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The characterization of the cut of funnel
in a planar semidynamical system

by KrzyszTorF CIESIELSKI (Krakow)
Zdzislaw Opial in memoriam

Abstract. We investigate the section of the funpel through a non-stationary point x in a planar
semidynamical system (R% R,,n), ie.. the set F(t,x) = {ye R* =n(t, ¥) = x}. The topological
structure of F(¢, x) for t > N(x), where by N(x) we denote the negative escape time of x (according
to McCann), is characterized.

Introduction

In the topological semidynamical system (X, R, , m), we may consider F(t, x) —
“the past” of a given point x in time t (called a cut of the funnel through x).
R. C. McCann ([13]) defined the negative escape time N(x) of x and proved
that in a locally compact metric space X every semidynamical system without
start points is isomorphic to a semidynamical system with infinite negative es-
pace time N(x) for each x. Some results about upper semicontinuity of the func-
tion F: (f, x)— F(t, x) are proved under the assumption that r < N(x) ([5], [8]).

Many properties of different sets defined in semidynamical systems have
been proved in a number of papers not cited here. Nevertheless, the set F(t, x)
was not investigated in much depth. Generally, this set does not have
interesting topological properties (compare [2]). However, when the phase
space X is equal to R? and t < N(x), then for a non-stationary point x the set
F(t, x) is a point or an arc ([7]). This need not hold for t > N(x). When x is
a stationary point these sets cannot be precisely characterized.

The purpose of this paper is to describe the set F(t, x) for a non-stationary
point x in a planar semidynamical system for every t > 0. We show that when
x is not a point of negative unicity, t > N(x) and F(t, x) is not empty, then
F(t, x) 1s a one-dimensional topological manifold, possibly with boundary, not
necessarily connected. At most two components of F(f, x) are homeomor-
phic to R, each of remaining components is homeomorphic to R. Moreover,
the “ends” of each component tend to infinity. If x is a point of negative unicity,
then F(t, x) is a point or the empty set.
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The results presented in the paper were a part of the author’s Ph.D. Thesis
written under the supervision of Prolessor Andrzej Pelczar.

1. Preparatory definitions and theorems

By R, N, R, we denote the sets of real, natural and nonnegative real numbers,
respectively. By S" we denote an n-dimensional sphere in R"*!. By B(p, ¢) and
S(p, ¢) we mean the subsets of R* the open ball and the sphere of radius
¢ centred at p, respectively. Instead of p we may consider a set M. For a given
set A c R?* we denote by Int A, 4, @4 and Ext A the sets: interior, closure,
boundary and exterior (i.e. R*\A) of A, respectively. Instead of 4 we may
sometimes write ClA. For a given Jordan curve y = R?, we denote by Ins7 and
Outsy the bounded and unbounded components of R*\y, respectively. By an
arc we mean the set contained in R?, homeomorphic to [0, 17. If it is obvious
which arc with ends a and b we mean (a, be R?) we denote it by ab. When c,
d e ab, we denote by cd the subarc of ab with the ends ¢ and d. Throughout the
paper, by a l-dimensional manifold we mean a I-dimensional manifold
possibly with boundary, not necessarily connected.

Assume that there is given a region D = R*. We say that an arc ab is
a cross-cut of D if ab\{a, b} = D and a, beéD.

If aeR?> and M < R?, then by g(a, M) we mean the Euclidean distance
between a point a and a set M.

If a function f1s defined on a set containing an interval (x, y), we denote by
f(x, y) the set f((x, y)). In the same way we introduce the symbols f[x, y), f(x, y]
and f[x, y].

A (topological) semidynamical system on a topological space X is a triplet
(X, R ., n), where = is a continuous map from R, x X — X such that n(0, x) = x
for every xe X and n(t, n(s, x)) = n(t +s5, X) for every xe X and t, se R,. By =
we denote 7 x x, by n, we denote T|Rx i A function ¢: (a, 0] — X is called
a left maximal solution through x if ¢(0) = x, n(t, o(s)) = o(t +s) whenever ¢,
t+se(a, 0] and ¢t > 0 and it is maximal (with respect to inclusion) relative to
the above properties. It is known ([2]) that every solution ts continuous. By
a (positive) trajectory through x we mean the set n(R, x {x}) and denote it by
nt(x).

Assume that a semidynamical system (R?, R, n) is given. A point x € R? is
said to be a stationary point if n(t, x) = x for each t > 0. A point x € R? is said to
be a periodic point if there exists a T > 0 such that n(T, x) = x and x is not
a stationary point. The smallest T with the above property is called the period
of x. A point xe R? is said to be a regular point if it is neither stationary nor
periodic.

A point x is said to be a singular point if there exist y, # y,eR?> and t > 0
such that n(t, y,) = n(t, y,) = x but n(0, y,) # n(0, y,) for any 0€[0, t). For
agiven A = R, and an M < R?, we put F(4, M) = {ye R*: n(t, y)e M for some
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te A}. If A is a singleton, i.e. A = {t}, we write F(t, M) instead of F({t}, M); in
the similar way we denote F(A, x) and F(t, x). We call the set F(t, x) a cut of the
funnel through x. The set F([s, t], x) is called a section of the funnel through
x (the funnel F(x) through x is defined to be the set { J{F(z, x): ¢ > 0}). A point
x is said to be a point of negative unicity if for any t > 0 the set F(t, x) has at
most one element. Generally we do consider also start point (a point x is said
to be a start point if F(t, x) = @ for any t > 0), but it is known ([2]) that if
X = R?, then a semidynamical system has no start points.

For the basic properties of semidynamical systems the reader is referred to
[2], [13] and [14]. Now we recall some theorems. Recall that a semidynamical
system (R?, R, m) is given; almost all the theorems mentioned below are true
under more general assumptions.

1.1. DeFINITION. By the negative espace time N(x) of x we define N(x) = inf
{s€(0, oo]: (—s, 0] is the domain of a left maximal solution through x}.

As one can easily verify, under our assumptions this definition is
equivalent to the definition given by McCann in {13]. Note that it is not
equivalent to the definition given in [1].

For M c R* we put N(M) = inf{N(x): xe M}.

1.2. DerFiniTioN. The -system (R? R, m) is said to be isomorphic to
a semidynamical system (R?, R,, ¢) if there is a continuous mapping
¢: R, x R* >R, such that: ¢(0, x) = 0 and the mapping ¢(-, x): R, =R, is
a homeomorphism for each xe R? and zn(t. x) = g(p(t, x), x) for each (t, x)
eR, xR~

1.3. THEOREM ([11]). The semidynamical system (R?, R ., n) is isomorphic to
a semidynamical system (R%, R, ') which has infinite negative escape time for
each xeR>.

1.4. THEOREM ([3]). For each neigbourhood U of a point x € R* there are an
s > 0 and a neigbourhood V of x such that F([0, s}, V) <« U and F([0, «], x) is
compact for each ae[0, s].

