FASC. 2

TRIGONOMETRIC INTERPOLATION, I

RV

R. TABERSKI (POZNAŃ)

1. Preliminaries. Throughout this paper the function f(s) is 2π -periodic, Riemann-integrable over the interval $\langle -\pi, \pi \rangle$, and is a subject to further restrictions specified below.

Consider the n-th interpolating polynomial

$$\frac{a_0^{(n)}}{2} + \sum_{k=1}^n \left(a_k^{(n)} \cos ks + b_k^{(n)} \sin ks \right)$$

which coincides at the points

(1)
$$s_l = s_l^{(n)} = 2\pi l/(2n+1)$$
 $(l = 0, \pm 1, \pm 2, ...)$

with $f(s_l)$. Write

$$I_{r}^{(n)}(x;f) = \frac{a_{0}^{(n)}}{2} + \sum_{k=1}^{r} \left(a_{k}^{(n)}\cos kx + b_{k}^{(n)}\sin kx\right) \quad (0 \leqslant r \leqslant n).$$

Since

(2)
$$a_k^{(n)} = \frac{2}{2n+1} \sum_{l=-n}^n f(s_l) \cos ks_l, \quad b_k^{(n)} = \frac{2}{2n+1} \sum_{l=-n}^n f(s_l) \sin ks_l,$$

we have

(3)
$$I_{\mathfrak{p}}^{(n)}(x;f) = \frac{2}{2n+1} \sum_{l=-n}^{n} f(s_l) D_{\mathfrak{p}}(s_l-x),$$

where

$$D_{\nu}(z) = \frac{1}{2} + \sum_{k=1}^{\nu} \cos kz = \frac{\sin(\nu + \frac{1}{2})z}{2\sin\frac{1}{2}z}.$$

Introduce a convenient integral notation analogous to that of [3], p. 4. Let $\omega_n(s)$ be the step function which is equal to $2\pi l/(2n+1)$ for

 $s \in \langle s_{l-1}, s_l \rangle$ $(l = 0, \pm 1, \pm 2, ...)$. Consider an interval $\langle a, b \rangle$; suppose that $s_{a-1} < a \leqslant s_a < s_{a+1} < ... < s_{\beta} < b \leqslant s_{\beta+1}$. Then we shall write

(4)
$$\int_{a}^{b} \varphi(s) d\omega_{n}(s) = \frac{2\pi}{2n+1} \sum_{l=a}^{\beta} \varphi(s_{l})$$

for any function $\varphi(s)$ defined in $\langle a, b \rangle$. If φ is continuous in this interval, integral (4) exists in the Riemann-Stieltjes sense. If φ is 2π -periodic, then $\int_a^b \varphi(s) d\omega_n(s)$ is independent of a. In particular, by the above convention,

$$a_k^{(n)} = rac{1}{\pi} \int\limits_{-\pi}^{\pi} f(s) \cos ks \, d\omega_n(s), \qquad b_k^{(n)} = rac{1}{\pi} \int\limits_{-\pi}^{\pi} f(s) \sin ks \, d\omega_n(s)$$

and

$$I_{\nu}^{(n)}(x;f) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(s) D_{\nu}(s-x) d\omega_n(s) = \frac{1}{\pi} \int_{0}^{2\pi} f(s) D_{\nu}(s-x) d\omega_n(s).$$

Let g(s) be a function defined in the interval $I = \langle a, b \rangle$. Denote by Π an arbitrary partition of I, generated by the points

$$a = x_0 < x_1 < x_2 < \ldots < x_{m-1} < x_m = b.$$

Write, for a given p > 0,

$$V_p(g; I) = \sup_{\Pi} \left\{ \sum_{i=1}^m |g(x_i) - g(x_{i-1})|^p \right\}^{1/p}.$$

As it is well-known, the quantity $V_p(g; I)$ is called the *p-th variation* of f; if $V_p(g; I) < \infty$, we say that g is of bounded p-th variation over I.

In this Note we investigate the convergence of trigonometric polynomials (3) and their coefficients (2) for some functions f.

