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On some symmetrical equations of the form
fl@ o tan) = D) fi(@4) ... Fal@s,)

(TR )]

by H. SwiaTak (Krakéw)

The eguations

(1) Bt +o) = D fwg) ... falas,)
(15010r3n) € P

(where Py is a set of ¥ permutations of the numbers 1, ..., 7) were con-
sidered in [2].

According to [2], equation (1) is called symmetrical if its right side
is symmetrical for all the variables. In other cases it is called asymmetrical.

All asymmetrical equations (1) were solved (by some assumptions
of regularity) in [2]. We repeat here the essential results:

If the numbers of components of the right side of (1) with fy(=,),
fi(@2), ..., fi(zn) are not all equal, then the only non-trivial differentiable
solutions of equation (1) are the functions

hiz) = 4,e=, foo)= Ase°%, ..., [foa(®)= 4y 6,

2) .
L e v W

where A,, .., 4, 1,0 (4,%#0, ..., A,_, # 0) are arbitrary constants and
k is the number of components of the right side of (1).

If the numbers of components with fy(z,), fi(®), ...y (%) In asym-
metrical equation (1) are all equal, then non-trivial differentiable solutions
of equation (1) have form (2) and

hiw) = dywes,  fow) = dye®, .y faa(®) = Apre™,

(3)

—_ 1 al
@) = i ¢

where 4,, ..., Ap_1,a (A, #0,..., A,_, # 0) are arbitrary constants, and k,
is the number of components with f,(s).
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(These assumptions of regularity can be weakened for some equa-
tions (1)).

It remains to consider symmetrical equations (1). All these equations
are satisfied by functions (2) and (3) but they have also other solutions.

For n = 2 there is one symmetrical equation:

ful @y +a) = fo(1) fa(@a) +fa(a) fol20)

This equation has solutions different from (2) and (3). All its non-trivial
solutions such that f(@) and f(x) have at least one point of continuity
in common were given in [1].

For n =3 we have two symmetrical equations:

(%) ful@y a2 @) = Fr(@1) ol @) Fo(@) +Tr(@a) FolTa) Fal@r) +Fo(@a) ol @) fo( @)
and
Fil@y A-mp +23) = f1(@1) [fol @) fal @) +1o(@a) Fa(2e)] +
(#) +f1(@a) [Fo(@s) fa(@1) +Fo@1) Fala) ] +
+fu(@a) [Fa(or)fs(@a) +Fa(a) fa(21)]

In this paper we shall prove some theorems on the regularity of their
solutions, and we shall solve them in order to show that they have
golutions different from (2) and (3).

We introduce the following notation:

fa=1da), fu=fia), fta=1fila) (i=1,2,3).

Remark I. Every solution f,(z), fy(»), fs(#) of equation (x) (or (x))
satisfying the condition f,, 7 0 can be written in the form

hiz) = 4 :(2)

@) = Asgs(2)

i@} = Aag4(2) ,
where gy(@), ga(®), ga(#) is a solution of equation (x) (or (x#)) satisfying
the condition g,(0)= 1. )

Thus in the case of f,, = 0 we may assume that f,, = 1 without loss
of generality.

On equation (x).
Lemma I. If f,=1, then

(4) fzofso= % ’

(5) o) = ,—tﬁmm)—mwn :
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(6) m%am=%ﬁmmmw+wmmmm+

+ % faofu(@1) fr@2) — Faofa(mr) fol )]

fuh(® +0)—4 (foe +2fa0f1c) 1{%) .
(7 fal@) = ¥f1e— faotae if  $he—Tfafec # 0,

YAC)) if @)~ falz) =0.

Proof. Putting in (x) &, = 2, = @3 = 0, we obtain (4). Putting in (%)
2, = o, ®, = w3 = 0 and making use of (4), we obtain after computations (5).
Substituting (5) into (*) and putting xy = 0, we obtain (6).

If }fic—fwfee 70 for some ¢, it follows from (6) that for
o, = 2,2, = ¢ we have

_ Twhi®+06)—%(fe +2fzof1c)f1(w
fa(@)
$ho— fufac

If }fi(w)—fswfo(®) = 0, then
jﬂ w) 3]¢m f].