1.5. Lemma ([13]). For a point xeR?* we have:
N(x) = sup {s: F([0, s] is compact}.

1.6. Lemma ([11]). If K< R? and J,, J, < R,, then F(J,, F(J,, K))
=F(J,+J,, K), where J,+J, = {a+f: ael,, fel,}.

L7. LEMMA ([11]). For every a, b, teR, (a < b), the sets F(t, x) and
F([a, b], x) are closed.

1.8. LeMMA ([15]). If the set F(t, x) is compact, then F([0, t], x) is also
compact.

1.9. ProprosITION ([15]). If F(t, x) is compact, then it is connected.
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1.10. LEMMA ([11]). If M is compact, then there exists an o > O such that
F([O, s), M) is compact for each s < o.

1.11. PROPOSITION ([5]). Assume that M is compact and connected and W is
a compact neigbourhood of M such that F(t, W) is also compact. Then for every
neighbourhood U of F(t, M) there is a neighbourhood V of M such that
F(t, V)< U.

1.12. PROPOSITION. Assume that M is compact and connected, and that there
exist an s > 0 and a compact neighbourhood W of M such that F([0, s], W) is
compact. Then for every te([0, s] the set F(t, M) is compact and connected.

Proof. The compactness of F(t, M) follows by Lemma 1.7. Suppose that
F(t, M) is not connected. We can present F(t, M) as the union A U B, where
A and B are closed non-empty disjoint sets. Notice that for every ye M we have
F(t, y) = A or F(t, y) = B (because, by Proposition 1.9, F(t, y) is connected).
Define A" = {yeM: F(t, y)< A} and B' = {ye M: F(t, y) = B}. The sets A’
and B’ are non-empty and disjoint; moreover, F(t, A') = A and F(t, B') = B. We
can find the open disjoint sets U , and Uy such that A < U, and B < Uy Take
a ze A'. The set F(t, z) is compact. By Proposition 1.10 there exists an open
neighbourhood V, of z with F(t, V)< U, as F(t, z) c U,. Thus F(t, V)
NB=@ and V,nB' =@. Put V, =(J{V.: ze A'}. The set V, is the open
neighbourhood of A" and V, n B’ = . In the same way we can find an open
neighbourhood V; of B’ with V;n A" = @. This shows that the sets 4" and B’
are separated in M, which contradicts the connectedness of M.

1.13. LEMMA. If the set F(t, x) is non-empty, then it is compact if and only if
t < N(x).

Proof. By Theorem 1.4 and Lemma 1.5, F(t, x) 1s compact for t < N(x).
Assume that ¢t > N(x) and suppose that F(t, x) is compact. By Lemma 1.8 the
set F([0, t]) is compact, which contradicts Lemma 1.5. If F(N(x), x) is compact,
then by Theorem 1.4 and Lemma 1.7 the set F ([0, 8], F(N(x), x)} is compact
for some 6 > 0 and by Lemmas 1.6 and 1.8 the set F([N(x), N(x)+J], x) is
compact, so F([0, N(x)], x) u F([N(x), N(x)+ 6], x) = F([0, N(x)+ 4], x) which
again contradicts Lemma 1.7.

1.14. LEMMA ([7]). Assume that t, s,, s, = 0 and x is a non-stationary point.
If n* (x) contains a periodic point of period T (n™ (x) can contain a periodic point
even in the case where x is regular) then we assume that |s, —s,| < T. Then:

(1.14.1)  if a;eF(s, x) (i=1, 2) and s, #5,, then a, # a,,

(1.142) ifa,eF(t, x) (i=1, 2) and n(s, a,) = 7n(s,, a,) and n(s,, a,) is not
a stationary point, then s, =s,.
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1.15. THEOREM ([ 7]). If x is a non-stationary point and t < N(x), then F(t, x)
is either a point or an arc, i.e. the set homeomorphic to the closed interval

[0, 17.

1.16. THEOREM ([7]). Assume that x is a non-stationary point, the arc
ab < F(t, x) (a # b) and the positive number 4 is such that n([0, 4], a)n
([0, A], b)=O. If x is periodic, then also 4 < T. Then

(1.16.1)  m(4, ab) is an arc with the ends n(A, a) and n(4, b),

(1.16.2)  =([0, 4], ab) is homeomorphic to the square and on([0, 4], ab)
= ({0, 4}, ab)un([0, 4], {a, b}).

1.17. ProposiTiON ([7]). Assume that t < N(x) and an arc a,a,
(a, # a,) is contained in F(t, x), where x is a non-stationary point. Let u > 0 and
let pe R? be such that =([0, p), a,) " x([0, w), a,) =D, nly, a,) = n(y, a,) = p. If
x is periodic then we assume also that t < T.

Then n([0, p], a,a,) is homeomorphic to a triangle and the edges of this
triangle are the images of a,a,, n([0, u), a,) and =n([0, ul, a,). Moreover,
n(p, a,a;) = {P}

As the immediate consequence of 1.14-1.17 we get

1.18. COROLLARY. Assume that t< N(x), where x is a non-sta-
tionary point, F(s, x) is not a point for some s€(0, t) and, if x is a periodic point,
then t—s is smaller than its period. Denote by a and b the ends of the arc F(t, x).
Then w(t—s, a) and n(t—s, b) are the ends of the arc F(s, x) and =n([0, t—s],
a)n ([0, t—s], b)=0.

By Lemma 1.14 and Proposition 1.17 we get

1.19. LEMMA. Assume that x is a non-stationary point, t < N(x) and a, be
F(t, x). Let a positive number i be given; if x is a periodic point, then also 4 is
smaller than its period. Let n(&, a) = n(&, b) for some (0, A) and ab be an arc
contained in F(t, x). Then n(&, p) = n(&, a) for every peab.

1.20. LEMMA ([7]). Assume that x is a non-stationary point. Let us take
at < N(x)and a 2€(0, t) (if x is periodic, then also t < T) and assume that F(t, x)
and F(t— A, x) are not singletons. Denote F(t, x) by ab. Then for each peab\{a, b}
the set ([0, ], ab\\n([O, 4], p) has two open components D, and D, which are
bounded by Jordan curves. Moreover, for each qeab we have:

([0, 11, g9 = D, un([0, 11, p) or =n([0, 1], g¢) = D,un([0, 2], p).

1.21. LemMaA ([7]). Assume that t < N(x) and L is an arc (open or closed)
contained in F(t, x). Let us take a A > 0 such that t + 4 < N(x). Then F(4, L) is an
arc (open or closed, respectively) contained in F(t+ 4, x); if L is a point, then F(2, L)
is a point or a closed arc.

Now we recall some theorems from general topology.
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1.22. SCHONFLIES THEOREM ([1], [10]). Every homeomorphism from a Jor-
dan curve y contained in R* onto S' may be extended to a homeomorphism from
R? onto R?. Every homeomorphism from an arc L, = R* onto an arc L, c R?
may be extended to a homeomorphism from R* to R*.

1.23. THEOREM ([3]). Assume that X is a compact connected set, U is an open
subset of X and C is a component of U. Then (UNUYnC # Q.

