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1. Introduction. Takano [20], [21] studied certain types of affine motion
generated by contra, concurrent, special concircular, recurrent, concircular,
torse forming, and birecurrent vectors in a non-Riemannian manifold of
recurrent curvature. Following Takano, the authors Sinha [19], Misra [5]-[7],
Misra and Meher [8]-[10], Meher [4], and Kumar [1]-[3] studied the above-
mentioned types of affine motion in a Finsler manifold of recurrent curvature
and in some special Finsler manifolds [5], [10]. In spite of their efforts, none of
the above authors could succeed in finding the necessary and sufficient
conditions satisfied by the above vectors to generate affine motion even in case
of the above particular types of Finsler manifolds. The aim of this paper is to
obtain the necessary and sufficient conditions satisfied by those vectors to
generate affine motion in a general Finsler manifold. The notation of this paper
differs slightly from that of [18].

2. Preliminaries. Let F,(F, g, G) be an n-dimensional Finsler manifold
of class at least C’ equipped with a metric function F(!) satisfying the
required conditions [18], the corresponding symmetric metric tensor g, and
the Berwald’s connection G. The coefficients of Berwald’s connection G,
denoted by G, satisfy

(2.1) (@ G =Gy, (0) Gy#* =G}, (9 &Gj=Gj,

where 0, stands for partial differentiation with respect to x*. The partial
derivatives G, 0, G}, of the connection parameters G, constitute a tensor
symmetric in all its lower indices and satisfy

(2.2) G_i,'kh )Eh = 0.

The covariant derivative of a tensor T; for these connection parameters is

(*) Unless otherwise stated, all the geometric objects are supposed to be functions of the
line elements (x, X¥). The indices i, j, k, ... take positive integer values from 1 to n.
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given by
(23) BT =8 T -3, T) Gi+ T; Gy — T Gy,

where 6, = /0x*. The commutation formulae for the differential operators 0,
and .4, are

(24) (0 B~ A 0) X' = Gy X"

(2.5) (A B~ Bi ) X' = Hjyyy X"~ (0, X') H},

where HY,,(?) constitute Berwald’s curvature tensor. This tensor is skew-
symmetric in first two lower indices and positively homogeneous of degree

zero in %”s. The tensor Hj, appearing in (2.5) is connected with the curvature
tensor by the relations

(2.6) (a) Hj-k,,)i?" = H;k’ (b) a,, H..Ik = Hj'kh'
The transvection of the tensor Hj, by x* yields a tensor Hj, called the
deviation tensor. This tensor satisfies

2.7) (a) Hiy* = Hi, (b) (& Hi—0; Hy) = Hi,.

The associate vector y; of x satisfies
(28) @) yi X =F%  (b) d,y; =g
© y: H,iik =0, (d) y H; =0, (e) g H; = g, H;
(see [17]), where gij are components of the metric tensor g.
Let a vector v*(x’) generate the infinitesimal transformation
(29) %= x'+erf,

where ¢ is an infinitesimal constant. Denoting by £ the operator of Lie
differentiation with respect to the above transformation, we have

(2.10) £ =0 B, T — T 8,0+ T 8,0 +(0, Tj) B,v" - X°
and
(2.11) £G;k = .%’J .9?,‘ vi+H=.|jk vh+ G_iikh .%, Uhx.',

where T} is any tensor [22]. The infinitesimal transformation (2.9) is called
an affine motion if

(2.12) £Gi, =

() The symbols H',, used here for Berwald's curvature tensor coincide with Hj,; of [18],
equation (4.6.7).
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The vector v' is called contra, concurrent, special concircular, recurrent,
concircular, torse forming, and birecurrent according as it satisfies (see [20])

(2.13) (@) #v' =0,

(b) B, =Cé;, C being a constant,

(c) A =06, o is not a constant,

d) B = p,

(€ AV =mv'+00,, By = Bty

() A v' = ' +00;,

(2) 48; A V= ?jx v,
respectively. The affine motion generated by the above vectors is called a
contra affine motion, a concurrent affine motion, a special concircular affine

motion, a recurrent affine motion, a concircular affine motion, a torse forming
affine motion, and a birecurrent affine motion, respectively.

3. Some lemmas. In this section, we shall prove some lemmas which will
be helpful in the discussion of the next sections.
Lemma 3.1. For every vector v'(x’), the following two conditions are

equivalent:
(3.1) (@) Hv"=0, (b) Hjv"=0.

Proof. Let v'(x/) be any vector satisfying (3.1a). Transvecting the
Bianchi identity [18]

(3.2) H_'ikh+H;uk+H;¢hj = 0
by v* and using (3.1a), we have
(3.3) ;ljk v"+Hi,,j Uh =0.