Thus (7) is also satisfied. Q. E. D.
Lemma II. If f,o= 0 and fiqa 7 0 for some d, then

(8) fzofao = 1,
(9) ful@y +25) = faofa(@1) fo@a) +Faofu(@a) falr)
(10) folz) = fu® +d)~— fufsa fr(@) ’
faha
(11) fo(®) = flz +4d) faofadf1(97)
fwha

Proof. Putting in (x) v, =d, 2, = 2, = 0, we conclude that con-
dition (8) is satisfied. Putting in (x) 23 = 0, we obtain (9). Hence for
2, =d, s, = 2(10) follows, and analogously for®, = w,x, = d we obtain
(11).Q. E. D,

TEEOREM I. If fi(®@), fol®), fs(@) satisfy equation (%), fi(v) %0, fi()
and fi(z) (or fi(@) and fo(w)) have at least one point of continuity in common,
then fy(x), fu(@), f(®) are continuous everywhere.

Proof. Let a be the common point of continuity of the functions
fi(2) and fy(=).

Fix an arbitrary point 2z and let , = v—a, zy—>a. Then o, +x,—w
and it follows from the continuity of the right sides of (6) and (9) that
f1(®) is continuous everywhere. Now, it follows from (7), (5), (10) and (11)
that the functions fo(®), f5(#) are also continuous everywhere. Q. E. D.
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TrroREM II. If fi(@), f2(%), fs(®) satisfy equation (x), fr(®) S~ 0, fy(®)
and fy(@) (or fi(x) and fy(w)) have a point of differentiability in common,
then f(x), f.(x), fo(®) have all the derivatives.

Proof. The proof of the existence of the first derivatives is similar
to that of Theorem I.

‘We shall now prove that the function f,(x) has a second derivative.
In the case of f,, 7 0 we make use of Lemma I. Differentiating equality (6)
by @, and then putting 2, = 0, ¥, = ¥, we obtain

h(z) = i (4 fiofo(®) + 4 f20fo(®) + flof1(@) — fuof2ofo()] -

This function is obviously differentiable, i.e. f,(@) has a second derivative.
If'f,, = 0, we can do the same with equality (9) of Lemma II and
we conclude that the function f,(#) always has a second derivative.
From (7), (5), (10) and (11) it follows that the second derivatives
of the functions fy(z) and fy(z) also exist.
We then prove analogously that there exist derivatives of higher
orders. Q. E. D.

THEOREM III. The only non-trivial real solutions of equation (%) such
that f,(») and fy(@) (or fL(m) and fo(w)) have a point of differentiability in
common are:

(i) hiw) = 4,e2®,

fow) = 4,657,
1
fl®) = 34, €
(i) f(@) = A e=cosde ,
fi{w) = A,e%(cosbz +¢e)/3sinbz) ,
1 5 .
fi(z) = 34, ¢**(cosbz— ¢ )/ 3sinbax) ;
(i)  A@) = 4,26,
f o 00) = Aye ’

flm) = - =3
(iv)  fi(@) = A,esinlx ,

fa@) = Age= (cnsbw +rsi sinbw) )

V3

1 1
fo(z) = — o (cosba:-— — 8inb )
3 ) A-a i & ,—3 2r

(4y 70, A3 # 0, b # 0, a — arbitrary constants, ¢ = const = +1).
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Proof. By Theorem II f, (), fo(2z), fs(#) have all the derivatives.
1) Consider first the case of f;, % 0. If we put

am fi
and
(12) pyx) = e~ f(w) (i=1,2,3),

equation (x) can be written as

(13) @@ 25 +2,)
= @1(2) Pa( @) Ps(@s) +1(%2) P Ts) Py ) 401 (@) o1 ) 2a(25)

where ¢jo = 0. (Notice that for the functions ¢,(2), g,(2), ps(x) we may
apply Lemma I1.)

Differentiating (13) by @,, 2; and then putting », = 2, 2, = 23 = 0,
we obtain

(14) ‘ 91'(8) = Propy(®)
where @y, = @20ps0-
1.1) If &,,= 0, then ¢, (2)= B,z -+4, and, in view of ¢;,= 0, we
obtain
(16) p() = 4, .

Putting in (13) #;, = 4, = 4, = 2 and taking into account (15), we
obtain '

(16) Pa(®) pa(2) = % .

We are looking for non-trivial solutions and therefore 4, = 0. Equa-
tion (13) has the form (x). Thus, in view of Remark I, it is enough to find
its solutions with ¢,(0) = 1. We now assume that 4, =1 and we may
apply Lemma I. It follows from (6) and (16) that

1 1
3wm=%ﬁ—%mm.

In view of (4), the last equality can be written as

[9’2(“’)]2" 250 pe() +'P§o =0.

