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On the structure of the set of solutions
of a functional equation with applications
to boundary value problems

by DARIusz BiELAwsk! and TADEUsz Pruszko (Gdansk)

Abstract. An application of the Lasota—Opial covering theorem to the study of the structure
of the set of solutions of a functional equation in a Banach space is given. In particular, it is proved
that the set of solutions of the Nicoletti problem and of the Floquet boundary value problem for
the first order differential equation is nonempty, compact and connected.

This note is strictly connected with Aronszajn’s paper [1] whose main
theorem states that the set of all fixed points of a completely continuous
operator in a Banach space is an R;-set. The main idea of the proof is to find
approximations and suitably associated vector fields so that the following
conditions are satisfied: the vector fields are homeomorphisms, have a non-
empty set of zeros, and give good frames (in the sense of the Hausdorff distance)
of the set of all fixed points of the approximated operator. Approximations of
a compact operator satisfying the above conditions have been studied by
several authors by means of the topological degree arguments and have had
many applications to integral or differential equations (compare, for example,
(21, (3], [7], [8D)

In this note we prove two theorems concerning the topological structure
of the set of all fixed points of a completely continuous (or compact) operator
which has approximations with “multivalued regulators” of Lasota-Opial type
([6]). The Lasota—Opial conditions formulated with the help of a multivalued
map allow using the domain invariance theorem to prove that the above
approximations are ones of Aronszajn type. As a result we deduce that the set
of all fixed points of the approximated operator is an Ry-set. It is known that
an Rj-set is acyclic, in particular it is nonempty, compact, and connected. On
the other hand, the Lasota—Opial conditions appear in a natural way in
boundary value problems. As applications we prove that the sets of all
solutions of the Cauchy problem, the Nicoletti problem and the Floquet
boundary value problem for first order ordinary differential equations with
Carathéodory right sides are R;-sets.
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1. The structure of the set of solutions of a functional equation. In this
section we prove two topological theorems which describe the sets of fixed
points of some maps in a normed linear space.

Recall that a subset of a metric space is said to be an Rj-set if it is the
intersection of a decreasing sequence of compact absolute retracts.

Let (X, o) be a metric space. If 4, B are two bounded closed nonempty
subsets of X, d(4, B) denotes the Hausdorff distance of 4 and B; that is,

d(A, B) = max(sup{o(x, A): xe B}, sup{e(x, B): xe4}),

where g(x, A) denotes the distance of x from A. N. Aronszajn has proved the
following theorem:

THEOREM A ([1]). Suppose that there is a sequence {A,} of subsets of
a metric space such that A < A, (ke N), where A, are compact absolute retracts,
and d(A,, A)—0 as k—oo. Then A is an Rj-set.

Let E be a normed linear space. A map h: E— E is compact (completely

continuous) if it is continuous and h(E) is compact (h(A) is compact for any
bounded A < E). By n(E) we denote the family of all nonempty subsets of E.
For a set A < E a multivalued map H: 4 —n(E) is called upper semi-continuous
(ws.c) if its graph {(x, y): ye H(x)} is closed in A x E. We say that H: A —n(E)
is completely continuous if it is u.s.c. and for any bounded subset B of A4, the set
UxEBH(x) is compact. In what follows we use the following Lasota—Opial
theorem.

THEOREM B ([6]). Let U be a neighbourhood of 0 in a normed linear space E.
Suppose that a continuous map h: E~E and a completely continuous map
H: U-—n(E) satisfy the following conditions:

xeH(x), xeU = x=0,
h(x}—h(y)eH(x—y) for x—yeU.

Then the equation x = h(x) has exactly one solution and I —h: E — E (I denotes
the identity map of E) is a homeomorphism. Furthermore, for every & > 0 such
that B(0, 2¢) < U there exists > 0, independent of x, such that for every xeE

(I—h)(B(x, €)) > B(x—h(x), 5)
(B(x, &) denotes the open ball about x of radius e).

