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In this paper we summarize some of the recent work on the structure of the
Julia sets of a large class of entire transcendental functions, namely the class
of entire transcendental functions of finite type. As a dynamical system, a map
in this class shares many of the properties of polynomial or rational maps.
However, there are several significant differences. It is the aim of this paper
to point out some of these distinctions.

The major difference between entire functions and polynomials or
rational maps is, of course, the essential singularity at infinity. By Picard’s
Theorem, any neighborhood of oo is mapped over the entire plane infinitely
often, missing at most one point. From a dynamical point of view, this result
means that an entire map exhibits a tremendous amount of hyperbolicity
near oo. This is reflected in the Julia set of such a map, which assumes a
form that is quite different from that of a polynomial or rational map. In
particular, we will show below that the Julia set of an entire function of finite
type contains Cantor bouquets — a topological structure that is quite
different from the kinds of Julia sets that occur in the study of rational maps
or polynomials, which extend to oo.

§ 1. Basic facts

Let E be an entire transcendental function of finite type, i.e., for which there
are only finitely many critical values and asymptotic values. Maps in this
class include, among others, expz, sinz, and cos z. The Julia set of E, denoted
by J(E), is the set of points in C at which the family of iterates of E fails to
be a normal family of functions in the sense of Montel. We denote by E" the
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n-fold composition of E with itself. The following result, proved by Fatou
[F] and 1. N. Baker [Ba] shows that the Julia set has a dynamical definition
as well.

THEOREM. J(E) is the closure of the set of repelling periodic points of E.

The complement of the Julia set is called the stable set. Sullivan [Su]
has recently classified the dynamics of rational maps on the components of
the stable set. Basically, in the case of rational maps, the stable set consists of
a finite number of periodic components, and all other components are
eventually periodic. The periodic components fall into one of five basic
categories: attractive basins, super-attractive basins, parabolic basins, Siegel
disks, or Herman rings. See [Bl] for more details on this result.

The classification of the dynamics of entire functions in not yet com-
plete, but there has been substantial recent progress. Goldberg and Keen [GK],
Eremenko and Lubich [EL1], and Baker [Ba2] have extended the Sullivan
result to the critically finite case, so there are no wandering domains for
these maps. However, there are several examples of general entire maps
which have components of the stable set which are not periodic. Herman
[H] has a simple example, and Baker [Bal] has found a quite different type
of wandering domain which is not simply connected. Eremenko and Ljubic
have examples of simply connected wandering domains on which all of the
subsequent iterates of the map are univalent, and also examples for which
the orbit of the domain has infinitely many limit points.

An example of a wandering domain similar to Herman’s example is
provided by the map S,(z) =z+A4isinz, where A€R is chosen so that all
critical points lie on one of two orbits which tend to 0. See Fig. 1.

It will follow from our later remarks that the vertical lines Rez = kn for
k €Z lie in the Julia set, so there is an open neighborhood of each critical
point which lies in a separate component of the stable set and which tends
to oo.

1

Fig. 1. The graph of s; with all critical points tending to o
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For entire maps, the classification of the components of the stable set
must admit the possibility of a new type of component, a domain at infinity.
These are open sets which are invariant or periodic but which are not of the
above types and which contain oo in their boundaries. For example, Fatou
[F] has shown that the map F(z) =z+1+exp(—z) has a domain at o
which contains the half-plane Rez > 0. Any point in this half-plane satisfieg
Re F(z) > Rez, so all such points tend to oo. Note that F is not critically
finite, however. Eremenko and Lyubich have recently announced [EL1] that
such a domain cannot occur for a map which is critically finite.

§ 2. Cantor bouquets

A characteristic topological feature of the Julia sets of critically finite entire
functions is the presence of Cantor bouquets. These were first observed for
the exponential map in [DK] and later shown to exist for a wide class of
entire functions [DT].

A Cantor n-bouquet is defined as follows. Let X, denote the Cantor set
of one-sided sequences (so, S;, S, ...) Where s; =1, ..., n. The shift auto-
morphism o: X, =2, is defined by a(s¢, sy, S3, ...) = (51, S5, ...); the dynam-
ics of ¢ are well understood [Sm]. A closed invariant subset B, of J(E) is
called a Cantor bouquet if there is a homeomorphism h: X, x[0, c0) =B,
satisfying:

1. noh™'oEoh(s, t) = 6(s), where n: X, x[0, o) =X, is projection.
2. lim, . h(s, t) = 0.
3. lim,., E"oh(s,t) = o0 if t #0.