1.24. THEOREM ([ 10]). If a metric continuum X contains two different points
a and b such that for each xe X there exist two closed sets A and B with the
properties: X = AU B, ac A, beB, and An B = {x}, then X is homeomorphic
to the interval [0, 1].

1.25. THEOREM ([1]). Assume that X is a Hausdorff topological space and
¢: (0, 1)> X is a homeomorphism onto its image. Let us define

A= {Cl{o(s): 0<s< &}, £, 1)},
B=(\{Cl{o(s): £<s <1}, (0, 1)}.

Then Ane(0, 1)=O and B ¢(0, 1) = . Moreover, if X is compact, then
A and B are nonempty, compact and connected.

1.26. LEMMA. Assume that y is a Jordan curve contained in R* and L is
a cross-cut of Ins vy, where L, and L, are the components of y\L. Let us take an
aeL\L and abe L,\L. If a point p has the property “there exists an arc pb such
that pb\{b}elInsy\L”, then pelns(Lu L,) and aeOuts(L U L,).

This lemma follows immediately from the Jordan Curve Theorem, the
0-curve Theorem (see [1], [10]) and V.11.7 and V.11.8 in [12].

2. The characterization of F(t, x)

Throughout this section we assume as given a planar semidynamical system
(R?, R,, m) and a non-stationary point x € R?.

2.1. Notation. By (R?, R, , n®) we denote the semidynamical system with
infinite negative escape time for each point, isomorphic to (R?, B, n) (existing
by Theorem 1.3). In this system we denote the cut of a funnel by F*(t, x) and
the section of a funnel by F*((s, t], x). .

By ¢: R, x R> >R, we denote the function which gives the isomorphism
between (R?, R., =) and (R?, R,, n™), constructed by McCann in [11] (see
Definition 1.2 and Theorem 1.3). We have:

(2.1.1) (0, y) =0 for each yeR?;

(21.2) ¢, R,—>R, is a homeomorphism for each yeR? (we denote
(s ¥) = 0,();

(2.1.3) =n(t, y)==>(p(t, y), y) for each (t, y)eR, x R%.
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We define a function y: R, x R2— R? as follows:
(2.14) Uis, ) = 05 109).
Write ¢,(-) = ¢(-, ). Then we have
(2.1.5)  o(s, y) =, '(s), as ¥, is a homeomorphism.

If x is a periodic point, then we denote its period in the system (R%, R, , )
by T and in the system (R%, R,, n*) by T™.

2.2 PrOPOSITION. The following properties hold.

@21)  n%(s, ) =n(¥ls, 9, y) for every (s, )eR, xR%;
(2.2.2) ot y) 2 t;

(2.2.3) Y(s, y) <s;

(2.2.4) the function  is continuous.

Proof. The first property follows immediately by the definition of y. The
second was proved by McCann in the proof of the existence of a suitable
isomorphism (Theorem 2.2 in [11]). The third follows immediately by (2.2.2)
and (2.1.4). The last one follows by the results of Carlson (see Lemma 1 in [4]).

2.3. ProrosITION. If x is a periodic point, then T > T.

Proof. We know that n(T, x) = x and n(s, x) # x for each se(0, ). So
n®(e(T, x), x) = x and 7™ (¢p(s, x), x) # x for each se(0, T). This means that
T® = (T, x) and by (22.2) o(T, )= T.

2.4. DEFINITION. Assume that x is not a point of negative unicity and
N(x) = co. If x i1s a regular point, then by T we denote an arbitrary fixed
positive number (if x is a periodic point, then by T we denote its period, as was
assumed). By 4 we denote sup {t: F(t, x) has exactly one element}.

Assume that F(A+3T, x) = a;b,. If F(A+3nT, x) = a,b,, then by a,, b,
we mean F(1+%(n+1)T, x); we choose a,., and b, in such a way that
(3T, a,+,) = a,and n(3 T, b, ) = b,. By Corollary 1.18 there is only one way
to choose such a,.; and b,,,;. Now we may define the boundary solutions.
Under the above assumptions we define 6,; (—oc, 0] — R? by:

(—1) = n(A+3T—t, a,) for tef0, A+3T],
AT T WG+ )T+ i—t, ap,,)  for te[3nT+4, d(n+1)T+4].
The mapping o, is defined in an analogous way. It is very simple to verify that

o, and o, are solutions. The ranges of these solutions will be called the
boundary trajectories.

2.5. Remark. From Definition 2.4 it follows that ¢,(—t) and g,(—1) are
the end-points of the arc F(t, x).
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2.6. LEMMA. Assume that pe F(t, x) (t > 0). Let @(t, p) = 5. Assume also that
p is not the end-point of the arc F*(s, x) (by Theorem 1.15 F* (s, x) is an arc).
Then:

(2.6.1)  There exists a homeomorphism on its image h: (0, 1)— F(t, x) such that
h(3) = p.
(2.6.2)  There exists a neighbourhood U of p such that U n F(t, x) = h(0, 1) and

U = Intn* ([0, €], cd), where cd = F*(s;, x), 0 <s,—s < ¢ < 3T and
([0, €], o)™ ([0, €], d) = OD.

(26.3) For each point qecd there exists exactly one point belonging to
7=((0, ), q9)n F(t, x).

Proof. At first we show that there exist sz', 5 with:

(264) 0<35—s, <iT,n™([0,5—s,], @)~ n™([0, 5—s,], b) = O, where a@ and
b are the ends of the arc F*(5, x) and ¢(t, p) = s€(5, s,) (Fig. 1).

F>(s,x)

&«
a

(v

F={5,x)
Fig. 1

We have n™(s, p) = n(t, p) = x, as s = ¢(t, p). Thus pe F*(s, x), which is an
arc, not a point. Let F®(s, x) = ab (p # a, p # b). Let us take the neighbour-
hoods U,ofa and U,of b with U,n U, = @ (Fig. 2). There is a ie(0, 3T)
< (0, §T™) such that A <s and n=([0, ], a) = U,, n*([0, 4], b) < U,,
F*([0, 4], ag< U, and F*([0, A], b) =« U, (from Theorem 1.4). Consider
F*(s+ 2, x). This is the arc with the end-points d and b. We may assume that
n®(4, a) =a and n*(2, b)=b. It is enough to put s, =s—4 and 5§ = s+ 4.

Fig. 2

By the continuity of ¢ and the property ¥(s, p) = t (see (2.1.4)) there is an
s, €(s, 5) such that
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(2.6.5) Y(s,, F¥(s;—s, p) = (t—4T, t+4T).

In order to show this denote F*(5§—s, p) by J. There are an w > 0 and
a neighbourhood V of p with Y((s—, s+ ), V) = (t—3T, t—4T). By Theorem
1.4 there is an n€(0, w) such that 7" ([§—s—n,5—5), J) = F*([0, 7], ppc V. If
we take s, = s+n then F*(s, —s, p) = n*(§—s,, J) € Vand y(s,, F*(s, —s, p))
< (t—4T, t+5T).

