vector space. A sequence {4, },.n
belongs to the galb G(E) of E if we can associate to each neighbourhood U
of the origin in £ a neighbourhood V of the origin in such a way that

(1) U2U D 4V.

A filter § tends to zero in G (E) if for each neighbourhood U, we can find
a neighbourhood V and an A« in such a way that inclusion (1) holds
for all {4,}eA.

The galb of a topological vector space has been defined by P. Turpin
([1], Chapter II). Turpin defines also the galb of a linear mapping £—F,
the galb defined above being the galb of the identity #— E, but we shall not
need this more general class of galbs here. He gives many examples of
spaces with a non trivial galb, of spaces whose galb can be computed,
among others some countable intersections of non-locally comvex Orlicz
spaces.

Except when F is a vector space with the gross topology (or simply
the null space) we always have the continuous inclusion G(E) < I,. For
the topology to be locally convex, it is necessary and sufficient that G (%)
= [, bicontinuously. E is locally p-convex if 7, = G(E) continuously

and locally pseudo-convex if (1)1, < G(E) continuously.
>0
We recall that a p-semi-norm is a functional »,: ¥—~R_ on a vector

space, such that wv,(@-+¥y)<vy(2)+v,(y), v,(Ax) = [A|"»,(2). A vector
space topology is locally p-convex when it can be defined by a family
of p-semi-norms with constant p. It is locally pseudo-convex (or locally 0
convex) if it can be determined by a family of p-semi-norms, with p > 0
for each semi-norm, but p depending on the semi-norm. In our charac-
terization of locally p-convex and locally pseudo-convex spaces, we top-
ologize 1, by the p-norm | ||,, and () [, by the upper bound of the top-

>0
ologies induced by the spaces [,.

Another galb is important in the theory of analytic functions. After
P. Turpin, we shall call it the exponential galb. It is the smallest galb



Veator-valued analytde funotions 127

of a topological vector space that contains the sequence {a*},,y for some
a > 0. This galb contains the sequence {4,} if M < oo, reN, a<<1 can
be found such that || < Ma*'", where |4 | is the decreasing rearrange-
ment of the sequence |4,|. A subset B of the analytic galb is bounded
if M < oo, a<1, reN can be found such that |4]|< Ma*'" for all 1cA.
A filter § tends to zero if § is finer than the filter {eB}e > 0} for some-
bounded, balanced B.

3. Analytic functions and the exponential galb.

PROPOSITION 2. Let (E,7) be a topological vector space with the expo-
nential galb, {e, . ..} a bounded system of elements in E. The series

% n n
DI I

converges then on the unit polydisc. Its sum is a good analytic function there.

This is easy. The crucial step is the observation that the decreasing
rearrangement of the countable set a™t--+(Vi: r,eN) is less than a'’*,
and this is in the galb. We consider the set of series

1t tr
Zurl...rkerl...rk’ |u’1-°-"kl < ay! k

for some @, << a. These series all converge. The set B of their sums is
bounded, absolutely convex, and }e, .21 ... 2 converges in Ey, the
vector space absorbed by B normed by the Minkowski functional of B.

From there, everything is standard.

4. Holomorphy and pseudo-convexity. A differentiable function can
be approached faster by functions of finite rank than a continuous one.
A function of class C, or C,, can be approached still faster. If f is approached
fast enough by functions of finite rank, and if the galb of E is large, f
is continuous Fp-valued for some bounded absolutely convex B. When
the circumstances are even more favorable, this happens when the de-
rivatives of f are approximated fast enough, f is even an E-differentiable
function. If now f is a complex-differentiable function, and is Eg-differ-
entiable, we see that f is an Ey-valued holomorphic function, i.e. f is
a good holomorphic function.

DEFINITION 3. Let U be an open set in R", B a topological vector
space, and reR_. A mapping f: U—F is said to be a class C,, to belong
to C.(U, E) when functions f, = f; ..., exist, for ke N*, |k| =k, + ... +
+k, < r such that f; = f, and

o, (®,Y) =

[fk(y)— 2 Je1(®) (y_—ﬂ]

g | 1K ]
@—y| [l<r— ikl i

is a continuous function of (#, y) which vanishes on the diagonal.
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A function is thus of class C, when it has derivatives to the order [r] -
(the largest interger in r) and when these derivatives have the properties
expected from the limited Taylor expansion theorem. Counter-examples
show that these properties do not follow from the fact that f has deriv-
atives, which are themselves differentiable, to the order [r], the last
derivatives satisfying a o-Holder condition with exponent r —[r], when f
is E-valued, F not locally convex.

Of course, a function f is of class C,, when it is of class O, for all ».
The following approximation theorem has been proved by P. Turpin
and the author [3].

THEORES 3. Let r, < r, and let V be open relatively compact in U < R™.
It is possible to find a bounded sequence of elements ., ..., Uy, ... of C; (U)
and an equicpntinuous sequence of linear mappings ty, ..., 1, ... of C.,(U,E)
into E in such a way that

fl@) = DK (f)uy (o)

Jor all fC, (U, E), all <V, the convergence of the rigtht-hand side to f being
valid in the vector space topology of C, (U,E).

THEORES 4. Let now U < C be open, V = U relatively compact, let
E be locally p-convex. and feC, (U, E) with pr+p > 2. A bounded, absolutely
convexr subset B of E exists, such that feC,(V, Eg).

We note that r > (2/p)—1, and (2/p)—1 >1, so 1 <r. Apply The-
orem 3 with », =1, r, =r. We have f = YkU="2,(f)u,. The set B is
the closed, absolutely convex hull of the sequence k\!~72¢.(f).

COROLLARY. An E-valued function of class C, on U < C is a good
analytic function if it is complex differentiable, if E is locally p-conves
and pr+p > 2. If E is locally pseudo-convew, if f is an E-valued function
of class O, and is complex differentiable, then E is a good analytic function.

5. Some counter-examples. Counter-example show that some assump-
tions about a topological vector space E are necessary if we want E-
valued functions on a complex domain to have the properties we hope
for when they satisfy one, or another definition of an analytic function

The mapping ¢ — u;, where u,(z) =

—y C*— L,(I+1iI) is a vector-

valued funetion of class C, on the complex sphere, as soon as pr+p < 2,
and it is a solution of the Cauchy Riemann equation yet it is not a good
analytic funection (it is not of class C, on the unit square I +¢I). We know
that an E-valued function # on a complex domain is a good analytic
function if ¥ is p-normed, if « is of class C,, and a solution of the Cauchy-
Riemann equation, and if pr-4-p > 2. (See [5], p. 146-150 for a proof
that u, is of class C, when pr+p < 2.)
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Turpin shows ([1], proposition 9.2.3) that the galb of the bounded-
ness of F is the analytic galb if 3 1"e, converges on the open unit dise
as soon as )} e, converges. In other words, the boundedness of E has the
analytic galb if we can associate to every power series ) ¢,2"an open disc D
such that D < X < D, where X is the domain of convergence of the series.

If F is metrizable and does not have the analytic galb, and if X
is an infinite compact space, it can be shown (unpublished) that C(X, E)
contains a sequence f,, which tends to zero, but is such that )'z"f, diver-
ges for all z s 0. W. Zelazko [6] has shown that a sequence g, of elements
of C(X, E) can then be associated to every finite set of points, in such
a way that )'2"g, converges exactly on the union of this finite set of points
and the origin.

Finally, Turpin ([1], paragraph 9, and [2]) has given an example of
a nonconstant vector-valued function on the complex sphere, which is
locally the sum of a power series, in the neighbourhood of each point of its
domain and at infinity.
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