THEOREM 1. Let U be a neighbourhood of 0 in a normed linear space
(E, I ) Suppose that a completely continuous map h: E — E, continuous maps
h.: E—E (keN), and completely continuous maps H,: U-n(E) (keN) satisfy
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the following conditions:

(1.1) h, tends to h uniformly on E as k— o0,
(1.2) VkeN VxeU (xeH,(x) = x =0),
(1.3) VkeN Vx, yeE (x—yeU = h(x)—h(y)e H(x—Y)),
(1.4) | Fix(h,) is bounded.
keN

Then Fix(h), the set of all fixed points of h, is an R;-set.

Proof. First, we show that Fix(h) is nonempty. By (1.1), without loss of
generality we may assume that

(1.5) I () —h(x)| <1/k, xeE, keN.

By Theorem B for any ke N there exists a fixed point x, of h,. By (1.4) the
sequence {x,} is bounded. Since h is completely continuous, we may assume
(passing to a subsequence if-necessary) that {h(x,)} is convergent to some x. By
(1.5) we have

[, — O = A (x) —h(x)I < 1/k.

Therefore, x, —x, h(x,)—h(x), and x = h(x).
Define T: E—E (keN) by T,(x) = x—h,(x). Also, define sets 4, and B,
(keN) by

(1.6) Ay = T, ({xeE: |xil < k),

(1.7) B, = T *(co(T (Fix(h)))

(if X c E, then E(X ) denotes the closed convex hull of X). By (1.5) we have
(1.8) Fix(h)< B, < 4,, keN.

From Theorem B it follows that T;: E—~E is a homeomorphism and if
B(0, 2¢) = U (¢ > 0), then there exists > 0 such that T, (B(x, ¢)) = B(T;(x), 9)
for every xeE. It easily follows that for every meN and xeE

B(x, me) o Ty *(B(T;(x), mé)).

Therefore, A, (and so Fix(h)) is bounded. Since h is completely continuous, we

conclude that Fix(h) is compact. Thus, the sets co(T;(Fix(h))) are nonempty,
compact, and convex, and so they are compact absolute retracts. Since by
Theorem B, the T, are homeomorphisms, by virtue of (1.7) the sets B, are also
compact absolute retracts. From Theorem A it follows that the proof will be
completed if-we show that d(B,, Fix(h))»0 as k — co. By (1.8), it suffices
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to show that d(A4,, Fix(h))—0 as k— co. Suppose, on the contrary, that there
exists a sequence {a,} such that a,€ 4, and d(a,, Fix(h)) = c for ke N, where
¢ > 0. We may choose {a,} in such a way that d(a,, Fix(h)) = ¢ (ke N) because
Fix(h) = A, and A4, is connected. Since Fix(h) is bounded, we conclude that {a,)
is bounded. As h is completely continuous, we may assume (passing to
a subsequence if necessary) that {h(a,)} is convergent to some a. From (1.5) and
(1.6) it follows that

(19) Ik(a)—all < [Ih(a)—h(a)ll + I ma) —all < 2/k.

Thus, a, —a, h(a,)—h(a), a = h(a), aeFix(h), and d(a, Fix(h)) = c. This con-
tradiction finishes the proof.

THEOREM 2. Let U be a neighbourhood of 0 in a normed linear space
(E, |l ). Suppose that a compact map h: E—E, continuous maps h,. E—~E
(keN), and completely continuous maps H,: U—-n(E) (ke N) satisfy (1.1)-1.3).
Then Fix(h) is an R,-set.

Proof. This is a consequence of Theorem 1. As before,we may assume that
|A(x)—h,(x)|| < 1/k for x€ E and ke N. We must only show that (1.4) holds. To
this end, suppose that h,(x) = x for some xeE and keN. Then we have

X =R = (1A (x)—h{x)| < 1/k.
This ends the proof because h(E) is bounded.

2. Applications. We say that f: [a, b] xR"—R" is a Carathéodory map if
J(-, x): [a, b]—+R" is measurable for every xeR” and f(t,'): R">R" is
continuous for every te[a, b]. By E we denote the space C([a, b], R") of all
continuous maps from [a, b] to R" with the norm | x| = sup{|x(£)|: te[a, b1},
where |-| denotes the Euclidean norm in R".

