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1. Introduction. The notion of a factor cover of a group seems to be
due to Durbin [3] and Ayoub [1]. In this paper we study factor covers
in a somewhat wider context.

Let y be a relative group property. If H « @, we write H y G to denote
that H has the prescribed property relative to G.

Definition 1.1. Let y be a relative group property. A y-factor cover
of a group @ is a collection of pairs {(U,, L,) | ae I'} such that

(i) Vae I, U, <@, L, <G,
(ii) VaeI', L, < U,,
(ili) 6—{1} = U{U.—L, | ac I,
(iv) Yae I, U,/L, v @G|L,.

A collection of pairs {(U,, L,) | ae I'} that satisfies (i)-(iii) of Defi-
nition 1.1 will be called an (invariant) factor cover of G. The class of groups
having a y-factor cover will be denoted by ¢ C. We note that if y is the
property “is in the center of”’, then y C is the class of ‘‘residually central”
groups studied by Durbin [3] (called property (x+) by Ayoub [1]). Also,
if y is the property ‘‘is an abelian subgroup of’’, y C is the class denoted A+
by Durbin [4] ((*) by Ayoub [1]).

We let ¢ I denote the class of groups having an invariant y-series
(see Robinson [13], p. 9). Obviously, y I = v C, but the reverse inclusion
is, in general, unresolved. In papers [1], [3], [4], [15] and [16], it has
been shown that y N2 = ¢ INX for certain properties y and certain
finiteness conditions 2.

It is our intent here to study factor by methods similar to those
utilized by Mal’cev (see [11], p. 89) in studying series. Mal’cev showed
that the existence of types of series in a group is equivalent to the ex-
istence of a binary relation satisfying certain algebraic properties. (These
results can be found in Robinson [14], p. 94-99.) In Section 3 we show
that, for certain classes y, the existence of a y-factor cover can be charac-
terized in terms of a pair of binary relations. This characterization appears
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to make the logical structure of v ¢ somewhat more illuminating than
the usual group-theoretic characterizations. This approach also seems
to unify the known results that deal with the question y CNX = p INZ,
2 being a finiteness condition. This is illustrated in Theorem 4.1 and its
corollaries.

The results in Sections 5 and 6 give new characterizations of series.
These characterizations both involve the notion of a factor cover.

2. Preliminary lemmas and notation. Let ¥ be the class of pairs
(H, @), where G is a group and H < @G. A relative group property v is
a subclass of #. Sometimes H y G will be used instead of (H, G)e y.

A class of groups is a collection X of groups such that {1}e 2 and
isomorphic copies of groups in X are again in 2. If X is a class of groups
and y is a relative property given by H vy G <> H ¢ X, then y will be called
an absolute property.

Let € = {(U,, L,) | ae I'} be a factor cover of a group G. For each
x # 1, select & pair (U,, L,)e ¢ such that xe U,— L,. We obtain then
the factor cover %, = {(U,, L,) | #e G — {1}}; clearly, ¥, « ¥. It is mnot
difficult to show that, by making further deletions, we may assume that

(2.1) Vze@—-{1}, U,,=U;and L_, =L, and

(2.2) Voe @ —{1} and Vge@G, Uy = U, and Ly = L,.

In the sequel, factor covers will be denoted by {(U,, L,) | x« @ —{1}}
and it is always assumed that conditions (2.1) and (2.2) bold. The U,’s
are called the upper sections of the cover and the L,s the lower sections.

Amongst the properties that a factor cover may have, one that
plays an essential role in the sequel is what we have termed a monotone

property.
Definition 2.1. A factor cover & = {(U,, L,) | v« G — {1}} is mono-
tone if

(i) Vee@—{1}, ye L, implies U, < L,, and

(ii) Vee @ —{1}, ye U, implies U, c U,.

We now associate a pair of binary relations with a monotone factor
cover.

Definition 2.2. Let % = {(U,,L,) | zeG—{1}} be a monotone
factor cover of G. Define binary relations ¢ and r on G by

(i) 1z Vae@; if y #1, yro < U, c L,;

(ii) lox Ve @; if y # 1, yor < U, < U,.