By the skew-symmetric property of the curvature tensor in first two of its
lower indices, (3.3) takes. the form

(34 ik V" = Hig; 0",

Transvecting (3.4) by x* and using (2.6a), (2.6b), and (2.7a), we have
(3.9 2H}; v" = 0; H},v".

Transvecting (3.5) by y; and using (2.8¢c), we get

(3.6) 0 Hip" =0,

which, by (2.8b) and (2.8d), reduces to

(3.7 g;; Hyv" = 0.

Transvecting (3.7) by ¢/™ and using g;;¢’™ = d]", we get
(3.8) iv" = 0.
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Consequently, (3.5) reduces to
(3.9) hi P = 0.

Differentiating (3.9) partially with respect to x* and using (2.6b), we get (3.1b).
Conversely, if the vector v (x’) satisfies (3.1b), the transvection of the Bianchi
identity (3.2) by v* gives (3.1a). Hence (3.1a) and (3.1b) are equivalent.
LemMA 3.2. There exists no non-zero vector v'(x’) orthogonal to X'.
Proof. If there exists a vector v'(x/) orthogonal to x', we have
g;; X't/ = 0, which may be written as y;v’ = 0. Differentiating y,»/ = 0 par-
tially with respect to x' and using (2.8b), we get

Consequently, v' is a zero vector. Thus, we see that if a vector v(x') is
orthogonal to X', it is necessarily a zero vector. This completes the proof.

4. Contra affine motion. Let us consider an infinitesimal transformation
generated by a contra vector v'(x/) characterized by (2.13a). Differentiating
(2.13a) covariantly with respect to x/ we get

(4.1) B; Bv' = 0.

Taking the skew-symmetric part of (4.1) and using (2.5), we have (3.1a),
which, by Lemma 3.1, implies (3.1b). By (24), from (2.13a) we get

4.2) Lot =0

Using (4.1), (4.2), and (3.1b) in (2.11), we get £Gj, = 0; hence the infinitesimal
transformation considered is an affine motion. Thus, we obtain

THEOREM 4.1. Every contra vector generates an affine motion in a Finsler
manifold.

Since every affine motion is a projective motion and, by Theorem 4.1,
every contra vector generates an affine motion, we come to the following
conclusion:

CoroLLARY 4.1. Every contra vector generates a projective motion.

Misra [7] and the author [12] were unaware of this fact. This is
why they considered those contra transformations which were projective
motions. Misra [7] concluded that a contra projective motion need not be an
affine motion in a recurrent Finsler manifold (), which appears to be
misleading in view of the facts proved above. Since the Lie derivative of the
curvature tensor vanishes with respect to an affine motion, in this case we
have

4.3) £Hy, = 0.

(®) A recurrent Finsler manifold has been denoted by an HR-F, in [7].
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Sinha [19] proved that the recurrence vector 4, of a recurrent Finsler
manifold is Lie invariant with respect to an affine motion, i.e.,

44) £4,=0.

Misra [7] also proved that the Lie derivative of the curvature tensor with
respect to a contra projective motion either vanishes or is proportional to
itself, but here we observe (cf. equation (4.3)) that it necessarily vanishes.
CoroLLARY 4.2. If any contra vector v'(x’) generates an infinitesimal
transformation in a recurrent Finsler manifold, it must be orthogonal to the
recurrence vector.
Proof. Let us consider a recurrent Finsler manifold characterized by

(see [2]-[4], [6]-[9], [15], [16], [19])
4.5) B Hiyp = A Hippy  Higy #0, Ay #0.

The non-zero vector 4, appearing in (4.5) is called the recurrence vector.
Suppose there is a contra vector v'(x’) generating an infinitesimal transform-
ation in the above manifold. Therefore, the curvature tensor satisfies (4.3).
Expanding the left-hand side of (4.3) with the help of (2.10), using (2.13a) (the
characterizing equation of a contra vector) and (4.5), we get A, v™ Hj,, = 0.
Since HY, # 0, v™ A,, = 0. Thus, we see that the contra vector v' is orthogonal
to the recurrence vector 4,,.

CoroLLARY 4.3. If a projective recurrent Finsler manifold admits an
infinitesimal transformation generated by a contra vector v'(x’), then the vector
' is orthogonal to its recurrence vector.

Proof. Let a projective recurrent Finsler manifold characterized by

(4.6) B Wien = Am Wikn, W # 0, A # 0,

where W, is the projective curvature tensor, admit an infinitesimal
transformation generated by a contra vector . By Corollary 4.1, this
transformation is a projective motion, and hence the Lie derivative of the
projective curvature tensor vanishes [22], i.e., £Wj, = 0. Expanding the left-
hand side of this equation and using (2.13a) and (4.6), we get v™ 4, W}, =0,
which implies v™ 4,, = 0.