Hence

(17) Pa(@) = @y = 4,
and it follows from (16) that

(18) ") =57
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Now, taking into account (12), we conclude on the basis of (15),
(17), (18), and Remark I that in this case the solutions of equation ()
have form (i).

1.2) In the case of &,y < 0, we obtain from (14)

@i(2) = A, cosbz 4-Bisinbz (b # 0)
and, in view of @i = 0, we have
(19) @) = A, cosbw .

We now conclude, as in 1.1), that to find solutions ¢,(2), pi(®), @, (2)
for which ¢,(0) % 0 it is enough to find solutions for which ¢,(0)= 1.
We assume that ¢(v) = cosber and we may apply Lemma I. Equality (b)
of Lemma I can now be written as

(20) () = %[& 008 b— Ppo(0)]

Substituting in (13) 2, = @, = 3 = & and taking into account (19)
we obtain
cos bwep,(2) py(w) = $cos3bx .

Notice that cosbzp,(z) can vanish only if cos3bx = 0. Thus it follows
from the last equality that

cos3bx

Pa(@) = 3pa(w) cos b

at all the points where cos3bx + 0.
Substituting this into (20), we obtain after computations

320 Pa0 €OB b o @) *— 2030 OS2 D 0o ) + a0 CO5 3b = 0
and taking into account (4), we have
008 bz [y@) *— 24y COS b2 0y () ~+phg COS BT = 0

at all the points where cos3bx # 0. Hence

Pa(®) = @y [cos bz 4-&(2) ]/cos*bm— c::fbb:]
= py[cos b + : (@) ]/§sin bz,
i.e.
(21) po(@) = A,[cosbx +¢(x))/ 3sinba] ,

where |3(z)| = |3(2)| = |e(2)| = 1.
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Substituting (21) into (20), we obfain

(22) os(®) = 3—} [cosbo— &(x) /B sinba]

where |e(x)] = 1.

We proved only that equalities (21) and (22) are satisfied at the
points where cos3bx 7 0. But, in view of (12), the functions gp,(x) and
@s(®) are continuous everywhere and therefore (21) and (22) must be
satisfied also at the points where cos3bz = 0.

Now, putting in (13) #, = z, 4, = ©/2b, #3= 0 and taking into ac-
count (19), (21) and (22), we obtain after computations

cos(br+3n) = —e(n/2b) e(w)sindm .

Hence e(x) = e(n/2b) = const at the points where sinbx = 0. Since at
the points where sinbx = 0 ¢(«) in (21) and (22) may be arbitrary, equalities
(21) and (22) can be written as

(23) @y(®) = Ay(cosbx +ey 3sinba)

and

(24) ou() = & (cosba— e}/ 3sinba) ,
2

where ¢ = const, |e] = 1.

Taking into account (12), we conclude from (19), (23) and (24) that
in this case the solutions of equation (%) have form (ii).

1.3) If &,,> 0, we obtain after similar considerations that fi(z) and
fs(z) are complex. -

2) Now we shall find non-trivial, real solutions with f,, = 0. Dif-
ferentiating (9) by 2, and then putting 2, = 0, 2, = 2, we obtain

(25) 11(®) = fafafi(#) +Tuiofa(2) -

We must have fi; # 0. In fact, if fj, = 0, it follows from (25) that fi(w)
= fofeofi(®) and fi(z) = Ae=. But then fi(z) = Aae= and, by virtue
of fio=0, A =0 or a= 0. For 4 = 0, we obtain f,(x) = 0 contrary to
the agsumption of the theorem. For « = 0, we have f,(x) = A and, in
view of f,, = 0, also f,(#) = 0. Thus fi, # 0 and it follows from (25) that

] ) — ’ @
(26) fl) =f1( ) ffz;,;faofl( ).
30/10
Similarly, differentiating (9) by @, and then putting ®, = @, %, = 0,
we obtain

(27) t(2) = f{(w)-—f ::fol{:ofl(m) .
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In view of (26) and (27), we can write (9) as

fl(wl)ﬂ(%)—;zizﬂofl(%) +f1( f1(931) ;sgfmfl(%

Differentiating this equality twice by @, and then putting 2, = 0, 2, = =,
we obtain

Fule +m,) =

(28) () — ,—}gﬁ(m) 1 fulnf 1°+’;1’ sofio— ' ¢ () — 0.