LEMMA 2.1. If & is a monotone factor cover and o and v are defined
as above, then

(i) Vo, ye G, 2ty = xoy;

(ii) Vo, y,g¢ @, a1y = 297y and xoy = 2%0y;
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(iii) Vz, 9, g¢ G, vy and gry = 2~ 'gry, and xoy and goy = x 'goy;

(iv) Vze G— {1}, ¢ nonrz and xow.

The proof of Lemma 2.1 is easy and we omit it. From a given factor
cover it is always possible to construet a monotone cover. This is illus-
trated by

LEMMA 2.2. Let & ={(U,, L,) | <G —{1}} be a factor cover of G.
For each xeG— {1}, write

U,=MU,lze U}nN{L, |veL,} and L,=U,NL,.

Then % = |(U,, L,) | ve @ —{1}} is a monotone factor cover of G.

In Lemma 2.2, we note that U,/L, is isomorphic to a subgroup of
U,/L,. Using this fact it is easy to prove

LeEMMA 2.3. If y is an absolute property closed under normal subgroups
and G has a y-factor cover, then G has a monotone y-factor cover.

In order to apply Lemma 2.2 to relative properties, we need

LeEMMA 2.4. Let y be a relative property satisfying the following property :
if H, L and K are normal subgroups of G with H «c K and L < K, then

E/HvyG/H = L/LnH v G/LnH.

If G has a y-factor cover, then G has a monotone y-factor cover.
Since monotone factor covers are of central interest, we adopt

Definition 2.3. If y is a relative property, myC is the class of groups
G that have a monotone y-factor cover.

3. Some model-theoretic aspects of factor covers. Our standard
references for logic and model theory are [2] and [8].

We choose a first-order language L, (with equality) for groups. The
logical symbols of L, are =, 7], v, V, and variables x,, x,, ... The non-
-logical symbols are: a binary operation o (written as juxtaposition),
a unary operation ~!, and a constant 1. The non-constant terms of L,
are just words in the variables (here we ignore the occurrences of 1).

The following series of definitions is intended to describe the relative
group properties to be studied in this section.

An admissible formula of L is a formula built from atomic formulas
of the form W(z,, ..., z,) = 1, where W is a word in the z;’s, using 7], v
and V. In the first-order theory of groups each formula of Ly is equi-
valent to an admissible formula. Since we treat only admissible formulas,
we drop the word ‘‘admissible”. Further, to make our formulas more
readable, we introduce the connectives A, — and the quantifier 3 as
abbreviations for certain expressions using v, 7] and V (see [8], p. 18).

Let G be an L -structure, ¢ a formula, and a and b sequences of ele-
ments of G. We alter the usual notation and write G k ¢[a, b] to indicate
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satisfaction, where a and b are substituted for the odd-indexed and even-
-indexed free variables in ¢, respectively.

We define L, to be the two-sorted language (see [8], p. 12) which
is obtained from L, as follows. Split the variables of L, into two sets
{®,, z3,...} and {®,, x4, ...}. An L, -structure has the form

(Mv N7 0M7_1M’ 1M)’

where N < M, and the x,; ,’s vary over M while the x,’s vary over N :
For ¢e L,, we write

P( By oeey By Ty eees Tp)y
where the odd-indexed free variables of ¢ are the first sequence.

Definition 3.1. A relative group property y is elementary if there
is a set A of sentences of L, such that Hy@ if and only if (G, H) E ¢ for
each geA.

In this section we study groups that have monotone y-factor covers
for elementary .

We expand the language L, to Lf by adding binary relation symbols
8 and T and a new constant ¢. Further we define a transformation *
from the formulas of L, into the formulas of L} as follows (by induction
on logical complexity):

(i) if @ is an atomic formula W (x;; #;) = 1, then ¢* is W (x;; ;) Te;

(ii) if ¢* and y* have been defined, then

1(99)* i8 j‘l’*’

(pvy)® is 9" vy,

(szi+1¢)* is sziH?’*’

(Vawyp)* is Vay, (24,8¢ —¢*) (this is just the relativization of the
quantifier to the S predecessors of ¢).

Let {(U,, L,) | g @ —{1}} be a monotone factor cover of G. Define
relations 7, o on ‘G as before (see Definition 2.2). In addition, we write
U, ={1} and L, = {1}.