2. Fundamental lemmas. Start with the following

2.1. LEMMA. Let $S = (s_{l_0}, s_{l_1}, \ldots, s_{l_r})$ be an arbitrary subsequence of the nodes $s_{-n}, s_{-n+1}, \ldots, s_{n+1}$ defined by (1), and let q > 1. Then

$$\max_{S} \left\{ \sum_{i=1}^{r} \left| \int_{s_{l}}^{s_{l_{i}}} D_{\nu}(s-x) d\omega_{n}(s) \right|^{q} \right\}^{1/q}$$

is uniformly bounded in v, n, x ($0 \leqslant v \leqslant n$, $-\pi \leqslant x \leqslant \pi$).

Proof. The points $s_{l_0}, s_{l_1}, \ldots, s_{l_{r-1}}$ belong to the interval $\langle x-2\pi, x+2\pi \rangle$ whenever $x \in \langle -\pi, \pi \rangle$. Set

$$a_m = x + \frac{2\pi m}{2\nu + 1}$$
 $(m = 0, \pm 1, \pm 2, ..., \pm (2\nu + 1)).$

Consider any interval $\langle a, b \rangle \subset \langle a_m, a_p \rangle$. Applying the inequality

(5)
$$\left|\sum_{i=a}^{\beta} \sin(\nu+\frac{1}{2})(s_i-x)\right| \leqslant \frac{2n+1}{2\nu+1} \quad (-\pi \leqslant x \leqslant \pi),$$

valid for arbitrary integers a, β , we easily prove that

(6)
$$\left| \int_{a}^{b} D_{r}(s-x) d\omega_{n}(s) \right|$$

$$\leq 5\pi \max\left(\frac{1}{|m|+1}, \frac{1}{|p|+1}, \frac{1}{2\nu+2-|m|}, \frac{1}{2\nu+2-|p|}\right)$$

if $-2\nu-1 \leqslant m or <math>0 \leqslant m , <math>0 \leqslant \nu \leqslant n$. In the case of $\langle a,b \rangle = \langle a_m,a_{m+1} \rangle$, the left-hand side of (6) can be replaced by

$$\int_{a_{m}}^{a_{m+1}} |D_{r}(s-x)| d\omega_{n}(s).$$

Let us write

$$\sum_{i=1}^{r} \Big| \int_{s_{l_{i-1}}}^{s_{l_{i}}} D_{r}(s-x) d\omega_{n}(s) \Big|^{q} = \Big(\sum_{i}' + \sum_{i}'' \Big) \Big| \int_{s_{l_{i-1}}}^{s_{l_{i}}} D_{r}(s-x) d\omega_{n}(s) \Big|^{q},$$

where \sum' denotes summation over all those i for which $\langle s_{l_{i-1}}, s_{l_i} \rangle$ contains no a_m $(m = 0, \pm 1, ..., \pm (2\nu + 1))$.

Obviously

$$\sum_{i}' \left| \int_{s_{l_{i-1}}}^{s_{l_{i}}} D_{\nu}(s-x) d\omega_{n}(s) \right|^{q} \leqslant \sum_{j=-2\nu}^{2\nu+1} \left\{ \int_{a_{j-1}}^{a_{j}} |D_{\nu}(s-x)| d\omega_{n}(s) \right\}^{q}$$

and, by (6), the last sums are uniformly bounded. Also, applying (6), we observe that

$$\sum_{i}^{\prime\prime} \Big| \int_{s_{l_{i-1}}}^{s_{l_{i}}} D_{\nu}(s-x) d\omega_{n}(s) \Big|^{q} \leqslant C,$$

where C is an absolute constant. Hence the assertion follows (cf. [2], p. 272-274).

Now, we shall prove a similar

2.2. LEMMA. Under the assumption of 2.1,

$$\max_{S} \left\{ \left. \sum_{i=1}^{r} \left| \int_{s_{l_{i}}}^{s_{l_{i}}} \cos ks \, d\omega_{n}(s) \right|^{q} \right\}^{1/q} \leqslant \frac{5^{1/q} \pi}{k^{1-1/q}} \qquad (1 \leqslant k \leqslant n).$$

