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0. Introduction. In [2] and [7], varieties of topological groups gen-
erated by (finite dimensional) Lie groups are investigated. The reason
to study varieties of topological groups generated by Lie groups instead
of varieties of Lie groups is partially that the category of Lie groups is
not closed under the operation of taking Cartesian products. This dif-
ficulty has been overcome by introducing the category I' of generalized
Lie groups in [3]. In this paper, some theorems of [2] and [7] are extended
to the category of generalized Lie groups. Many well-known categories
are full subcategories of the category of generalized Lie groups: the cat-
egory of compact groups, the category of locally compact groups and
the category of finite-dimensional Lie groups. We also consider the cate-
gory of Hausdorff topological groups and the variety of that category
generated by a class of generalized Lie groups.

1. Generalized Lie groups and locally convex topological Lie algebras.

1.1. Definition. A Lie algebra L is a locally convex topological Lie
algebra if there is a family of seminorms {| |;|% eI} defining a locally convex
Hausdorff vector space topology of L such that, for each iel, |[x, y]l;
< O lzl;lyl; for some C; > 0. Let 2~ denote the category of locally con-
vex topological Lie algebras with continuous Lie algebra homomorphisms.

Let £ denote the full subcategory of £~ consisting of objects L
which satisfies the following property:

(*) The set D, = {(z, y)|voyeL} contains a convex set K such that
(¢, y)e K implies zoy converges uniformly and absolutely on K,
where

(++) zoy = w+y+3lx, y1+ 5z, (=, 9] +...

is the Campbell-Hausdorff formula.
A locally convex topological Lie algebra homomorphism f: L,—L,
is said to be isometry if L, and L, have families of seminorms indexed
by a same index set I and, for iel and xzeL,, |z|} = |f(x)?. We say L,
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is a subobject of L, if there exists an isometrical Lie algebra monomorphism
j: Ly—~L,.

1.2. Definition. Let Hom(R, G) be the set of continuous group
homomorphisms from R to G with scalar multiplication defined by r-z:
R—>@ as r-z(t) = x(rt) for re R and zeHom (R, G). A Hausdorff topolo-
gical group @G is said to be a generalized Lie group if Hom(R, @) is an
object in 2 and

(1) the map exp: Hom(R, @) —G defined as exp(z) = (1) is con-
tinuous,

n

i o2 oo

(3) on the convex set K (see (*)) of Dgommaes (¥,y)eK implies
exp(zoy) = expx-expy. ‘

A Hausdorff topological group @ is a Lie group if Hom(R, @) has
a structure of a Lie algebra and a Banach space such that

(a) there is an open ball B around 0 of Hom(R, @) such that
exp |p: B—>exp(B) is a homeomorphism onto an open neighborhood of
the identity of @, |

(b) on the ball B of (a), the Campbell-Hausdorff multiplication (%)
is defined as a continuous function from B x B —>Hom(R, @) such that
exp(roy) = expx-expy for z, yeB.

We remark here that a Lie group is a generalized Lie group [3].
We denote by I' the category of generalized Lie groups with morphism
f: @—>@' which is a topological group homomorphism and Hom (R, f):
Hom (R, @) - Hom(R, @') is in Q. .‘

We say H is a generalized Lie subgroup of G if H and @ are in I" and
there exists a monomorphism j: H—~@, and Hom (R, j) is an isometrical
monomorphism in 0.

Two generalized Lie groups G and G’ are said to be isomorphic if
there exists a homeomorphism (isomorphism) f: @ —@G' such that Hom (R, f)
is an isometrical isomorphism in Q.

In the category of Hausdorff topological groups, an object @ is called
an R-quotient of object G if there exists a surjective homomorphism
¢: G —Q such that Hom(R, ¢q): Hom(R, G) —~Hom(R, @) is onto.

Remark. The R-quotient of a generalized Lie group is a generalized
Lie group [3].

For other results of generalized Lie groups, readers should check
[3] and [5].

(2) exp(x +vy) = lim (exp%- exp y) ,
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2. R-variety of a generalized Lie group.

2.1. Definition. ® is called an R-variety in I"' if ¥® is a full
subcategory of I' and ¥ is closed under taking isomorphic objects of
products, generalized Lie subgroups and R-quotients, denoted by C, S
and Q*, respectively.