By (2.6.4) we have also (as s, (s, 5))

26.6) n”([0, s,—s,], ) na=([0,s,—s,],b) =B, 0 <s,—s, < 1T, where d,
b are the ends of the arc F*(s,, x).

By Theorem 1.16 and (2.6.6) the set n™([0, s,—s,], F*(s;, x)) is
homeomorphic to a rectangle and contains p in its interior. Write L = F*(s,, x),
I'=F%*(s;—s, p) (Fig. 3). Of course ' < L and I is an arc or a point.
Moreover, d, b¢ I, as pelnta®([0, s,—s,], L).

F=(sp,x)

a ]

T fly)
Fig. 3

Let us define a parametrization:

(2.6.7) S0, 1]-L, O<f<gsy<l!l, f(Bf(y=Tr.
Now we show that

(2.6.8) Y(s;, g)=t+y(s,—s,q) for each gerl.
We have

”(\b(sp q). 4) =n"(sy, ) = X,
n(t—y(s,—s, q), q) = n(t, n(y (s, —s, q), q)) = n(t, n°(s, —s, q)) = =(t, p) = x.

Thus Y (s,, q) =t+y(s;,—s, g) for a regular point x and Y(s,, q)=t+
Y(s,—s, g)+nT for a periodic point x. But from (2.6.5) it follows that y(s,, g)€
(t—4T, t+iT) and from (223) it follows that 0 < y(s,—s, ¢q) <
$,—5<s8,—5, <3T,sonT=y(s,;, Q—t—yY(s,—s, q)e(—2T,31T). According to
this n =0 and (2.6.8) holds also for a periodic point x.

Now we put

(2.6.9) Ay = o((s,, y)—t, y).
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For yeI’ we have y(s,, y) > t, so (by the compactness of I') Y(s,, I') >
t+x for some y > 0. This shows that for each point y from some neighbour-
hood of I' we have Y (s,, y) > t, which means that £, is well defined for these y.
Thus the (unction 4 of the variable y is defined in some neighbourhood of I'.
Moreover, in this neighbourhood 4: y+— 4, is a continuous function, as the
composition of continuous functions.

Now we show that:

(2.6.10) n*(4,,q)=p for every gel.
Using (2.6.8), (2.1.3) and (2.2.1), we get
n°°(cp(!lf(sl, 9)—t, q), q) = n°°(<p(t+¢(sl -5, 9)—t, q), q)
= n“"(fp(llf(sl —$, q), 9); q) = n(Y(s,—s, q), q) = 1°(s, —s, q) = p.
Now we show that
(26.11)  =(t, n*(4,, y)) =x if yeL is such that 4, is defined.
Using (2.1.3) and (2.2.1), we get:

ﬂ(t, (o (s,, »—t,9),y)) = N(t, n(y(s;, y)—t, y))
= n(Y(s,, ¥, V) = (s, ) =x, as yeL.

Next we prove that there are neighbourhoods U, and U, of f(f) and f(;)
such that 4, is defined for each ye(U;uU)n L and

(2.6.12) 4,€(0,s,—s,) for ye(U,0U)NL.

In order to prove this it is enough to show that 2 €(0, s, —s,) for every
gel. We have 4, >0, as y(s,, q) > t. Let us notice that s, —s, < s, —s and
(s, =53 Q)< U(s,—s, a) 50 @7 '(s,—5) <y(s,—s, g), and by (2638)
sy —S; < @(¥(s,—s, q), q) = 4, which finishes the proof of (2.6.12).

From (26.12) it follows that =n™(4,, y)en™((0,s,—s,),y) for
ye(U,uU)nL, so (by (26.11)) F(t, x) nn*((0, s, —s,), ¥) # D. Thus there
exist o« and & such that 0<a<f<y<d<1l and =*(0,s,—s,) )
N F(t, x) # O for every yef[a, f] (we use the definitions of B, y and I).

Now we show that

(2.6.13)  For each yef[a, 6] the set n*((0, s, —s,), y) N F(t, x) has exactly one
element.

Assume that 0 < u < v <s,—s, and z(t, (g, y)) ==n(t, z°(v, y)) = x.
Thus

X = n(t, n(y(u, y), y)) = n(t, n(y (v, y), y)) and
x =n(t+(u, y), y) = n(t+y v, y), y).
But y(y, y) <¥(v, ), so
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x =+, Y=, +¥g, ), y)
= TC(I/I(V, y) =¥ (u, y), nlt+vp, y). )’)))
= (Y (v, V¥ y), x).

This means that ¥ (v, y) = ¢(y, y) for a regular point x and Y (v, y)—y(u, y)
=nT for a periodic point x. However, in the second case (v,y)
SV <=8, <3T0 <, y) < Y, ) and Y(v, y)— (s, y)e[0, 1T). Thus in
every case Y(v, y)=y(u, y) and v = p

Write

(2.6.14) U = Intn* ([0, s, —s,], f[, o]).
Then

(2.6.15) U=nr*(0,s,~s,], f[«, 5]).

We show that F(t, x)n U is compact and connected. By (2.6.11) and
(2.6.13) we have:

F(t, x)nU = J{n™((0, s, —s,), y) " F(t, x): yef([a, 6]}

= J{n*(4,, y): yefla, 81} = @(f[x, 8]), where & = n* O(4, id)

(by id we denote the identity function from R? onto itself). Thus U n F(t, x) is
the continuous image of a compact and connected set.
We show also that:

(2.6.16) for every geF(t, x)n U there exist closed sets 4 and B such
that AnB = {q}, (A f(@)€A, 7 (A5, f10))€B and AU B
=F(t, x)nU.

Let g=mn"(4,y) (Fig. 4), {e[o, ], y=/(0). Put A= o ],
B = &(f[&, y]). Of course A and B are compact, AuB = F(t, x)n U.

Lig. 4

Let g€ AnB. Then q, = (s, () = n*(ise, (D) € <& 12 0)
and (by (2.6.12)) llf(c), AJ‘(QG(O, Sl _SZ)' By Lemma 1.14, Af(;) = ;'f(t) and by
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Lemma 1.19 we get g, = n°(Ap0, () = 7% (Asp S() = 7% (Ape f(E)) = 9. We
have proved (2.6.16).

Using Theorem 1.24 we conclude that U n F(t, x) is homeomorphic to the
interval [0, 1], let U n F(t, x) = h[0, 1], where h is a suitable homeomorphism.,
Then U is the required neighbourhood of p, e =s,—s5,, ¢ = f(®), d = f(3),
c¢d = f[a, 0]. The property (2.6.3) follows from (2.6.13).

2.7. PROPOSITION. If we change the assumptions of Lemma 2.6 in that p is
now the end-point of the arc F*(s, x) we get (repeating the above proof in the
simpler case):

(2.7.1)  there exists a homeomorphism onto its image h: [0, 1)—> F(t. x) such
that h(0) = p,

(2.7.2)  there exist §, e (with0 < §—s <e<3T),¢,dand an arc cd = F* (S, x)
such that 7n® ([0, €], ¢) " n* ([0, €], d) = D, n*(5—s, ¢) = p, #*((0, ¢),
cdyn F(t, x) = h[0, 1], h(1)en™((0, &), d), h(0, 1) = Int 2™ ([0, ], cd).

