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TRIGONOMETRIC INTERPOLATION, I
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1. Preliminaries. Throughout this paper the function f(s) is 2=-pe-
riodic, Riemann-integrable over the interval (— =, =), and is a subject
to further restrictions specified below.

Consider the n-th interpolating polynomial

al™ .
2° + 2 (af) cos ks + b§™ sin ks)

which coincides at the points

(1) 8 =8 =2xnlj2n+1) (1 =0,+1,+2,...)
with f(s;). Write '

(n) '
I (@3 f) =—— + Z(a},"’coskm+ bMsinkz) (0 <v < n).
2 k=1
Since
2 d 2 °
2 ") — n)y _ :
(2) af; o1 l;:f(s,)cosks,, by’ 1 l;—’:f(s,)smks;,
we have
. 2\
(3) IM(x; f) = e 2 f(8) D, (81— ),

l=—n
where

1 - sin(v+ 4)2
D,(2) = — E ' _— 87
(%) 2 + “~ cos ka 2s8in §2

Introduce a convenient integral notation analogous to that of [3],
P. 4. Let w,(s) be the step function which is equal to 2nl/(2n+1) for
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$e(81_1,8) (1 =0, 4+1, 4+2,...). Consider an interval <{a, d); suppose
that 8, < 8 <8 < 8ay1 < ...< 8 < b<8,,. Then we shall write

b 8
27
4) [ roraun® =27 Yot

for any function ¢(s) defined in <{a, b). If ¢ is continuous in this interval,

integral (4) exists in the Riemann-Stieltjes sense. If ¢ is 2=n-periodic,
a+42r

then f ¢(8)dw,(8) is independent of a. In particular, by the above

a
convention,

o =1 f f(s)cosksdwn(s), B == f 7(s)sinksdwn (s)
‘n—n Tc—ﬂ:

and
1 k11 1 21
I3 f) == | $(5)D(s—a)den o) - f £(8) Dy (s — @) deon(8).

Let g(s) be a function defined in the interval I = {(a, b). Denote
by II an arbitrary partition of I, generated by the points

0 =0 <0 < Xy < 00 < T < Ty, = b.

Write, for a given p >0,

Valgs D)= sup{ 3 lg(z)—g(zn) "}
1=1
As it is well-known, the quantity V,(g; I) is called the p-th variation
of f3 if Vyp(g;I) < oo, we say that g is of bounded p-th variation over I.
In this Note we investigate the convergence of trigonometric poly-
nomials (3) and their coefficients (2) for some functions f.

2. Fundamental lemmas. Start with the following

2.1. LEMMA. Let 8 = (83, 81,5 ---, 81,) be an arbitrary subsequence of
the nodes $_,,8_n 1y ...y 85,1 defined by (1), and let ¢ >1. Then
r

max {3 sliD,(s—w)dw,.(sﬂ"}”q

i=1 azi—l

18 uniformly bounded in v, n, x (0 <v<n, —n <z <n).

Proof. The points 8, s,,..., 8, _, belong to the interval {z—2=,
x4 2xn) whenever xe{—m, n). Set

(m=0,4+1, +2,..., +(2v+1)).
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Consider any interval (a, ) = (an, a,>. Applying the inequality

2n+1
2v4+1

(—r<2< 7)),

(5) ‘ Zﬁ: sin (v %)(si—m)‘ <

valid for arbitrary integers a, §, we easily prove that

© | fb D, (s—a)dan(s)

1 1 1 1 \
< Smmax ) y < , )
m|+1" [p|+1" 2v+2—|m| " 2v+2—|p|
if —2y—1<m<p<<0or o< m<p<2v+1, 0 <v»<n. In the case
of (a,b) = {am, On,,), the left-hand side of (6) can be replaced by

%m+1
|D, (8 — )| down (8).

Gy
Let us write

sli
S Drs—rdene =( 3+ Y

where Y denotes summation over all those ¢ for which (81,_,y 8,) containg
no a, (m =0, +1,..,, 4-(2»+1)).
Obviously

r

2

81,
[ D,(s—a)down(s)’,
;1

) 8li 2v41 a]'
2| J Dle—odon@)f's 3 [ 1Ds—a)dan(s)
i si—l f=—2p a1

and, by (6), the last sums are uniformly bounded. Also, applying (6),
we observe that

8,
Z” ls,f Dy(s—w)dwn(s)lqg C,
" i—1

where C is an absolute constant. Hence the assertion follows (cf. [2],
P 272-274).
Now, we shall prove a similar

2.2. LEMMA. Under the assumption of 2.1,
r 8y,

* cos que  5"x
max
s Z

sin kS‘da)n(S) \W
1=1 sl‘i—l
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Proof. Consider the cosine case only. Let us put

2m—1
b = ";k x form=0,4+1, +£2,..., +(k—1),
2k—1
b_y = —m, b= on ™ by, = m,
and write

r 81
D' [ cosksdw,(s)| =
=1 Sl;_
where )" is extended over all those i for which {81;_,» %;) contains
no by,,.

Observing that, for any <(a, b) = {(bn, by),

i
f cos ksdwn(s)'lq,i,
Sl

b
Ifcosksdwn(s)!< n/k when —k<m<p<k+1,

b +1
|cosks|dw,(8) < m/k when —k+1<m<Ek—1,
bm
b_k+41 by 11

{f |cos ks|dw, (s } +{f |cosks|dwn(s)} (m/k)?,
b

and reasoning as before, we get the estimate as desired (cf. [2], p
275-276).