It follows from (28) and from the condition f,, = 0 that f,(z) may
have the form:

(a) filw) = 4 2e* ,
(b) fi(@) = 4,e**sinbz
(e) hiz) = Ay(e*—ef%)  (af).

Now, it is convenient to notice that substituting in equation ()
B, = 2, = Ty = ®, We obtain

(29) [(32) = 3fy(2) fo(®) fs(2)
If f,(2) has form (a), it follows from (26) and (27) that

(30) fo(@) = (4, +B,»)e®
and
(31) fa(a) = (43 +Byz)e® .

Substituting (a), (30) and (31) into (29), we obtain
%= (A +B,2z)(4; +Byx)x

Hence 4,4;=1, ByBy=0, 4,B;+A43B,= 0 and therefore 4, = 1/4,,
B, = By = 0, i.e. we obtain solutions (iii).
If fi(x) has form (b), it follows from (26) and (27) that

(32) fo(®) = (A, cosbx +B,sin bx) e
and
(33) fs(®) = (Agcosbw +Bysinbx) e .

Substituting (b), (32) and (33) into (29), we obtain
8in3bx = 38inbx (4 ,cosbx +B,sin bx)(A;cosbr +B,sinbx)
or
3 sin bz cos? b —sind by
=34, A,8inbxcos?bx 43 (A4, B, -4y B,) sin2bxcosbx 3B, Bysindbe .
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Hence Ayds=1, ByBy=—4, AyBy+4yB, =0 and therefore 4, =+

B, = e]/ Ayy By=—¢ l/gAa’ where [¢| = 1. Thus, we have proved that

?

in case (b) the solutions of equation (*) have form (iv).

If fi(z) has form (c¢), we obtain (after similar considerations) that
fa(®) and fy(») are complex. This completes the proof.

On equation ().
Lemma ITI. If the functions fy(x), fo(2), fo(®) satisfy equation (xx), then

(34) 11(3%) = 6 ,(a)fo(2)1s(2) .

Proof. Substituting in (**) 2, = ¥, = 23 = %, we obtain (34). Q. E. D.

(35)  fee=1)

(36) A(®@) = 3[fwls(@) +hofi2)]

(37) Fulan) alaa) +Folan) o) = 1@y +a)— b))
(38)  Fuln - +5) = fulan) (s +4) +1a(n) (e +-5) +

+11(2s) i@y +@5) — 2f1(@1) f (@) f1(5)

Proof. Putting in (**) 2, = ©, = £3 = 0, we obtain (35), and then
putting @, = 2, x, = @3 = 0, we obtain after computations (36). Putting
in (x*) 3 = 0 and taking into account (36), we obtain (37). Equality (38)
follows from (*%) in view of (37). Q. E. D.

Remark II. Every solution f,(z), fi(x) fa z) of equation (xx) for
which f,; # 0 can be written as

file) = 4igi(®), [o2) = Augo(2), fa(@) = 4sga(2) ,

where g¢,(%), g.(%), gs(=) i8 a solution of equation (*) satisfying the con-
ditions:
0:(0) = g(0) =1, ¢5(0)=1¢.

LEMMA V. If. fo=1, fao="1, fao= 1, then at all the points where
h@) # 0,

(39) (@) = fi(o) +5() ]/ o — B2
and )
(0 i) = 3 |sor—e(o) )/ a2

where |e(w)| = 1.
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Proof. It follows by our assumptions from (36) that
(41) fo(®) = } ful#)— }/o(w)
and by virtue of Lemma III
h(@)[fd@)P— 2[f1(2)Pfalo) +12(32) = 0.

Hence we obtain (39). Substituting (39) into (41), we obtain (40). Q. E. D.
LEMMA VI. If f,,=0 and fy(x) 5= 0, then

(42) Faofwo = %

and

(43) Fa(@y +®5) = fo(21) g (@2) +Fi(20) 9 (@1)
where

(44) g(@) = f o7 Ja(®) +FaoTa(®)

Proof. Putting in (%) 2, =z, 2, = 2, = 0, we obtain (by virtue
of f(x) == 0) condition (42). Now, putting in (s*) 23 = 0, we obtain (43),
where g(x) satisfies (44). Q. E. D:

Remark III. Every solution f(2), f(@), fs(») of equation () for
which f,, = 0 can be written as
hw) = (@), fil@) = A:95(2), [fol@) = Aags(m),

where ¢,(2), g.(2), g5(®) is a solution of equation (xx) satisfying the con-
ditions
710)=0, gm(0)=1, g0)=1%.