2.8. LEMMA. For every left maximal solution 6™ : (— oc, 01— R? through x in
the system (R%, R ., n™) and t > O there exists at most one number s > 0 with the
property o(t, 6*(—s))=s. Then n(t, 6*(—5))=x and a*(—s)eF(t, x).

Proof. Let us define the function : R, >R, as follows:

(2.8.1) U(s) = (s, a*(—3).
Let u<s. Then n“"(z//(s—u, o7 (—s)), a"’(—s)) =7n"(s—u, o”(—s))
= ¢%“(—u). Moreover,
nw(d/(s, c*(—s)), a""(—s)) =x= n"‘:(l/t(u, o™ (—u)), a“‘(—u))
= n“‘(dt(u, o™ (—u)), nw(w(s—u, a*(—s)), a““’(—s)))
= n“’(lll(u,_a”(—u))-i-lll(s—u, 6= (—s), J*(—s))).

The point x is non-stationary, so

Y(s, o (—s) = Y(u, e (—uw)+y¥(s—u, 6*(—3)

for a regular point x and
Y(s, o°(—9) = Y(u, c*(—uw)+y(s—u, 6°(—s)+kT™

for a periodic point x.
Let us fix s. By the continuity of ¢* it follows that there exists a > 0 such
that if 0 < s—u < 4, then |Y(s—u, 0*(—s))| < ;T (because ¥(0, ™ (—s)) = 0)
and |(s, 0 (—$))—¥(u, 6”(—w)| < §T=. This means that k = 0. Thus in every
case Y(u, 0°(—u)) < yfs, 6(—s) for 0 <s—u <é (as Y(s—u, a*(—s) > 0).
Now fix u. In the same way as above we show that there exists a d > 0
such that if 0 <s—u <4, then |Y(s, 0*(—s)—¥(u, 6*(—u))| <4T* and
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| (s—u, e (—s))| <4T> (because (0, 6*(—u)) =0 and ¢* is continuous).
Again k=0 and Y(u, 6> (—u)) < yY(s, 6" (—3)).

From the above investigation it follows that for each we R, there is
a neighbourhood W of w such that ¥ is strictly increasing in W. This means
that  is strictly increasing in R,.

Let sy, s, be such that ¢t oc”(—s)) =s; (i =1, 2). By (2.1.4) we conclude
that ¥(s, 6°(—s)) =1 s0 Y(s,) = (s,) =t and s, = s,.

In order to finish the proof it is enough to notice that

n(t, a*(—s) = n*(o(t, a™(—5)), 0" (—3))
=n"(s, 6 (—s) =0*(s—s) =" (0) =x
if o(t, 6%(—3))=s.

2.9. Remark. In the case when x is a periodic point it is possible that
there are more than one point belonging to F(t, x) (for fixed 1) on one negative
trajectory being the image of the left maximal solution ¢ through x. However,
in such case only one of these points is given on F(t, x) by the solution ¢. The
others are given by the other solutions which have the same negative trajectory
as the image.

2.10. Remark. It is possible to describe quite precisely the behaviour of
the left maximal solution through the given point x and introduce the natural
order and topology in the set of solutions. This can be found in [6].

2.11. LEMMA. There are at most two points in F(t, x) which do not fulfil the
conclusion of Lemma 2.6. If a point p does not fulfil this lemma, then it fulfils the
conclusion of Proposition 2.7 or it is the isolated point in F(t, X); in the last case
F(t, x) = {p}.

Proof. Notice that if pe F(t, x) does not fulfil the conclusion of Lemma
2.6 and (¢, p) = s, then p is the end-point of the arc F* (s, x) or {p} = F” (s, x).
In both cases p = 6§ (—s), where g is a boundary solution through x in the
system (R?, R, n*). By Lemma 2.8 if follows that there are at most two such
points. If p is the end-point of the arc F*(s, x), then p satisfies the conclusion of
Proposition 2.7. If {p} = F*(s, x), then ¢*(—s) = p for every left maximal
solution ¢ through x in the system (R? R,, n™). Suppose that there exists
a geF(t, x), g # p. Then for some left maximal solution ¢f through x in
(R*, R,, n™) we have 67 (—s,) =¢q, 67(—s) = p and ¢(t, q) = s,, where s, is
a number different from s. This contradicts Lemma 2.8.

In order to characterize precisely F(t, x) we present some lemmas.

2.12. LEMMA. If pey,y, < F(t, x), y, # P, ¥y, # p and ¢(t, p) = s, then p is
not the end-point of the arc F*(s, x).

Proof. As in the proof of Lemma 2.10 notice that F*(s, x) is not a point
(in the other case F(t, x) = {p}). Let F*(s, x) = ab.
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Let us fix a 4 <s (if x is periodic, then also A < 3T< 3T™) such that
([0, A, agna*([0, 4], b)=G. Write F*(s+4, x)=a,b,, where
n°(4, a;) = a, n*(4, b,) = b. The set n([0, 21], a,b,) is homeomorphic to the
rectangle.

Suppose to the contrary that p = a. We can find a neighbourhood U of
a such that ¢(t, U) < (s— 4, s+ 4) and U n =™ ([0, 24], b,) = @. Thus there exist
points ¢ and d such that aecd c y,y,nU and ¢ # a, d # a (Fig. 5). For each
y€ecd we have x = n(t, y) = n™(e(t, y), y)en™((s— 4, s+4), y), so ye F*((s— 4,
s+4), x) = n®((0, 24), a,b,). By Lemma 1.14 it follows that ¢, d ¢ n([0, 24], a,).
We show that

(2.12.1)  there exist gea,b, and z, Zecd N (0, 24), q) (z # 2).
Denote on([0, 22], a,b,) by T.

Fig. 3

By Theorem 1.16 it follows that there are c,, d, €a,b, (different from a,
and b,) such that ce n*([0, 24], c,) and den™([0, 24], d,). Il ¢, = d, then we
put z=c¢, Z=d and g=c, =d,. If ¢, #d, then we may assume that
c,€a,d, < ab, (Fig. 6).

. by

a, Cy d1I
Fig. 6

By Lemma 1.20 the arc L = n* ([0, 24], ¢,) is a cross-cut of InsI". If de L,
then it is enough to take g =c,, z=¢, Z=4d. If d¢ L, then by Lemma 1.20
d belongs to the component of InsI'\L which contains b, and d, in its
boundary (as n®([0, a], 4,) is contained in this component for some ).
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If aeL, then we put g=c,, z=a, Zz=c. If a¢L, define 7 =inf{&
n®(, ¢,)eT}; A <t <24 Denote by a,n®(z, c,) the arc contained in I" with

the ends a, and n*(z, ¢,), which contains a. Then L U (F \(c,a, va,n*(z, c,))) is
a Jordan curve obtained after cutting the region InsI” by the arc L. The
assumption of Lemma 1.26 (with the points a and d) are fulfilled, a belongs to
the exterior of this curve and d belongs to the interior. Thus this curve has
a common point with ad. By the properties of cd it follows that ad n L # & and
c¢adn L, so it is enough to take as z any point belonging to ad » L and put
z=c and q =c,. We have proved (2.12.1).