COROLLARY 44. If a birecurrent Finsler manifold characterized by (see [1],

(51, [11]) ‘
4.7) By B Hiyp = O Higny i # 0, Hjy, # 0,

admits an infinitesimal transformation generated by a contra vector v’ (x’), then
the recurrence tensor a,, satisfies

(4.8) (a) g, 0" =0, (b) amv™ =0.
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Proof. If a birecurrent Finsler manifold characterized by (4.7) admits
an infinitesimal transformation generated by a contra vector ¢', then its
curvature tensor satisfies (4.3). Expanding (4.3) with the help of (2.10), we
have

4.9) 0™ By Higy, = 0.

Differentiating (4.9) covariantly with respect to x' and using (2.13a) and (4.7),
we get (4.8a). Taking the skew-symmetric part of (4.7) with respect to
the indices | and m and using (2.5), we get

(410) ;:kh ;mr - Hikh 'l‘mj - j’rh ;mk - ,iikr Tmh - (ar H,iikh) H;m
= (alm - aml) H_iikh'

While proving Theorem 4.1, we have seen that (3.1a) and (3.1b) hold.
Transvecting (4.10) by v™ and using (3.1a), (3.1b), and (4.8a), we have (4.8b).

5. Concurrent affine motion. Let us consider a Finsler manifold admit-
ting an infinitesimal transformation generated by a concurrent vector o'
characterized by (2.13b). Differentiating (2.13b) covariantly with respect to x/,
we have (4.1). Taking the skew-symmetric part of (4.1) and using (2.5), we get
(3.1a), which, by Lemma 3.1, implies (3.1b). It follows from (2.11), (2.2), (3.1b),
and (4.1) that the Lie derivative of the coefficients Gj, of connection vanishes.
Hence, the infinitesimal transformation considered is an affine motion. Thus,
we have

THEOREM 5.1. If a Finsler manifold admits an infinitesimal transformation
generated by a concurrent vector, then the transformation is necessarily an
affine motion.

Since the Lie derivative of the curvature tensor vanishes with respect to
an affine motion, we have (4.3). Expanding (4.3) with the help of (2.10) and
(2.13b), we get

(51) o™ '%m H_']kh+2CH_l)kh = O,

which, after covariant differentiation, gives

(52) o™ %l '%m H_llkh+3C%l H_';'kh = 0.

Differentiating (3.1a) covariantly, we get
(5.3) o ‘%h j’km+CH.iikh =0.

Thus, we obtain

THEOREM 5.2. If a Finsler manifold admits an infinitesimal transformation
generated by a concurrent vector characterized by (2.13b), then its curvature
tensor satisfies (5.1)45.3).
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Let the manifold considered be a recurrent manifold characterized by
(4.5). By Theorem 5.2, it admits (5.3). In view of (3.1a) and (4.5), equation (5.3)
gives CHj,,, = 0, which implies either C = 0 or HY;, = 0. Both the conditions
contradict our hypothesis. Hence, we obtain (see [7])

CoOROLLARY 5.1. A recurrent Finsler manifold does not admit any
infinitesimal transformation generated by a concurrent vector.

If the manifold considered is a symmetric manifold characterized by

(5.4) B Higs = 0,

then equation (5.3) gives CHY,, = 0, which implies Hj,, =0 for C 3 0. Thus,
we see that a symmetric Finsler manifold admitting an infinitesimal trans-
formation generated by a concurrent vector is necessarily flat(*). Hence, we
get

CoRroLLARY 5.2. A non-flat symmetric Finsler manifold does not admit any
infinitesimal transformation generated by a concurrent vector.

If the manifold considered is a birecurrent manifold characterized by
(4.7), it admits (5.3). Differentiating (5.3) covariantly with respect to x', we get

(5.5) " g, ﬂh H;k,,,-!-C%,, H_',k,+C%, H;kh =0.
Using (3.1a) and (4.7) in (5.5), we obtain
(5.6) .”}, H;kl+ .491 H_iikh = 0,

since C # 0. Transvecting (5.6) by v’ and using (5.1) and (5.3), we get 3 CH,
=0, which implies H,, =0, a contradiction. Thus, we have

COROLLARY 5.3. A birecurrent Finsler manifold does not admit any in-
finitesimal transformation generated by a concurrent vector.

This corollary generalizes the theorems of the author [14] and Misra [5].
Let us consider a bisymmetric Finsler manifold characterized by (see

(13D
(5.7) 'ﬁl .%m H_l;'kh = 0.