LEmMMA VII. If fio=0,fin=1,f5= %, then at the poinis where
fi(@) # 0, we have

- _l_ 2 j1(3w)

(45) @) = 9(@) +¢(@) 1/51/ L
and

. 3_ f1(3$)

(46) fola) = [g(w) e(w ]/ 9P

where |e(z)| = 1.

Proof. In view of the conditions f,, = 1, f5 = %, it follows from (44)
that

(47) fo(@) = g(z)— }fo() .
Now, taking into account Lemma III, we obtain

3fu(@)[fo() 12— 6f,(0)g (2} fs() ) +h(8x) = 0.
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Hence we conclude that (45) must be satistied at all points where f,(2) # 0.
Substituting (45) into (47), we obtain (46). Q. B. D,

LEMMA VIIL If the function f(x) is continuous everywhere, the functions

X
<p(m)=ff Hzx +u +v)dudy
Yy

and
84
v(@) = [[ fw)f(@+v)dudo

have contimuous first derivatives.
Proof. Since the function f(z) is continnous everywhere, the function
D(u,v) = f(z4u-+ov)
is continuous in the square
Y

Q=,y

A
VAR

v
for every .
Therefore

9@ = [[ 1@ +u+o)dudv
Yy

4 9 6§ 4+z
= f[ff(m+u—|—v)du]dv= j[ ff(t+v)dtl;1”-

¥y Y+

To prove that @(x) has a continuous first derivative it suffices to
prove that the function

0+x d+z+v

F(z,v)= [ fa+v)dt= [ f(s)ds

v+ y+et+v

has a continuous derivative Fz(«, v) .
It follows from well-known theorem that

Fa(x, v) = fle+v40)—f(@+v+v) .
Hence the continuity of the function Fg(wz,v) is obvious and therefore

the function ¢(#) has a continuous first derivative

8 I}
g'@) = [ Fifw,v)dv= [ [fl@+0+8)—fl@-+v-+y)ldv.
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The proof of the existence of a continuous first derivative of the

function y(z) is similar:
By the assumption of the lemma we can write

']
p(@) = ff fu)f (z +v)dudy

a4z
(ff(u du)f]‘ fn—l—v)dv—(ff yau) [ fo)at
and hence ) v
v'(@) = ( [ fw)du)[f (2 +0)—f(y +o)] . Q. E.D.

4

THEOREM IV. If fy(x) (or fi(x)) is continuous everywhere and if fi()
and fo(2) (or fo(x)) have a point of continuity in common, they are continuous
everywhere.

Proof. Suppose that a is the common point of continuity of the

funetions f,(x), f3(x).
In the case of f;, # 0 (e.g. fio = 1) it follows from (37) that

Fa(@y +03) = §Fo(@1) (@) +Ta(@1) ol @2) +Fol@2) fo(®y) .

If we fix an arbitrary z,, the right side of the last equality is continuous
at the point 2, = a. Therefore f,(#) must be continuous everywhere. The
continuity of the function f4(x) follows from equality (36) and from the
fact that fyy 7 0.

In the case of f,,= 0 it follows from (44) that g(w) is continuous
at the point # = a. Thus f{x) and g(2) have a point of continuity in
common and, in view of the results of [1], they have all the derivatives.
Now, it follows from (44) that fy(2) is continuouns everywhere. Q. E. D.

TeEOREM V. All the non-trivial, real solutions of equation (*x) which
satisfy the conditions:

1) fi@) is continuous everywhere,

2) fi(w) and fi(z) have a point of continuity in common
are:

(i)  ful@) = 4=,
fa(m) == Aaeuz,
fo(@) = 6_A2 63
(il) fuw)= A,e=cosba,
fal) = Azé“(cos bo +¢}/8sinbo),

fa(@) = e“( cos be— )/ 3 sinbx) ;
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(iii)  filz) = 4,2e°=,
fz(-’”) = AZG“,

@) = g o™
(iv) fu{@w) = 4,e®ginbz,

folm) = Age= (cos b+ — sinbm) )

V3
fal@) = ie«w (cosbm—- '78—5 sinba;) :

where Ay, Ay, b,a (A #0,4,+#0,b+0) are arbitrary constants, and
e = const, |e| = 1. ’

Proof. It follows from Theorem IV that the functions fy(), f.(®),
fa(x) are continuous everywhere.

1) If f,0 # 0 (e.g. f;,= 1), we obtain from (38)
a8
o) ff [f1( @2 +25) — 21(2) 1(24)] A, iz
ry .