We may assume that z =n%(y, q), Z=n"(v, q), 0 <u <v <24 Then
z=7n%(y, q) = n(Y(u q), g) and x = (¢, z) = n(t + Y (1, g), q); in the same way
x =n(t+y¥(v, g), q). The function ¢ is strictly increasing, so 0 < y(u, q)

<Yy, 9 <Y(24, q) <24 < T; thus n(t+y(u, q), q) =n(t+y(v, g), 9) and
0<y¥(v, 9g—¢¥(n, q) < T, which contradicts Lemma 1.14.

2.13. LemMma. If F(t, x) is not a point, then each component of F(t, x) is
a 1-dimensional manifold. Moreover, either at most two components of F(t, x) are
homeomorphic to R, and none of them to [0, 1], or exactly one component of
F(t, x) is homeomorphic to [0, 1] and none of them to R..

Iff: R, — 8, is the parametrization of the component S,, then lim |f(w)| = o0
when w—co. If f: R—S, is the parametrization, then lim|f(w)| = 0o, when
w— 00 and when w— — 0.

Proof. Consider the component H of F(t, x). By Lemma 1.7, H is closed.
By Lemma 2.11 at most two points in F(t, x) do not fulfil the conclusion of
Lemma 2.6. Denote them (if they exist) by a and b. Il a, b¢ H, then, by Lemma
2.6, H is a 1-dimensional manifold without boundary.

Assume that H = {a}. Then by Lemma 2.11 if follows that a does not fulfil
the conclusion of Lemma 2.6, so F(t, x) = {a}.

Let aeH, {a} # H and b¢ H. Let us present H\{a} as the union of its
components: H\{a} = | J{S;: ieI}. As above, every §; is the manifold without
boundary, so is homeomorphic to R or S!.

Suppose that H is a bounded set. Then H is a continuum, H\{a} is an
open subset of H and by Theorem 1.23 we get that aeS,; for each iel, so
S; = S;u{a}. Thus S; is homeomorphic to R and S; =f(0, 1). Let us put

A, = N{CI{fW): 0<w< e} £e(0, 1)},
= ({Cl{f(w): E<w<1}: E€(0, 1)].

By Theorem 1.25, 4, = B; = {a}. Thus we can construct the arc f[3%, 1)U {a}
U f(0, 3] containing a in its interior. Let ¢(t, a) = s. Then by Lemma 2.12 it
follows that a is not the end-point of the arc F*(s, x) and fulfils the conclusion
of Lemma 2.6. We have a contradiction.

8 — Annales Polonici Mathematici LI
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Now assume that H is not bounded. Let H=Hu{x}, so H is
a continuum contained in $? and H\{a, oc} is its open subset. As above we
denote by S; the components of H\{a} and conclude that {oo, a} is not disjoint
from the closure of S; in S2. Define in the same way as above 4, and B,. Using
Theorem 1.25 we show that the three cases are possible:

-

(2.13.1) A= B, = {a},
(2.13.2) A;={a}, B;=1{b} (or vice versa),
(2.13.3) A =B, ={x)}.

As above we show that (2.13.1) cannot hold. Suppose that (2.13.3) holds.
Then S, is a closed subset of R?, so it is a closed subset of H. Recall that a¢S,.
But S; is also an open subset of H, because by Lemma 2.6 it follows that for
each point belonging to S; there is a neighbourhood U of this point such that
UnF(t x) = S;  H. Thus, using connectedness of H we get that S; = H. This
is 1mpossible, because ae H and a¢S,.

We have shown that for each component S; condition (2.13.2) holds. This
means that there is only one such component. If there existed two such
components, then we could find an arc contained in F(t, x), containing a in its
interior, so a would fulfil the conclusion of Lemma 2.6 which would contradict
the assumption.

We have proved that if ae H and b¢ H then H is homeomorphic to R, .
Thus we get (using Lemma 2.11) that at most two components of F(t, x) are
homeomorphic to R..

Consider the last case: a, beH, a #b. At first suppose that H is
unbounded. Then H = H n {0} is a continuum contained in S2. Considering
the components S; of the set H\{a, b} and using Theorem 1.25 (as in the
previous case) we get (changing the parametrization, if necessary) that the only
possible cases are:

(2.13.4) A;=B,={a} or A,=B={b},

(2.13.5) A, =B, = {x},

2136) A, ={a}, B,={c} or A ={b}, B,={w0},
(2.13.7) A;={a}, B;={b},

where A, B, are defined in the same way as previously.

In the same way as above we exclude the cases (2.13.4) and (2.13.5).
Suppose that for some component S, (2.13.6) holds. In this case S, in the only
one component of H\{a, b}. If there is another component, it fulfils (2.13.6) or
(2.13.7) and we can construct an arc contained in F(t, x), containing a (or b) in
its interior, which contradicts the assumption (according to Lemma 2.6).

This means that either H =S,u{a}u{b} or H={a}u{b}ulJ{S:
ie I}, where each from S; (i) fulfils (2.13.6). But if for one of the components
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(say S;) we have 4, = {a}, ﬁj = {00}, then (as above) for any component S,
different from S; we have A4, # {a} and B, # {a}. The point b has the same
properties. Thus we get H\{a, b} = S,, where j, fulfils (2.13.6) (for instance
Aj, = {a})or H\{a, b} = S;, U S},, where j, and j, satisfy (2.13.6) with A; = {a}
and A;, = {b}. However, if H\{a, b} = S;;, then H = §; U {b}, where b¢ S ;
this contradicts the connectedness of H. If H\{a, b} =3S§; uS§;, then
H=S§;0US;,; aeS; and a¢S;,, beS;, and b¢S;,. We have presented H as the
union of two non-empty, disjoint (as S; N S;, = J) closed subsets which is
a contradiction.

We have proved that if H is unbounded then H = S, u {a} u {b} and
oo does not belong to the closure of H in S%. This shows that H is bounded.

If H is bounded, then in the same way as above we get that the only
possible cases are:

(2.13.8) A,=B,={a} or A,=B, ={b},

(2.13.9) A;={a}, B,={b}.

In the same way as in the .case when H is unbounded we get that
H = S,u {a}u{b}, where S, =7(0, 1) and lim f(t) =a (t—0), lim f(t)=b
(t—0).

Now the last conclusions of the lemma follow quickly by using the fact that
each component §; is closed and the result that if S; is homeomorphic to R then
it cannot have the cluster point in S; when w— oo (we use Theorem 1.25).