Proof. Consider the cosine case only. Let us put

$$b_m = rac{2m-1}{2k} \pi \quad ext{ for } m = 0, \pm 1, \pm 2, ..., \pm (k-1),$$
 $b_{-k} = -\pi, \quad b_k = rac{2k-1}{2k} \pi, \quad b_{k+1} = \pi,$

and write

$$\sum_{i=1}^{r} \left| \int_{s_{l_{i-1}}}^{s_{l_{i}}} \cos ks \, d\omega_{n}(s) \right|^{q} = \left(\sum_{i}' + \sum_{i}'' \right) \left| \int_{s_{l_{i-1}}}^{s_{l_{i}}} \cos ks \, d\omega_{n}(s) \right|^{q},$$

where \sum' is extended over all those *i* for which $\langle s_{l_{i-1}}, s_{l_i} \rangle$ contains no b_m .

Observing that, for any $\langle a, b \rangle \subset \langle b_m, b_p \rangle$,

$$igg|\int_a^b\cos ks\,d\omega_n(s)igg|\leqslant \pi/k \quad ext{ when } -k\leqslant m< p\leqslant k+1, \ \int_{bm}^{b_{m+1}}|\cos ks|\,d\omega_n(s)\leqslant \pi/k \quad ext{ when } -k+1\leqslant m\leqslant k-1, \ igg|\int_{b-k}^{b-k+1}|\cos ks|\,d\omega_n(s)igg|^q+igg|\int_{b_k}^{b_{k+1}}|\cos ks|\,d\omega_n(s)igg|^q\leqslant (\pi/k)^q,$$

and reasoning as before, we get the estimate as desired (cf. [2], p. 275-276).

Finally, an analogue of the Riemann-Lebesgue theorem will be given,

2.3. LEMMA. Let $0 < \delta < \pi$. Then

(i)
$$\lim_{v\to\infty}\int\limits_{-\pi}^{x-\delta}f(s)D_v(s-x)d\omega_n(s)=0$$
, $\lim_{v\to\infty}\int\limits_{x+\delta}^{\pi}f(s)D_v(s-x)d\omega_n(s)=0$

uniformly in $x \in \langle -\pi + \delta, \pi - \delta \rangle$, and

(ii)
$$\lim_{r\to\infty}\int_{0}^{x-\delta}f(s)D_{r}(s-x)d\omega_{n}(s)=0, \quad \lim_{r\to\infty}\int_{x+\delta}^{2\pi}f(s)D_{r}(s-x)d\omega_{n}(s)=0$$

uniformly in $x \in \langle \delta, 2\pi - \delta \rangle$.

Proof of (i). Consider only the integral

$$J_{\nu,n}(x) = \int_{x+\delta}^{\pi} f(s) D_{\nu}(s-x) d\omega_n(s) \quad (-\pi+\delta \leqslant x \leqslant \pi-\delta).$$

Put

$$F_x(s) = \frac{f(s)}{2\sin\frac{1}{2}(s-x)}, \qquad M = \sup_{-\pi\leqslant s\leqslant\pi} |f(s)|.$$

Given a positive $\lambda < \delta/2$, there is a partition

$$-\pi = z_1 < z_2 < \ldots < z_k < \ldots < z_{m+1} = \pi$$

such that

$$\max_{1\leqslant k\leqslant m}|z_{k+1}-z_k|<\lambda\quad \text{ and }\quad \sum_{k=1}^m(z_{k+1}-z_k)\operatorname*{Osc}_{z_k\leqslant s\leqslant z_{k+1}}f(s)<\lambda.$$

Hence, if $z_{\varrho} < x + \delta \leqslant z_{\varrho+1}$, we have

(7)
$$\sum_{k=\rho}^{m} (z_{k+1}-z_k) \operatorname{Osc}_{z_k \leqslant s \leqslant z_{k+1}} F_x(s) < \frac{\lambda}{2\sin\frac{1}{4}\delta} + \frac{\pi\lambda M}{2\sin^2\frac{1}{4}\delta}.$$

Let us write

$$J_{\nu,n}(x) = \left(\int_{x+\delta}^{x_{\varrho+1}} + \int_{x_{\varrho+1}}^{\pi}\right) F_x(s) \sin(\nu + \frac{1}{2})(s-x) d\omega_n(s) = J' + J''.$$