Finally, an analogue of the Riemann-Lebesgue theorem will be
given,

2.3. LEMMA. Let 0 < 6 < w. Then

x—0
(i) lim f f(8)D,(s—z)dw,(s) =0, lim ff(s ,(8—2)dw,(s) = 0
v—o0 o "—’°°:t+d
uniformly in re{—=n+ 48, n— 6>, and
x—4 27
(ii) lim f f(8)D,(s—x)dw,(s) = 0, lim f £(8)D,(8— 2)dwy(s) = 0
v—00 ¢ Y00 g4 6

uniformly in xe{d, 2x— 8).
Proof of (i). Consider only the integral

Jyn (@) = ff(s)D (s—a)dwn(s) (—m+d<ae<n—24).
T4

Put

f(s) , M= sup |f(s).

F.(s) =
=() 2sin}(s—x) _n<s<n
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Given a positive 1 < 6/2, there is a partition

-—Tt=zl<zz<...<zk<...<zm+1 = T
such that

max [2,;—%%| <A and 2(zk+,—zk) Ose f(s) < A.

1<k<m k=1 2p<8<% 11

Hence, if 2, < 2+ 6 < 2,,,, we have

(7) 2(z,,+,—z,,) Ose  Fos)<—r "M

= 2p<8<Zp 1) 28in ié 2 Sin2 16

Let us write

Jyn () —( }+ + f)F (8)sin(v+3)(s— ) dw,(8) = J +J".

Zo+1
Evidently,
JI <ze+l F d < M },—i— 27'C
| I\zf |[Fz(8)| ey (8) < 2sinlo ont 1)’
e
and
o Zp4l
1< D [ 1Fa(8)— Fo() don(s) +
k=p+1 2
- %k 41
+ 3 (B J smetd (s — ) dan(s)
k=p+1
A TAM 27em M wm M

S 2sin}é T 2sin%}d + (2n+1)sin}é + (2v+1)sin}é
by (7) and (5).
Thus

MM+1 AM
|Jvn (2)] < (M+1) T

sin}o + 8in2}6

(—rn+o<z < n—90)

for » and » large enough, which completes the proof (cf. [1], p. 461; [3],
p. 17).

3. Main results. First we shall present an analogue of the well-known
Young’s test.

3.1. THEOREM. Suppose that f(s) is of bounded p-th variation over an
interval (A, B), p>1. Then
(i) we have

(8) lim I{"(z; f) = f(=)
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at every point of continuity of f in (A, B);

(ii) <f f is continuous at every point x of a closed interval {a, b) = (4, B),
the convergence (8) is uniform in {a,b).

Proof of (ii). Consider the case —=n < A4 < B < =. Suppose that
P, > p. Choose, for an arbitrary ¢ >0, a positive § < min(a—A4, B—b)
such that

|f(e+h)—f(z)l <e and Vp (f;<e—96,2+d))<e,
when ze{a,b) and |h| < 6 (see (8.2a) of [2]). Write

1@ ) — ( f + f +Td f ) {1(8)=F(@)D,(s— ) dwn (s)
=;(J1+J2+J3‘|‘J4)-

By 2.3, the integrals J,,J, tend to zero as » — oo, uniformly in
{a, b). The Abel transformation leads to

m—1
2n
o= 2 2, (o)~ Fona Do) +
)—f@)} D Dsi—a) = I+ 77,
=k

where the nodes s, 8¢, ;,...,8n are in <{(z,x+ d6). Applying inequality
(5.1) of [2] and our Lemma 2.1, we obtain
(T3] < C(p1) Vi, (f; @, 2+ 8))  (zela, b), 1<v <),

with a constant C(p,) depending only on p,. Also, by 2.1, there is an
absolute constant K such that

PR
2n —|— 1
Consequently,

5] < {C(py)+K}e (eca, by, 1 < v <),

and J; can be replaced by J,;, too. Thus the result follows.
The proof of (i) runs on the same line (cf. [2], p. 274 and [3], p. 17).
By the analysis of the proof of (5.5) in [3], pp. 17-18, we get
3.2. THEOREM. Let f(8) be continuous at every point of a closed interval
{a, b). Suppose that, for every xela,b), there is a function u,(s) non-
decreasing in an interval {0, n) such that

If(@ts)—f(2)] < pz(s) (0<8<y)
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and

tim (28 g _ o

0—04 s

uniformly in xela,b)>. Then the convergence (8) is wuniform in {a,b).

Now, three estimates for Fourier-Lagrange coefficients (2) will be
given.

3.3. THEOREM. Suppose that f(s) is of bounded p-th variation over
(—mym), with p >1. Set V = Vp(f; {—m, x)).

) If1<k<n (n=1,2,...), then

C, v
(9) o] < A for any p" >p
and
oGV
(10) lai?| < ki,,. log(n+1),

where C, and C, are some positive constants depending on p and p’ only.
(ii) If 0 < e < k[n <1, ¢ = const, we have

1-
(11) < (2)
“\e kP

Estimates (9)-(11) remain trie for by, too.
Proof. By the Abel transformation,

2'n,+1 Z 2 {f(87 8]'+1)}COS’G81.

n l=—n

(n) —

(i) Choose a number ¢ > 1 such that 1/p+1/¢ > 1. Then inequality
(5.1) of [2] and Lemma 2.2 give

511y 1 1
| < f{1+c(—+ —)}
k E—ve P q

By putting p’ = ¢/(¢—1), we get (9).
Choose, next, a ¢ > 1 such that 1/p41/q = 1. In this case inequality
(5.1) of [2] should be replaced by

n

7
( Y a,b,-[ < (241ogn) 8, 4(a, b).
j=1 l=1

Applying it together with 2.2, we conclude (10).
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(ii) In view of Holder’s inequality (see also [3], p. 15-16)

n—1

1 | 4
laf?| < 7];—{ Z If(sj)—f(sj+l)|”} /p(2n)1""7’ <.—k— (2n)'~YP,

=—n

and (11) follows.
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