2.14. LEMMA. The set F(t, x) does not contain any subset homeomorphic to
St

Proof. Suppose the contrary. Denote by I' the subset of F(t, x),
homeomorphic to S'. Of course t = N(x) (by Theorem 1.15). Considering the
suitable isomorphism between (R?, R, n) and (R?, R,, n*) we have that for
each pel there is an s, such that ¢(t, p) = s, By Lemma 2.12 p is not the
end-point of the arc F*(s, x). Thus we may use Lemma 2.6. For a given
p denote by h,, ¢, ¢, d, the suitable homeomorphism, number and points
existing by Lemma 2.6, respectively. Let us put U, = Intn*({0, ¢,], c,d,),
where c,d, « F*(s,, x). The family {U,: peTl} is a cover of I'; moreover, by
Lemma 2.6 | J{U,: pel'} nF(t, x) =T. By the compactness of I' we may
choose a finite subcover, say {U;: i = 1, ...,n}. Let us note that ¢,d; = F*(s;, x)
fori=1,...,n Define s = max {s,,...,s,} and cid; = F*(s—s,, c,d,), which is
a compact arc by Lemma 1.21. The set § = | J{c,d;: i =1, ...,n} is a compact
subset of F* (s, x). Considering a homeomorphism f: [0, 1]— F*(s, x) we may
assume that:

(2.14.1)  there is a 4 > 0 with f(4) =c¢, and f[0, )nS =0O.

Recall that for each point gec.d; the set n*((0, ¢;), g) N F(t, x) has exactly
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one element. Denote the only element of ([0, €,), ¢,) N F(t, x) by c*. The
family {U;: i =1, ...,n} is the cover of I', so c*en((0, ¢,), c,d,\{c;, d,}) for
some ke {2, ...,n}. Notice that ¢* € F*(s*, x), where 0 < 5, —s* and 0 < 5, —s*
(by Lemma 2.6); also s, —s* < 3T and s, —s* < 1T if x is periodic of period T.

Denote by L the set ()™ )" !({c*}); by Lemma 1.21, L is an arc.
Moreover, L< ¢ d, as ¢ d, "L # 9, c,d, <« F*(s,, x) and ¢,, d, ¢ L.

Let us take three left maximal solutions a,, ¢, 6* through x in the system
(R>, R,, =n®) such that: o.(—s5,)=c, 04(—s)=d,, 6*(—s*)=c* and
o*(—s) = ¢y. Then o*(—s,) = ¢, and 6*(—s,) must lie on the arc F*(s,, x)
between ¢.(—s,) and g,(—s,), as 0*(—s,)e L. If so, then a*(—s) must lie on the
arc F*(s, x) between ¢ (—s) and a,(—s) — the proof of this fact is simple but
technical, so it will be omitted here (in case of periodic point x this has to be
proved by induction). But this contradicts (2.14.1) as g .(—s)€ S and o,(—s)€S.

2.15. LEMMA. The set F(t, x) has at most a countable number of components.

Proof. We may assume that F(t, x) has more than one element. Consider
F(t, x)\{a, b}, where a and b are the only points (if they exist) not fulfilling the
conclusion of Lemma 2.6. By Lemma 2.13 the number of components of the set
F(t, x)\{a, b} is the same as the number of components of F(t, x).

Consider a component S; of F(t, x)\{a, b}. For each pe S; we can find an
open neighbourhood U, of p such that U, n F(t, x) = §; (we use Lemma 2.6).
Each set U; = { {U, peS,;} is open, connected and contains S;. Moreover,
U,nF(t, x) =S8,

We have constructed the family of open and pairwise disjoint sets; each
one of them contains some S, This family is at most countable, so the set
{S; iel} is at most countable as well.

Now we state the first main theorem of this paper.

2.16. THEOREM. If F(t, x) has more than one point, then it is a 1-dimensional
manifold.

Proof. Denote by a and b the only points which do not fulfil the
conclusion of Lemma 2.6 (if they exist). For the other points the neighbour-
hood required in the definition of manifold exists by Lemma 2.6. Consider
a point a. Denote by S, the component of F(t, x) containing a and by §, the
component of F(t, x) containing b. Let f be a parametrization of S, (if b¢S,,
thenf: R, —»S,,f(0) =ga;ifbeS, then f: [0, 1]>S,f(0) = a, f(1) = b). Notice
that for each component S of F(t, x) different from S, the distance ¢(a, S) is
greater than O (in the other case aeS = S).

Map the plane homeomorphically onto itself to get [0, 1]x {0} as the
image of [0, 1] and (0, 0) as the image of a, which is possible by the Schonflies
Theorem. This homeomorphism gives the new dynamical system and preserves
the investigated topological properties. We will not change the notation of
the sets and points of the plane and by a, F(t, x) etc. we will mean the
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images of a, F(t, x) etc. The component S, is a manifold, so we can find an
e;€(0, 1) such that S,n B(a, &) < f[0, 1] and if S, # S, then also §,N
B(a, &) = 9.

In order to finish the proof we show that there exists and ¢ > 0 with
B(a, &) n F(t, x) = f[0, 1]. Suppose not. Then there is a sequence {z,} < F(t, x)
such that z, —a, z,¢[0, 1]. We may assume that each z, belongs to a different
component of F(z, x) (say: z,€8S,) as g(a, S) > 0 for every component § different
from S,. By Lemma 2.13 it follows that S, N S(a, 3¢,) # @ for each n greater
than some n, (as |f,(w)] = co if w— o0, f, is the parametrization of S,, which —
by Lemma 2.14 — is homeomorphic to R). Let y €S, S(a, g, (Fig. 7).

Fig. 7

The sequence {y,} has elements belonging to S(a, 4¢,), so we can choose
a subsequence tending to y,. We get y, € F(t, x), as {y,} < F(t, x). Thus in every
neighbourhood of y, there are points from an infinite number of components
of F(t, x). This means that y, does not fulfil the conclusion of Lemma 2.6, so
Yo = a or y, = b. But y,€5(a, %¢,), so y, # a. Moreover, S, N S(a, 4¢,) = @, so
Yo # b. This contradiction finishes the proof.

Before stating our two main theorems which characterize precisely F(t, x)
we present the following

2.17. LeMMA. If the set F(t, x) contains a component S, homeomorphic to
[0, 1], then F(t, x) = §,.

Proof. At first we show that

(2.17.1)  if for a given s > 0 the set F(s, x) is not connected and contains
a compact component C, then there exists a 4 > 0 such that for each
ue[s—4, s] the set F(u, x) 1s not connected and contains a compact
component, which is equal to n(s—u, C).

Assume that C # F(s, x). By Lemmas 2.13 and 2.14 C is an arc and every
component of F(s, x) different from C is unbounded. Denote F(s, x)\C by B.
Map the plane homeomorphically onto itself to get the segment [ —1, 1] x {0}
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as the image of C. As in the proof of Theorem 2.16 we do not change the
notation. By U, we denote the set (—1—1, 1+17)x(—1, 7) (for any 7 > 0). By
Theorem 2.16 and the compactness of C it follows that we can find an ¢ with
the property U, " F(s, x) = C. Then B = F(s, x)\U, is the closed set. We will
show that #n([0, 6], B)n U, =9 for some & > 0.