Evidently,

$$|J'| \leqslant \int\limits_{z_o}^{z_{o+1}} |F_x(s)| d\omega_n(s) \leqslant rac{M}{2\sin rac{1}{4}\delta} igg(\lambda + rac{2\pi}{2n+1} igg),$$

and

$$|J''| \leqslant \sum_{k=\varrho+1}^{m} \int_{z_k}^{z_{k+1}} |F_x(s) - F_x(z_k)| d\omega_n(s) + \\ + \sum_{k=\varrho+1}^{m} |F_x(z_k)| \int_{z_k}^{z_{k+1}} \sin(v + \frac{1}{2})(s - x) d\omega_n(s) \Big| \\ \leqslant \frac{\lambda}{2\sin\frac{1}{4}\delta} + \frac{\pi\lambda M}{2\sin^{\frac{1}{4}\delta}} + \frac{2\pi M}{(2n+1)\sin\frac{1}{4}\delta} + \frac{\pi M M}{(2v+1)\sin\frac{1}{4}\delta}$$

by (7) and (5).

Thus

$$|J_{r,n}(x)| \leqslant \frac{\lambda(M+1)}{\sin \frac{1}{4}\delta} + \frac{\pi \lambda M}{\sin^2 \frac{1}{4}\delta} \quad (-\pi + \delta \leqslant x \leqslant \pi - \delta)$$

for ν and n large enough, which completes the proof (cf. [1], p. 461; [3], p. 17).

- 3. Main results. First we shall present an analogue of the well-known Young's test.
- 3.1. THEOREM. Suppose that f(s) is of bounded p-th variation over an interval $\langle A, B \rangle$, $p \geqslant 1$. Then
 - (i) we have

(8)
$$\lim_{r \to \infty} I_r^{(n)}(x; f) = f(x)$$

at every point of continuity of f in (A, B);

(ii) if f is continuous at every point x of a closed interval $\langle a, b \rangle \subset (A, B)$, the convergence (8) is uniform in $\langle a, b \rangle$.

Proof of (ii). Consider the case $-\pi \leqslant A < B \leqslant \pi$. Suppose that $p_1 > p$. Choose, for an arbitrary $\varepsilon > 0$, a positive $\delta \leqslant \min(a-A, B-b)$ such that

$$|f(x+h)-f(x)|<\varepsilon \quad \text{ and } \quad V_{p_1}(f;\langle x-\delta,\, x+\delta\rangle)<\varepsilon,$$

when $x \in \langle a, b \rangle$ and $|h| < \delta$ (see (8.2a) of [2]). Write

$$I_{\nu}^{(n)}(x;f)-f(x) = rac{1}{\pi} \Big(\int_{-\pi}^{x-\delta} + \int_{x-\delta}^{x} + \int_{x}^{x+\delta} + \int_{x+\delta}^{\pi} \Big) \{f(s)-f(x)\} D_{\nu}(s-x) d\omega_{n}(s)$$

$$= rac{1}{\pi} (J_{1}+J_{2}+J_{3}+J_{4}).$$

By 2.3, the integrals J_1, J_4 tend to zero as $\nu \to \infty$, uniformly in $\langle a, b \rangle$. The Abel transformation leads to

$$egin{align} J_3 &= rac{2\pi}{2n+1} \sum_{j=k}^{m-1} \sum_{l=k}^{j} \left\{ f(s_j) - f(s_{j+1}) \right\} D_{
u}(s_l - x) + \ &+ rac{2\pi}{2n+1} \left\{ f(s_m) - f(x) \right\} \sum_{l=k}^{m} D_{
u}(s_l - x) = J_3' + J_3'', \end{split}$$

where the nodes $s_k, s_{k+1}, \ldots, s_m$ are in $\langle x, x+\delta \rangle$. Applying inequality (5.1) of [2] and our Lemma 2.1, we obtain

$$|J_3'|\leqslant C(p_1)\,V_{p_1}(f;\langle x,x+\delta
angle) \ \ (x\,\epsilon\langle a,b
angle,\ 1\leqslant
u\leqslant n),$$

with a constant $C(p_1)$ depending only on p_1 . Also, by 2.1, there is an absolute constant K such that

$$\left|\frac{2\pi}{2n+1}\left|\sum_{l=k}^{m}D_{\nu}(s_{l}-x)\right|\leqslant K.\right|$$

Consequently,

$$|J_3| < \{C(p_1) + K\}\varepsilon \quad (x \in \langle a, b \rangle, 1 \leqslant \nu \leqslant n),$$

and J_3 can be replaced by J_2 , too. Thus the result follows.