A Cantor n-bouquet should be thought of as a “Cantor set” of curves,
each of which extends to co. The map E preserves this set of curves and acts
on them as the shift map. Each curve has a well-defined endpoint h(s, 0) and
the set of all endpoints is called the crown of the bouquet. The restriction of
E to the crown is topologically conjugate to the shift map, and so periodic
points are dense in the crown. By condition 3, any point in B, not in the
crown lies on a “tail” or “hair” of the form h(s, t) with ¢t > 0. Each such
point tends to oo under iteration, so the Cantor bouquet separates into two
distin¢t pieces, the crown, on which the map is modeled by the shift, and the
attached hairs, on which all points simply tend to the essential singularity
under iteration.

It is an easy exercise to construct Cantor n-bouquets for the map E, (z)
= Aexp(z) where 0 < A < 1/e. The reason for the restriction on 4 will become
clear later. A 3-bouquet for this map is depicted in Figure 2. See [DK] for
details.

We also note that the typical entire function which is critically finite
usually admits an increasing sequence of Cantor n-bouquets B, < B,,, c ...
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with natural inclusion maps. The union
.
B o = U Bn
n=1

is the Cantor bouquet. See [DT] for examples of this construction.

Fig. 2. A Cantor 3-bouquet for z iexp(z) when 4 < 1/e

In analogy with Douady and Hubbard’s use of the term *“polynomial-
like map” [DH1], critically finite entire maps may be considered “exponent-
ial-like”. The rationale for this terminology comes from the following observ-
ation. Let D be a disk which contains all of the critical and asymptotic
values of E. Let ' = C—D, and let U be any component of E~'(I. We
claim that E|U is a universal covering of the punctured disk I'. To see this,
we first note that, since E has no critical points in U, E is locally one-to-one.
Also, E is proper since there are no asymptotic values in I'. Hence, E is a
covering. It follows that U is either a punctured disk or a disk (in which
case, E: U =TI is a universal covering, as we claimed). Suppose U is a
punctured disk. Then E: U — T is finite to one. If the puncture is at oo, then
E must be a polynomial, contradicting our assumption that E is transcend-
ental. If, on the other hand, the puncture is at a # oo, then E has a pole at a,
contradicting our assumption that E is entire. Therefore it follows that E|U is
a universal covering on U and so is “exponential-like”.

§ 3. Entire functions vs. polynomials

There are a number of additional features of the dynamics of critically finite
entire functions which distinguish them from polynomials. For a polynomial,
oo is always an attracting fixed point and its basin of attraction never lies in
the Julia set. This should be contrasted with the following result.
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THEOREM. Suppose a critically finite entire transcendental function E
satisfies certain growth conditions. Then any point which tends to oo under
iteration of E. lies in J(E). Moreover, J (E) is precisely the closure of the set of
points which escape to oo under iteration.

The precise growth conditions necessary for this result are specified in
[DT]. We note that this class of maps therefore has two quite different but
equivalent definitions of its Julia set. On the one hand, the Julia set is the
closure of the set of repelling periodic points. All of these orbits are bounded.
On the other hand, the Julia set is also the closure of the set of points which
tend to oo. This set consists of only unbounded orbits and so is quite distinct
from the set of periodic points. .

Recently, in the lectures during the Semester on Dynamical Systems and
Ergodic Theory at the Banach Center, 1986, Eremenko has announced the
result that the Julia set is the frontier of the escaping set for any entire
transcendental function, not necessarily of finite type.®

Unlike polynomials, the Julia set of E may be the entire complex plane.
Indeed, Sullivan’s Theorem gives an easy criterion for this event (modulo
domains at oo).

THEOREM. Suppose that a critically finite entire transcendental function E
has no domains at oo. If all critical and asymptotic values tend to oo under
iteration of E, then J(E) = C.