Consider the Cauchy problem
21 x'(t) = f(t, x()) ae. on [a,b],
' x(@)=x, (x,€R"),

where f. [a, B]xR"—>R" is a Carathéodory map. By a solution of (2.1) we
mean any absolutely continuous map x: [a, b] —R" satisfying (2.1).
LEMMA. Let g: [a, b] xR">R" be a Carathéodory map such that
lg(t, x)| <¥(@), tela, b], xeR",
where y: [a, b]—[0, ) is an integrable function. Then for every ¢ > 0 there
exists a locally Lipschitzian map §: [a, b]xR"=>R" such that

b
[suplg(t, z)—g(t, z)|dt < e.

a zeR"

This can be proved in the same way as Lemma 2 in [3].



Structure of the set of solutions of a functional equation 205

THEOREM 3. Let f: [a, b] xR"—>R" be a Carathéodory map satisfying
(2.2) 1 (t, )] < a()+BW)lx|, te[a, b], xeR",

where a, B: [a, b]— [0, o) are integrable functions. Then the set of all solutions
of (2.1) is an Ry-set in E.

Proof A map x is a solution of (2.1) if and only if it is a continuous
solution of the integral equation

(2.3) x(t) = x0+}f(s, x(s))ds, tefa,b].

From the Gronwall inequality and (2.2) it follows that there exists M > 0 such

that for every solution x of (2.3), ||x|| < M. Let r: R"—B(0, M) = R" be
a retraction such that |r(x)—r(y)| <|x—yl for x, yeR" Note that
g: [a, b] xR"—>R" defined by g(t, x) = f(z, r(x)) is Carathéodory. It is easy to
check that (2.3) is equivalent to

(2.9 x(t) = x0+ig(s, x(s))ds, te[a, b].

Notice that by the definition of r we have

lg(t, 2| = |1 (t, r(x))| < a®)+BE)Ir(0)] < a(®)+BEOM.
Therefore, by the Lemma for each keN there exists a continuous map

gx: [a, b]xR">R" such that

b
[ sup lg,(t, w)—g(t, w)ldt < 1/k,

a weRn

lgk(t’ x)'—gk(t: y)l < Cklx—y|a |JC| < Ms 1yl < M, te[a, b]’

where C, is a constant. Define h: E—-E, h,: E-E, and H,: E-n(E) (keN)
by

h(x)(®) = xo+ [ g(s, x(9))ds,
(X)) = xo+ [gi(s, r(x(5)) ds,

Hy(x) ={zeE: z(a) =0, Vs, te[a, b] (s <t = |z(s)—z(t)| € ij[lx(u)ld )}.

It is easy to show that all the hypotheses of Theorem 2 are satisfied, which
finishes the proof.
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Consider the Floquet problem

x'(t)=f(t,x(®) ae on [a,b],
{x(a)+/lx(b) =¢ (A>0,(eR"),

where f: [a, b] xR"—R" is a Carathéodory map. Any absolutely continuous
map x: [a, b]—R" which satisfies the above equations is called a solution
of (2.5).

THEOREM 4. Suppose that f: [a, b]—R" is a bounded Carathéodory map
which satisfies

(26) 1S x)=f, N <pW)x—yl for te[a, b] and x, yeR",

where p: [a, b]—[0, c0) is an integrable function such that

b
2.7 [p(s)ds < \/m*+1n%].

Then the set of all solutions of (2.5) is an Rgset in E.

@.5)

Proof. Problem (2.5) is equivalent to the equation
t
(2.8) x(t) = x(@)+Lx—¢+{ f(s, x(s))ds, te[a, b],

where L: E—R"is given by Lx = x(a)+ Ax(b). Define h: E—~E, h,: E—E, and
H,: E—>n(E) (keN) by

(2.9) h(x)(t) = x(a)+Lx—§+j'f(s, x(s))ds,

(2.10) h (%)(t) = x(a)#Lx-—iH—jt(l —(1/k) f (s, x(s))ds,
(2.11)  Hy(x) = {x(a)+Lx+z: zeE, z(a) = 0,
Vs, tela, b] (s <t = |z(s)—z(t)] s}(1~(1/k))p(u.)|x(u)| du)}.