Suppose not. Then there exist a sequence {d,} tending to 0 and a sequence
{¥.} © B such that n(5,, y,)e U,5. If there is a subsequence {y,,} of {y,} with
Vm.— Vo» then the sequence {rn(d,,, yn)} tends to n(0, y,)eU,;. However,
Uy, snB=6 and yoeB B, which means that |y,| — co. Thus for sufficiently
large n we have y,¢ U,y and =n(é,, y,)€ U,5. We can find a v,€(0, ,) such that
(v, ¥,)€0U,;, and from the sequence {n(v,, y,)} we can choose a subsequence
tending to z,edU,, (Fig. 8). We get =n(5,, y,)=n(,—v,+v, y)=
n(6,— v, 7(v, V»), but 6,—v,—»0 and =n(v,, y,)—z, which means that
n(d,, y,)—z,€0U,,. This is impossible, as {n(d,, v,)} = U,.

=
Ue

r&

) C
—

/ 7(8n.n)
/

(Vo xn)

Yn

Fig. 8

By the continuity of = it follows that there is a §, such that n({0, ¢,], ¢)
c U£,3 By the compactness of U, 3, Lemma 1.7 and Theorem 1.4 we get that
there is a §, with the properties: F([0, 8,], U,3) < U, and F(¢, U,;) is
non-empty and compact for each £€[0, §,]. Notice that for A =min{d, §,, d,}
and for every pe[s—4, s] we have: (F(u, x)\n(s—p, C))n U, 3 = D. To show
this take a ye F(u, x)nU,;3; then @ # F(s—u, y)c U, but F(s—pu, y)c
F(s, x) and @ # F(s—pu, y) < C, because U, F(s, x) = &. This means that
yen(s—u, C). Thus A = min{d, 8,, J,} satisfies (2.17.1), because for every
ue[s—1, s] we have that n(s—py, C) is a compact and connected subset of
U, and

O # n(s—p, B) < Flu, O\n(s—p, C) © R\T,s.

Now we turn to the proof of the theorem. Suppose the contrary: the set
F(t, x) is not compact and contains a compact component S,. Let us define
N ={Be[0, t]: n(t—p, S,) is a compact component of F(f, x)}. By the
hypothesis we get that te N. The set n(t—f, S,) is compact, so if f& N, then
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also [y, Bf] = N for some y < f (by (2.17.1) and Lemma 1.13).
Write K = () {y€T0, ¢]: (, {] = N} and «'=infK.

By the hypothesis and Lemma 1.13 we have t > N(x), and by (2.17.1) we
get t > N(x). Notice that F(N(x), x) does not contain any compact component.
In order to show this suppose that the non-compact-set F(N(x), x) contains
a compact component. Then by (2.17.1) for some y > 0 the set F(N(x)—7, x) is
also non-compact and contains a compact component, which contradicts
Lemma 1.13. Thus t¢ N and a < t.

Now notice that a«¢ N. This is because («, t] = N and, as above, if xe N
then there is a y with (y, ] = N, so (7, t] = N which contradicts the definition
of a.

The above properties are shown in Fig. 9.

without
a compact
component 7(t-8,50) is a component of F(¢, x)
COMPACT , A
T } :ll
0 Nix) a t

Fig. 9

After this preparation we can turn to the main part of the proof. Consider
the set n(t—a, S,). This set is compact and connected, so it is contained in the
component S, of F(x«, x). Moreover, n(t—a, Sg) < S,, because a ¢ N. By Lemmas
2.13 and 2.15 it follows that S, is a closed set homeomorphic to R, R, or [0, 1],
so n(t—a, S,) is a compact arc contained in S, and different from S, or the point
contained in S;. Thus there exists an arc L = §; such that the set Ln n(t—a, ;)
has exactly one element. Let a be the only element of Lnn(t—a, S,} and
beL\n(t—a, S,) (Fig. 10). We can find a u < t —a and a closed neighbourhood
W of the arc L such that F([0, u], W) is compact (see Lemma 1.10) and
F(u, b) # 9D (u < N(a), u < N(b)). By Proposition 1.12 the set F(u, L) is
connected. Moreover, @ # F(u, a}) < F(u, L).

Fig. 10
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We have that a = n(t—a, p) for some peS,, as aen(t—a, Sy). Thus
a = n(u, n(t — o —u, p)). By the definition of « we have that #(t —x —u, p) belongs
to the compact component of F(x+u, x), but also n(t—a—u, p)e F(u, a)
c F(u, L)

The set n(t—a—u, So) v F(u, L) 1s the connected set contained in
F(x+u, x). By the properties of u there is a qe F(u, b) = F(u, L). However,
gén(t—a—u, S,), because if gen(t—a—u, S,), then b = n(u, g)en(t—a, S,),
which does not hold.

This shows that n(t—a—u, S;) is not a component of F(x+u, x), which
contradicts the definitions of « and N and finishes the proof of the lemma.

Now as the simple corollaries we get two main theorems of the paper,
describing the set F(t, x).

2.18. THEOREM. Assume that F(t, x) is a non-empty set which contains more
than one element. Then F(t, x) is a 1-dimensional manifold and exactly one of the
Jollowing two conditions holds:

(@) F(t, x) is. homeomorphic to [0, 1],

(b) F(t, x) is at most countable union of pairwise disjoint closed connected
1-dimensional manifolds. At most two components of F(t, x) are homeomorphic to
R ., the rest of them are homeomorphic to R. Denote by f the parametrization of
the arbitrarily chosen component of F(t, x). Then in the first case lim |f(w)| = o
when w— o0 and in the second case lim|f(w)| = co when w-» o0 and when
w— — .

If't < N(x), then the set F(t, x) is a point or condition (a) holds. If t = N(x),
then the set F(t, x) is empty or condition (b) holds.

Proof. The theorem is an immediate corollary of Theorem 2.16 and
Lemmas 1.13, 2.13, 2.14, 2.15 and 2.17.

2.19. THEOREM. Exactly one of the following two conditions holds:

(@) the set F(t, x) is a point for t < N(x) and the empty set for t = N(x),

(b) there exist a, f such that 0 < a < N(x) < f < o0 and F(t, x) is a point
for te[0, ], the arc for te(a, (N(x)), the set described in point (b) of Theorem
2.18 for te [N (x), f] and the empty set for t € [B, «©). Note that the sets [N(x), )
and [B, o) may be empty.

Condition (a) holds if and only if x is a point of negative unicity.

Proof. The theorem is an immediate corollary of Theorem 2.18 and the
following obvious facts:

(2.19.1) if F(s, x) 1s a singleton, then for every ae[0, s] the set F(a, x) is also
a singleton,

(2.19.2) if F(¢t, x) is not a singleton and is not empty, then there exists an
¢ > 0 such that F(t—a, x) is not a singleton for every a€[0, &),
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(2.19.3) if F(t, x) =6, then F(s, x) =@ for each s > 1t

The last property follows by Lemma 1.6, as F(s, x) = F(s—¢, F(t, x))

=F(s—t, 9)=0.
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