LevMMA 3.1. Let ¢ be a formula of L,,ge Q. Let a and b be sequences
from G and U,, respectively (@ and b are the corresponding sequences of
cosets from @G|L, and U,[Ly). Then

(G/Lg’ Ug/La) Fola, 5] "‘ff (G,0,7,9)F ‘P*[ay b]

(here ¢ is interpreted by g).
The Lemma is proved by induction on the logical complexity of ¢.
COROLLARY 3.1. Let ¢ be a sentence of L,. Then, for ge@,

(G/an Ug/Lg) Fo iff (G,0,7,9)F ‘P*-
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In Lp:+ consider the following set of sentences:
I (group axioms):
(i) Va, Va, Vo, ((971(‘”2373)) ((%wa)wa)_l = 1);
(i) Vo, ((#,1) (Qzy) ™! =1);
(iii) Vz, ((z, 1)o7 = 1);
(iv) Vo, (z 27! = 1);
(v) Va, (27 'z, = 1).
II (T, 8 axioms):
(i) Va, [2,8,];
(ii) Va, [1T=,];
(iii) Vo, [2,Tz, >, = 1];
(iv) Vo, Vo, [2,Tzy, —2,87,];
(v) Vo, Vo,V [2,8%3 A2y 82, — 27 @, 8,];
(vi) Va,Vz,Va, [0, TesAx,To, > a7 2y Tag];
(vil) Vo, Vz, Vo, [2,87, — 272 8m,];
(viii) Vo, Vo,V [2,Txy — 222 Tx,];
(ix) Vo, Vo, Vo, [2,Tr, A2y Sz, — 23 Ty];
(x) Vo,V Vo, [2,823A2,87, - x,87,].

Let ¢ be a sentence of L,, and z a variable not occurring in ¢*. Then
?* <;> denotes the formula obtained from ¢*by replacing each oceurrence

of ¢ by =. Let p be an elementary property determined by 4, and assume
that X, and X, are the following sets of Lj-sentences:

%, = T}V U {Vag* % | ped),
z, = {I}U{H}U{Vw [z #1 ¢ > 1 pe 4}

THEOREM 3.1. G has a monotone y-factor cover if and only if there ewist
binary relations o and v on G such that (@, o, 7) F X, (here we assume that
8 a property such that {1} y K for all groups K; otherwise we use X).

Proof. Let {( U,,L,) | ge G—{l}} be a monotone yp-factor cover,
and let ¢ and r be given as in Definition 2.2. We interpret S and T by ¢
and 7, respectively. It is easy to show that the sentences of axioms I
and II hold in (@, o, 7) (see Lemma 2.1). Since we have a y-factor cover,
for each g @ and each geA we obtain (¢/L,, U,/L,) F ¢. Thus, by Corol-
lary 3.1,

(@, 0,7) F Vap* (> for each ped,
and so (G, a,7)F Z,.
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Conversely, suppose (@, g, 7)F 2,. By the sentences of axioms I,
G is a group. For ge G — {1}, write

U, =1{he@G@ | hog} and L, = {he@G]|hrg}.

The sentences of axioms II make {( U,y L,) IyeG—-{l}} a monotone
factor cover of G: for example, (i), (ii), (v) and (vi) imply that U, and L,
are subgroups; U, and L, are normal by (vii) and (viii); L, = U, by (iv);
and ge U,— L, for ge @ — {1} by (i) and (iii); monotonicity follows from
(ix) and (x).

If o and 7 are defined for this cover as in Definition 2.2, it is easy to
show that ¢ = o and 7 = 7. Again using Corollary 3.1, (G/L,,U,/L,) F ¢
for each ge G and for each peA. Thus we have a y-factor cover.

The case where X, is used is treated similarly.

COROLLARY 3.2. If y i8 an elementary property, then m y C is a pseudo-
-elementary class. In particular, m y C 18 closed under ultraproducts (see [2],
p. 154).