For example, the only asymptotic value for E,(z) = Aexp(z) is 0 and
there are no critical values. It is easy to show that this map has no domains
at infinity. Hence the exponential map zexp(z) has Julia set the entire
plane, since 0 tends to oo under iteration. This fact was first proved by
Misiurewicz [Mi], answering a sixty year old conjecture of Fatou [F].

If all critical and asymptotic values are preperiodic (but not periodic),
then again the Julia set must be the entire plane. So it follows that the maps
zb2niexp(z) and zHmiexp(z) each have Julia set the entire plane.

These ideas lead to a rather spectacular occurrence in the dynamics of
entire maps: the Julia sets may explode as a parameter is varied. For
example, consider the one parameter family of maps E,(z) = Aexp(z) with
A > 0. The reader may check that the graphs of E, assume two different
forms depending upon whether 4 < 1/e or 4 > 1/e. See Figure 3.

If A <1/e, then E, admits two fixed points in R, an attracting fixed
point at g, and a repelling fixed point at p,. Consider any vertical line which
meets the real axis at a point z, which lies between q; and p,. Then E;, maps
this vertical line onto the circle centered at the origin with radius |4| exp(z).
More importantly, E; maps the half plane Rez <z, inside this circle and,

() See the paper “On the iteration of entire function™ by A. E. Eremenko, this volume,
pp. 339-346.
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a1 /

Fig. 3. The graphs of iexp(x) when a. 4 < l/e, b. 2> 1/e

hence, strictly inside itself. One may check easily that g, lies inside this circle,
and so it follows that the basin of attraction of g, contains the entire half
plane Rez < z,, so the Julia set lies entirely in the right half plane for these
A-values. In fact, as we discussed in the previous section, the Julia set of E; is
a Cantor bouquet in this half plane. On the other hand, as soon as 4 > 1/e,
we have E}(0) 2 oo and Sullivan’s Theorem guarantees that J(E;) = C for
these 4-values. So the Julia set explodes as A passes through 1/e.

§ 4. Bifurcation diagrams

As is well known in the case of quadratic polynomials, there is also an
apparent similarity between the bifurcation diagrams for families of critically
finite entire maps and their corresponding Julia sets. We will restrict our
attention here to the exponential family E,(z) = Aexp(z), although similar
results hold for such families as zF Asin(z) and zH Acos(z).

Since there is only one asymptotic value for E,, this family is a natural
one parameter family of maps. Indeed, any entire map which has a single
omitted value and no critical values s affinely conjugate to a member of this
family.

Fig. 4. The bifurcation diagram for E;
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Since there is a unique singular value, E; can admit at most one
attracting periodic orbit or at most two Siegel disks. Hence the dynamics of
this family may be suitably represented by a plot in the A-plane which
indicates which A-values admit components in their stable sets of the above
types. This set is displayed in Figure 4.

In Fig. 4, the white regions represented A-values for which E; admits an
attracting periodic point of a given period. Black regions indicate A-values
for which the orbit of 0 under E, grows “too large”. This picture suggests
that there are curves in the bifurcation diagram which consist of A-values for
which E%(0) — oco. This is indeed the case, as was shown in [DGH]. In this
paper the set of “escaping” A-values is shown to have a structure similar to
the Cantor bouquets discussed in § 2. In this sense, the Julia sets and
bifurcation set of the exponential family are similar.

We remark that the curves in the A-plane above are intimately related to
the external arguments of Douady and Hubbard [DH], who showed that the
exterior of the Mandelbrot set [Ma] is a disk filled with such curves or
“external rays”. The difference in the quadratic map case is that parameter
values outside the Mandelbrot set have Julia sets which are Cantor sets. In
the case of E;, these curves consist of .A-values for which J(E;) = C.

There is an interesting relationship between the Mandelbrot set and the
bifurcations set for E;. Let

z d
Pi2) = ,1(1+2>.

Each P, has a unique critical point at —d and critical value 0. Of course,
P, ,(z) = E;(z). But this convergence also occurs in a dynamical sense.
Consider the bifurcation set B, for the P, ;. When A = 2, B, is essentially the
same as the Mandelbrot set. As d — oo, the corresponding bifurcation sets
grow to resemble more and more the bifurcation set of E;. Indeed, the paper
[DGH] makes this convergence precise.
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