44
— [ Uy -+0 ) — fo(@a) Fu(@1 +3)— Fo(220) Fo(, +02)] Ay .

If fi(@, +2,) — 2f1(2,) fo(®,) 5% 0, it follows from the continuity of the
function f,(#) that there exist v, d such that

48
T U -+-20)— 2 () fo( )] dirydiry = 0 # 0

and we conclude on the basis of Lemma VIITI that the function
1 d 8
(48) fulmy) = z ff fuly +a, +25) dovy dag—
y?

$ 2 a0
_% f f Fi{#a) fr(ay —I—ma)dm,dwa——% f f Falo)fo(, +0,) devy day
vy Y7

has a continuous first derivative.
If fi(y +25)— 21 (%) f1(25) = 0, we have

(49) [ fulty +) dwy = 2fy(0) [ F(0s) daty .
i A

Annales Polonici Mathematici X1X 20
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Since f,(x) is continuous and f,(z) =~ 0, there exist 4, 4 such that

J hley) doy = o* 0

and it follows from (49) and from the continuity of the function f,(») that

pt2e

u
(50) e = 5rs [ hatmdey =55 | f)ar.
A

A4-xs

The existence of a continuous first derivative of function (50) is obvious.
Now we differentiate (48) and (50) and we conclude that the
function f,(#) has a continuous second derivative.
Differentiating (38) by ., #; and then putting #;, =2, v, = o; =0,
we obtain

(1) 1 (@) —2f1ofi() +[2 (f10)*— frol (o) = 0 .
1.1) In the case of fig— (fio)? = 0 we find after computations that
fil®) = e=®

and in view of (39) and (40)

fﬂ(w) = €%, ;fa(w) = -&-8""".

We conclude hence that in this case the general form of solutions must be (i).
1.2) In the case of fjo— (1) < 0 we must have

(62) fu(®) = es*cos bz

and by (39) and (40)

(63) fa(@) = e=[cosba +&(x))/3sin ba]
and

(64) fr(@) = Lea[cosbw— &(x))/3sin ba)

at all the points where cosbx 5= 0. Since f,(w) and fy(x) are continuous,
(63) and (54) are satisfied everywhere.

Substituting in (x*) 4, = @, 2, = =/2b, 4, = 0 and taking into account
(62), (b3), and (b4), we obtain after computations

T 3 .
€o8 (bw —l—-z—) = — s(m)e(ﬁ) sinbx .
Hence it follows that at the points where sinbz 0 we have ()

=&(m/2b) = const. At the points where sinbz = 0 () in (53) and in (54)
may be arbitrary, and therefore

(65) fo() = e[ cosbx +& /3 sin bx]
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and
(56) fal®) = fe=[cosba— £)/3sinda] ,

where & = const, |¢| = 1.
Since (52), (65), and (56) are satisfied everywhere, we conclude (in
view of Remark III) that in this case the general form of solutions is (ii).

1.3) In the case of fig—(fi0)? > 0 it follows from (51) that
fil#) = §(e*= 4-ef7) (o # B)

but then (by (39) and (40)) we obtain complex f,(z) and fy(x).

2) If f,, = 0, we can apply Lemma VI and it follows from (43) and (44)
(on the basis of the results of [1]) that we can only have

(20) hiw) = A, ze=, g(z) = e,
(b) hiz) = A,e=sinbz , g(z) = e**cosbw ,
(c) ful@) = A,e®ginhbz, ¢(a)= e=coshbz.

2.1) In case (a) we obtain directly from (45) and (46)
fil@) = e, [y} = }e=.
Hence and from Remark IIT it follows that the general form of solutions
is (iii).
2.2) In case (b) it follows from (46) and (46) that

fol@) = €= [cosbm —}—e-:(m)l/ig sinbw]

fs(z) = }e® [cosbm—s(w) L sinbw]

V3

and

at all the points where sinbz = 0.
Hence we conclude, as in 1.2), that

faw) = e® [cos b +¢ -];—g sin bw]

and

fa(z) = %te® [cos brx— ¢ 171_5_ sinbw]

(¢ = const, |e] = 1) for every .
Thus, in view of Remark III, we also have solutions (iv).
2.3) In case (¢) fo(z) and fy(#) are complex. This completes the proof.
20*
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Similar methods can be applied to find the solutions of symmetrical
equations (1) with » > 3 but it is more complicated than for » = 2,3
and we shall not do it. )
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