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1. Introduction. Our aim is to describe an example of a map p: X—L
which is not a Hurewicz fibration although it is a local Hurewicz
fibration, i.e., there is an open cover ¢ of L such that, for each U € ¥,
(p~(T), plp~"(U), U) is a Hurewicz fibration.

The well-known uniformization theorem of Hurewicz [3] states:

A local fibration over a paracompact space is a fibration.

Variations and generalizations in [1] deal with maps whose restrictions
to the elements of a numerable cover of the base are fibrations. In the
proofs of each such local-to-global result, the local finiteness condition
(paracompactness or numerable cover) seems necessary. Our example
shows that this is the case.

2. The example (X, p, L).

2.1. Definitions and notation. We let L denote the long line
([5], p- 71) described briefly as follows. £2 is the set of all ordinals less than
the first uncountable ordinal well ordered by <. With I, the unit interval,
L = Q2 xI|/~, where the only identifications are (a,1) ~ (a+1, 0) for
each a € 2. For 0 <t < 1 we write (a, t) for the equivalence class of (a, t)
and note that each element of I can be written uniquely in this way.
The space L has the quotient topology. It is also an ordered space with
the obvious order. By identification of ¢ with (a, 0) we consider 2 as
a subspace of L. The uncountability and sequential compactness of 2
(and hence L) will be the main properties used in our proofs.

Next, we define X as a subset of L xI, and p: X — L as the first
coordinate projection. To do this, let f: I — I be defined by f(z) = 2«
for 0 < # < 4 and by f(z) = 2 —2x for } <2< 1, and set

X = ({((ay?),8) e LXI|0 < s <f()})U(Qx{0}).
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In other words, we obtain X by attaching solid triangles to each
“interval” of L along one edge and then removing the “interiors” of the
attached edges. Finally, we set p((a, 1), s).= (a, t) and observe that

1) p~%a, 0) = {(a, 0), 0} is a single point,

(2) for 0 <t<1, ((a,?),8) €X implies s> 0.

2.2. (X, p, L) i3 not a fibration. Recall that (X, p, L) is a Hurewicz
Jfibration if and only if there is a continuous lifting function

A: P > X!, where P = {(z, w) € X xL¥|p(x) = w(0)},
such that
P(A(®, )(t)) =w(t) and A(z,w)(0) =0

(see [3]). We assume such a A and reach a contradiction by a standard
uncountability argument. '

We let w, € L! be defined by w,(f) = (a, t). It follows from observa-
tion (2) in 2.1 and the uncountability of £ that there are an uncountable
set A « Q2 and an s, > 0 such that

A(a, 0), wg)(}) = ((a, 3),8) with 8> s, for each ac 4.

By the sequential compactness of £, there are a sequence (a;) in 4
and a limit ordinal a, € 2 with (a;) - a,and a; < a, for each ¢. The following
statements are now easy to check:

1. ((as) 0), @,) — (@0, 0), @) in P, where &, denotes the constant
path at a,.

2. n,(}.((a,., 0), wa‘)(Q)) > 8,, where' 7, denotes the second coordinate
projection.

3. 73(A((aq, 0), Go)(3)) = O by observation (1) of 2.1.

4. (A((a, 0), o)) + A((ao, 0), Go) in X.

Statements 1 and 4 contradict the continuity of A and our proof
is complete. '

23. (X,p,L) t8 a local fibration. We shall show that (X, p, L)
has the slicing structure property [2], [6]. From this the local fibra-
tion condition follows easily. Specifically, for each a, € 2 we let B =
{xelL|r < a,}, where z <a, means z = (a,t) with a < a,, and let
E= p~'(B). We define a (continuous) slicing function y: E xB —~E by

yle,p(e)) =e and py(e,b) =b for each (e,b).

The countability of B* = {a € 2|a < a,} will be crucial in defining y.
Step 1. Let B* = {a,, a,, ay, ...} and define k: B — I by

(1
k(a,,r) = mm{;’ f(r)=7



. N
’ LOCAL-NON-GLOBAL HUREWICZ FIBRATION 75

where we note 0 <r < 1. Since (r;) > 0 and (r;) > 1 both imply that
( f(ri)) — 0, it is easy to check the continuity of k¥ at any point except
possibly at (a,, 0), where a, is a cluster point for B*. In such a case, the
countability of B* implies that, for each ¢ > 0, there is an open set U
about a, in B* such that 1/m < ¢ whenever a,, € U. The continuity at
{a,, 0) follows easily.

Since k(a,, r) < f(r), we could use % to define a section from B to E.
Functions obtained from % will yield the collection of sections required
for the slicing function y.

Step 2. For each natural number n we define g,: 8 XxI — I, where
8 c IxIand 8 = {(¢,8)|s <f(2)}. Forz = ((¢, ), r) € 8 xI the definition
is as follows:
I for 0<t<1/2n and 0 <r < ¢,
9 (2) = min{f(r), s};
II. for 0<t<1/2n and t<r <1/2n,
In(®) = f(r)—2t+3;
IIT. for 0<t<1/2n and 1/2n <r < 1/2,

1
gn(w) == _2t+8;
n
IV. for 0<t<1/2n and 1/2<r<1,
In (@) =g,,((t,s), 1_7);
V. for 120 <1< 1/2,
ga(®) = min{f(r), 8};
VI. for 12 <t<1,
9. (@) = g,((1—1,8),7).

Fig. 1 illustrates the g,. Each such function is piecewise-linear in
r with seven “pieces” and critical points continuously dependent on ¢
and s. Continuity of each g, follows easily. These functions have the fol-
lowing properties:

(1) gn((t’ 3)vt) = 8,
(2) gn((t’ 8), 7') < f(r),

. ) 1
) (0, 0),7) = g4{(t, 0),7) = min{f0r), -,
(4) gn((ty 8), r) < max {8, k(a,, )}. |

Step 3. Now we define ¢: F XB — I by setting
r = (((“u t), 8)’ (@) ’))
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and putting
k(a,,r)  if o #a,,

P = 9.((t,8),7) if a; = a,.

Here we suppose 0 <8< 1 and 0 <r < 1. The continuity at any
point # with s = 0 and r # 0 follows immediately from the continuity
of ¥ and that of the g,. If s = 0, + 0 and a, = a;, the continuity at z
follows from the continuity of g,. If 8 = 0, r % 0, and a; # a,, the conti-

Fig. 1. The function g,: § xI—+8 for various “fixed” # = (¢, 8) €S and variable rel

nuity at # follows from the continuity of ¥ and, in case where a, is the
successor of a,, the fact that ¢; - 1 implies

{gn((ti’ 0), ")l - k(ay,, 7).

If s =0 and r = 0, then ¢(x) = 0 and the continuity follows from
the continuity of ¥ and properties of the g,. In case where a, is a cluster
point for A*, the property

g,,((t, 8), 'r) < max {8, k(a,, r)}
is needed. Note that <p(((ai, 1), s), (a;, t)) = 8.

Step 4. Now we complete our proof by defining y: E xB — E by
y(e, b) = (b, @(¢, b)). The continuity is immediate and we have g (y(e, b))
= b. Furthermore,

7(6: Q(e)) = 7(((ai7 t)y 8)y (@i, t)) = ((an t), 9’(((“4’ t), 3), (aq, t))’
= ((aﬁ t)y 3) = €.
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3. Remarks. If we replaced A x {0} by L X {0} in the definition of

X, i.e., we added the “interiors” of the base lines of the triangles, then we
would obtain a triple (X*, p, L) which would be a Hurewicz fibration.
Thus, the omission of the “interiors” is crucial.
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