First, we prove that if xe H,(x) for some xeE and keN, then x = 0.
If xe H,(x), we have

(2.12) x(t) = x(a)+Lx+z(t), te[a, b],
where z: [a, b] - R" is absolutely continuous and
(2.13) X' = I2'(e)f < (1—(1/k)p()Ix(t)) ae. on [a, b].

From (2.12) and (2.11) it follows that Lx = 0. By Theorem 3 of [4], only the
trivial solution of (2.13) satisfies Lx =0 and so x = 0
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Let K be a constant such that |f(t, x)| < K for te[a, b] and xeR". Now
suppose that x = h,(x) for some xeE and keN. By (2.10) we have

b
x(B)—x(a)| < [(1—=(1/K)|Sf (s, x(s))| ds < K (b—a).

Notice that |x(b)| < |€|+K|b—a]; if not, we would have
[x(@)+ Ax(b)| = |x(a)~—x(b) + (1 + A)x(b)| = (1 +A)x(b)| —|x(a) —x(b)] > |&],
which is a contradiction. Thus, for te[a, b] we have
x(©)—x(@) < K(b—a), [x(t) <[€+2K(b—a).

It is easy to check that all the remaining hypotheses of Theorem 1 are satisfied,
which finishes the proof.

Remark 1. In [4] it is proved that if in Theorem 4 we replace the weak
inequality in (2.7) by the strong inequality, then (2.5) has exactly one solution.
On the other hand, if in (2.7) equality holds, then (2.5) may have more than one
solution. To demonstrate this consider the following problem, which is a slight
modification of an example in [4]:

xy =r(—(r"'Ind)x, +x,),
(2.14) x; =r(—x,—(r"'Ind)x,), ae on [0,n],

x(0)+x,(m) =0, i=1,2,
where r: R—[—1, 1] is a retraction. Notice that for sufficiently small |C,| and
|C,| (C,, C,eR) we have the following solution x =(x,, x,) of (2.14):

x,(t) = exp(—(t/n)ln A)(C,cost+ C,sint),
x,(t) = exp(—(t/m)1n 1) (— C,sint + C, cost).
Consider the Nicoletti problem

xi(t) = filt, x4, ...h x,), i=1,...,n,
@13) {xi(t,-)=¢, CeR, t.ea, bl,im=1y .oty &=y, eons ED)

where f = (f,, ..., f,): [a, b] x R"—>R"is a Carathéodory map. Any absolutely
continuous map x: [a, b] —+R" which satisfies the above equations is called
a solution of (2.15).

THEOREM 5. Suppose that f: [a, b]—R" is a bounded Carathéodory map
which satisfies

(2.16) IS, x)=f(t, I < p@)lx—yl for te[a, b] and x, yeR,

where p: [a, b] = (0, 0) is an integrable function such that
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b
(2.17) (p(s)ds < m/2.

Then the set of all solutions of (2.15) is an Rset in E.

Proof. Problem (2.15) is equivalent to the equation
x(t) = x(a)+Lx—¢+( (s, x(s))ds, te[a, b],

where L: E—+R" is given by
Lx = (x1(t1), ... s X,(t)-

Define h: E—E, h: E—E, and H,: E—-n(E) (keN) by (2.9), (2.10), and (2.11)
respectively. Using Theorem 3 of [5] one can show as before that if x€H,(x)
for some xeE and keN, then x = 0.

It is easy to check that all the remaining hypotheses of Theorem 1 hold,
which finishes the proof.

Remark 2. In [5] it is proved that if in Theorem 5 we replace the weak
inequality in (2.17) by the strong inequality, then (2.15) has exactly one
solution. On the other hand, if in (2.17) equality holds, then (2.15) may have
more than one solution. To demonstrate this consider the following slight
modification of an example given in [5]:

{X’l = —(m/2)r(x;), x3=(m/2)r(x;) ae on [0, 1],

(2.18)
x1(0) = x,(0) = 0,

where r: R—>[—1, 1] is a retraction. Notice that for every Ce[—1, 1] we

have the following solution x = (x,, x,) of (2.18):

x,(t)= —Csin(nt/2), x,(t) = Ccos(nt/2).
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