2.2. THEOREM. If € is a class of objects in I'y then the R-variety in
I' generated by € s Q*SC(%).

Proof. Since an R-quotient of @ which is an R-quotient of @ is an
R-quotient of @, Q*SC(%¥) is closed under Q*. If {Q;|ieI} is a family of
R-quotients of {@;|ieI} and g¢;: G;—~@Q; is the canonical map for each
iel, then the induced map Ilg;: IIG; —I1Q; is onto. We show it is R-sur-
jective. For any topological group homomorphism f: R—I1Q;, we have
m;f: R—11Q; —@Q; for each iel, where =; is the projection map for 7e¢l.
Since G;—Q; is an R-quotient, we have the lift =,f: R — G; such that
¢;*7;f = m;f- The family of maps {m;f|ieI} induces f: R ->IIG; which
satisfies (I1q;)f = f. Furthermore, for each G;¢SC(¥), we have I1G;<SC(¥)
and 77Q;< Q*SC(¥). Last, we show that if Q< Q*SC(¥) and H is a gener-
alized Lie subgroup of Q, then H<Q*SC(¥). Now, Q< Q*SC(%) says that
Q = G/K, where GeSC(¥). Let ¢: G —-Q be the canonical map and let
M be the pullback of the diagram

G

lq
H—j——-->Q

where j is the inclusion map. Since I" has finite limits, Me|I'|, and the
map p: M—H is an onto generalized Lie group morphism. For any
g: R—>H, we have a map jg: R — @ which factors across q as jg = ¢g.
But M is a pullback, g factors as ¢ = pg’. Hence H is an R-quotient of
M, and from the fact that M < @, we infer that H e Q*SC(%).

2.3. Definition. Let £2 be the category of the locally convex
Hausdorff topological Lie algebra. A full subcategory ¥ of Q2 is called
a variety if ¥ is closed under taking products, subobjects (isometrical)
and quotients, denoted by C,S and Q, respectively.

2.4. COROLLARY. Let € be a class of objects in I'. Then, for each gen-
eralized Lie group G in ¥ (¥), Hom(R, @) i in QSC{Hom (R, X)| X ¢%}.

3. *-Variety of a generalized Li¢ group.

3.1. Definition. Let ® be the category of Hausdorff topological

groups. A full subcategory ¥™* of ® is called a *-variety in® if ¥™* is closed
under operations taking products, closed subgroups and R-quotients,

denoted by C,S and Q*, respectively.
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3.2. THEOREM. Let € be a class of objects in &. Then the *-variety
generated by €, denoted by ¥*(¥), is Q*SC(¥).

Proof. Clearly, Q*§C(%) is closed under Q*. Let {Q,|i<I} be a family
of objects in Q*§C(%), by the same argument as in 2.2. We infer that
[]1€Q: is an R-quotient of an object in SC(%). Finally, if Q is Q*SC(%) and
i

H is a closed subgroup of @, then @ = G/K, where Geg(](@). Let M be
the pullback of diagram
G

lq
H—T—>G/K

where j is the inclusion map and ¢ is the canonically quotient map. Then
M is a closed subgroup of @, whence M ¢SC(¥). Again, by the use the
same argument as in 2.2, we have H eQ*SC(%).

3.3. PROPOSITION. Let € be a class of objects in I'. Then, for each
object @ in ¥*(¢), Hom(R, @) is an object in Q.

Proof. By 3.2, we have »™*(¥) =Q*SC(%). It is clear that the
product I1G; for G;«¥ has a Lie algebra Hom (R, IIG;) being an object
in 2. Now, if H is a closed subgroup of //G;, we infer that Hom(R, H)
is a subobject of Hom (R, I1G;) in £~ (the same argument as in Propo-
sition 2 of [3]). Lastly, if G has a Lie algebra Hom (R, @), being an object
in 27, and exp: Hom(R, G) - @ satisfying (2) of 1.2, and K is a normal
closed subgroup of G, then Hom(R, K) is an ideal in Hom (R, G) (see
[3], Proposition 7). Hence, if G¢ — G/K is R-surjective, then 0 -~Hom (R, K)
—Hom(R, @) —>Hom(R,G/K)— 0 is exact. Hom(R,G/K) is an object
in Q-.

3.4. COROLLARY. Let ¥ be a class of objects in I. Then Hom(R, —)
is a well-defined assignment to Hom(R,@)e|27| for Ge|¥™*(¥)| and
Hom(R, —)|7™*(¥)| is a subclass of objects in QSC{Hom (R, X)| X «%}.

4. Nilpotent and solvable generalized Lie groups.

4.1. Definition. A generalized Lie group G is nilpotent (solvable)
if Hom(R, @) is a nilpotent (solvable) Lie algebra.

4.2. THEOREM. If ¥ is a class of milpotent (solvable) Banach Lie groups
in Iy then, for any Banach Lie group G in the R-variety ¥ ®(€)el’, G is
nilpotent (solvable).

Proof. By 2.4, we have Hom(R,@) being an object in £ and
Hom (R, G)eQSC{Hom (R, X)| Xe¢%¥}. But G is a Banach Lie group, so
Hom(R, @) is a Banach Lie algebra. By the result of [2], we have
Hom (R, @) QSD{Hom(R, X)| X ¥}, where D denotes the operation of
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taking finite product. Hence Hom (R, @) is a quotient of an object which
is a subobject of finite product of nilpotent (solvable) Lie algebras, so
Hom (R, @) is nilpotent (solvable).

4.3. THEOREM. If € s a class of nilpotent (solvable) Banach Lie groups,
then any Banach Lie group Qe ¥v* (%) is wilpotent (solvable).

The proof follows by 3.4 and the result of [2].
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