If this manifold admits an infinitesimal transformation generated by a
concurrent vector v, then its curvature tensor satisfies (5.2) and (5.3). In view
of (5.7), equation (5.2) reduces to €A, Hy,, = 0, which implies 4, Hj,, =0 as
C #0. Using # Hi, =0 in (5.3), we get Hj, =0. Hence, a bisymmetric
Finsler manifold admitting an infinitesimal transformation generated by a
concurrent vector is flat. Thus, we have

CoROLLARY 5.4. A non-flat bisymmetric Finsler manifold does not admit
any transformation generated by a concurrent vector.

(Y A Finsler manifold with vanishing curvature tensor is called flat.
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6. Special concircular affine motion. Let us consider a Finsler manifold
admitting an infinitesimal transformation generated by a special concircular
vector characterized by (2.13c). If this transformation is an affine motion, we
have £G =0, which, by (2.11) and (2.13c), gives

Transvecting (6.1) by x* and using (2.6), we have

Transvecting (6.2) by y; and using (2.8a) and (2.8c), we have F?%,0 =0,
which implies %#;0 = 0. Thus, we get a contradiction. Hence, we obtain

THEOREM 6.1. An infinitesimal transformation generated by a special
concircular vector cannot be an affine motion in a Finsler manifold. In other
words, a Finsler manifold does not admit any special concircular affine motion.

This theorem, on one hand, represents a generalization of the theorems
of Sinha [19], Misra and Meher [10], Kumar [2], and the present author
[14], while, on the other hand, contradicts the hypothesis of Misra [5].

7. Recurrent affine motion. Let us consider an infinitesimal transform-
ation generated by a recurrent vector characterized by (2.13d). It follows
from (2.11) and (2.13d) that the Lie derivatives of the coefficients of connec-
tion are determined by

(7.1 £Gji = (B; i+ 1 ) V' + Hpjy v™ + Gy, 1,

where u ¥ u, x*. By (2.4), the partial differentiation of (2.13d) with respect to
X/ gives

(7.2) eV =0 V.
Transvecting (7.2) by x* and using (2.2), we get

(7.3) Hj = 0; Q.

Using (7.2) in (7.1), we have

(7.4) £Gjy = (B i+ w; i+ 10; 1) v + Hijy 0™

If the above transformation is an affine motion, we have £Gj, = 0. Hence,
(7.4) reduces to

(7.5) (B b+ 1y i+ 10; ) ' + Hiyj o™ = 0.
Transvecting (7.5) by x* and using (2.6a), we get
(7.6) (B, n+ pp) v' + Hipjo™ = 0.

Transvecting (7.6) by y; and using (2.8¢c) and Lemma 3.2, we have
(7.7) Biu+pp; =0,
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From (7.6) and (7.7) we obtain H,,;v™ =0, which by partial differentiation
gives Hi; v™ = 0. Using this result in (7.5), we get

(7.8) Bt + Hj o+ 10; iy = 0.

Thus, we see that condition (7.8) is a necessary consequence of a recurrent
affine motion. Now we shall establish that condition (7.8) is sufficient for an
infinitesimal transformation generated by a recurrent vector characterized by
(2.13d) to be an affine motion. To prove this, let us assume that condition
(7.8) holds. Taking a skew-symmetric part of (7.8), we have

(7.9) '@jl‘l’k.—‘@kl‘lj = 0.

Differentiating (2.13d) covariantly with respect to x/, and then taking a skew-
symmetric part, we have Hj,,, v™ =0 (here we have used (2.5) and (7.9)). By
Lemma 3.1, Hj,,,v™ = 0 implies H,,; v™ = 0. Using this equation and (7.8) in
(74), we get £Gj =0. Hence the transformation considered is an affine
motion. Thus, we obtain

THEeOREM 7.1. Condition (7.8) is necessary and sufficient for an infinitesimal
transformation generated by a recurrent vector v' characterized by (2.13d) to be
an affine motion.

If the manifold considered is a Landsberg manifold characterized by
(7.10) Vi Gj‘kh =0,

the transvection of (7.2) by y; and the application of (7.10) and Lemma 3.2
give 3,- i, = 0. Hence, in this case, condition (7.8) takes the form

(7.11) '@jﬂk'}'”jﬂk =0.

Thus, we obtain

CoroLLARY 7.1. Condition (7.11) is necessary and sufficient for an in-
finitesimal transformation generated by a recurrent vector to be an affine
motion in a Landsberg manifold.

Since an affinely connected Finsler manifold is a Landsberg manifold,
Corollary 7.1 is also true in this case.

Note. The rest three types of affine motion will be discussed in the next
paper.
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