The proof of (i) runs on the same line (cf. [2], p. 274 and [3], p. 17). By the analysis of the proof of (5.5) in [3], pp. 17-18, we get

3.2. THEOREM. Let f(s) be continuous at every point of a closed interval $\langle a, b \rangle$. Suppose that, for every $x \in \langle a, b \rangle$, there is a function $\mu_x(s)$ non-decreasing in an interval $\langle 0, \eta \rangle$ such that

$$|f(x\pm s)-f(x)|\leqslant \mu_x(s) \quad (0\leqslant s\leqslant \eta)$$

and

$$\lim_{\sigma\to 0+}\int\limits_0^\sigma \frac{\mu_x(s)}{s}\,ds=0$$

uniformly in $x \in \langle a, b \rangle$. Then the convergence (8) is uniform in $\langle a, b \rangle$.

Now, three estimates for Fourier-Lagrange coefficients (2) will be given.

3.3. THEOREM. Suppose that f(s) is of bounded p-th variation over $\langle -\pi, \pi \rangle$, with p > 1. Set $V = V_p(f; \langle -\pi, \pi \rangle)$.

(i) If
$$1 \leqslant k \leqslant n$$
 $(n = 1, 2, ...)$, then

$$|a_k^{(n)}|\leqslant \frac{C_1\,V}{k^{1/p'}}\quad \ for\ \ any\ \ p'>p$$

and

(10)
$$|a_k^{(n)}| \leqslant \frac{C_2 V}{k^{1/p}} \log(n+1),$$

where C₁ and C₂ are some positive constants depending on p and p' only.

(ii) If
$$0 < c \le k/n \le 1$$
, $c = \text{const}$, we have

$$|a_k^{(n)}| \leqslant \left(\frac{2}{c}\right)^{1-1/p} \frac{V}{k^{1/p}}.$$

Estimates (9)-(11) remain true for $b_k^{(n)}$, too.

Proof. By the Abel transformation,

$$a_k^{(n)} = \frac{2}{2n+1} \sum_{j=-n}^{n-1} \sum_{l=-n}^{j} \{f(s_j) - f(s_{j+1})\} \cos ks_l.$$

(i) Choose a number q>1 such that 1/p+1/q>1. Then inequality (5.1) of [2] and Lemma 2.2 give

$$|a_k^{(n)}| \leqslant rac{5^{1/q}V}{k^{1-1/q}} \left\{ 1 + \zeta \left(rac{1}{p} + rac{1}{q}
ight)
ight\}.$$

By putting p' = q/(q-1), we get (9).

Choose, next, a q > 1 such that 1/p + 1/q = 1. In this case inequality (5.1) of [2] should be replaced by

$$\left|\sum_{j=1}^{n}\sum_{l=1}^{j}a_{l}b_{j}\right| \leqslant (2+\log n)S_{p,q}(a,b).$$

Applying it together with 2.2, we conclude (10).

(ii) In view of Hölder's inequality (see also [3], p. 15-16)

$$|a_k^{(n)}| \leqslant \frac{1}{k} \left\{ \sum_{j=-n}^{n-1} |f(s_j) - f(s_{j+1})|^p \right\}^{1/p} (2n)^{1-1/p} \leqslant \frac{V}{k} (2n)^{1-1/p},$$

and (11) follows.

REFERENCES

- [1] I. P. Natanson, On the convergence of trigonometrical interpolation at equidistant knots, Annals of Mathematics 45 (1944), p. 457-471.
- [2] L. C. Young, An inequality of the Hölder type connected with Stieltjes integration, Acta Mathematica 67 (1936), p. 251-282.
 - [3] A. Zygmund, Trigonometric series II, Cambridge 1959.

DEPARTMENT OF MATHEMATICS I A. MICKIEWICZ UNIVERSITY IN POZNAŃ

Reçu par la Rédaction le 18.3.1968