Further information on my C can be obtained from the logical
nature of A (a set of elementary sentences) as it is reflected in X, (Z).
In this direction we note that the sentences in axioms I and II are uni-
versal Horn sentences (see [6] for the definition of Horn sentence). If
the sentences of A are also universal Horn sentences, then so are those
of Z, (and sometimes X,). In this case, m y C is a pseudo-universal Horn
class and is closed under reduced products and subgroups [5]. If the
sentences of A4 are just universal not necessarily Horn, then m y C is
a pseudo-universal class (using either X, or Z,) and, by a theorem of
Tarski and Lo§ (see [9], p. 18), m p C is a universally axiomatizable class
of groups; i.e., there is a set y of universal sentences of L, such that
GemyC <GEFy.

Examples. 3.1. Let V be a variety or quasivariety of groups, and let
be such that H y G <> HeV. Then m y C is a pseudo-universal Horn class.

3.2. Let V be a variety, V # {1}. Let y be such that H y G < H < V-
-marginal subgroup of G. Then m y C is a pseudo-universal Horn class.
The necessary facts concerning marginal subgroups may be found in
[13], p. 8.

3.3. Let y be such that H y G <~ H < center of G. Then m y C, the
class of groups with monotone factor covers with residually central factors,
is a pseudo-universal Horn class. This is also a special case of 3.2.

3.4. Let p be such that H y @ < |H| < n. Then m p C is a pseudo-
-universal class.

If the sentences of A are universal (V) or universal existential (V 3),
then so are those of X, (Z,), and we infer that m y C is a local class [10].
This is the case for all the above-given examples and, in addition,
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3.5. Let p be such that H » G < H has one conjugacy class. Then
myp C is a local class.

3.6. Let v be such that H y G < [G: H] < n. Then m p C is a local
class.

3.7. Let v be such that H y G < |[H| = oo. Then m y C is a local
class.

Definition 3.2. A word W (w;; ;) of L, is acceptable if, for all groups
H and G with H <G and for all a;¢ G and b;e H, we have W(a;; b;)e H.

LemMA 3.2. If W(w;; «;) is acceptable, and H, L and K are normal
subgroups of G with

Hc K, LcK wd (G/H K/H)EVe,Vr; [W(z; ;) =1],

then
(G/LnH, L|LNH) F Vz;Vz; [W(2;; ;) = 1].

Proof. Assume the conclusion is false. Then, for some g;¢e G and
hje L = K, we have W(g;; h;)¢ LnH. But W(g;; hy)e L, since W is accept-
able. Thus W(g,; h,) ¢ H, that is, in (G/H, K |/H), W(g;, b;) # 1, a contra-
diction with the hypothesis that

(G/H, K[H) £ Vao,Nz, [W(z; ;) = 1].

CorOLLARY 3.3. If the A which determines vy consists of wuniversal
quantifications of acceptable words, then m vy C = y C.

For the proof use Lemmas 3.2 and 2.4.

This corollary applies to Examples 3.1 (where V is a variety), 3.2
and 3.3. Hence previous remarks hold for y C in these cases. Example 3.5,
where U, /L, has one conjugacy class, is not covered by the corollary, yet
in this case my C =y C.

4. Imposition of finiteness conditions. In this section we study the
influence of certain finiteness conditions on groups which have a monotone
y-factor cover. '

Definition 4.1. Let = be as in Definition 2.2. We say that v satisfies
the minimum condition (min-v) if, for each subset H # @ of @, drvc H
such that Vye H, y nonr .

Definition 4.2. Let y be a relative property. G is a hyper-y-group
if G has an ascending invariant series 1 = G, < ... €« G; = G such that
G,../G, v GG, for all p < A.

THEOREM 4.1. Let v be a relative property satisfying

(a) if M, N and Y are normal subgroups of G such that N =« M and
NcY,then M/NypG/N =>MY|YypG|Y.

Suppose G has a monotone y-factor cover. If the binary relation v satisfies
the minimum condition, then G is a hyper-y-group.
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Proof. It suffices to show that, for each normal subgroup H of G,
H # @, there is a normal subgroup K of G such that H<K and
K/H vG/H (see [13], p. 14). Let H<«@G, H # G, and let x be r-minimal
with respect to ¢ H. Then L, « H and, by the conditions on y, we have
U,H/H yvG/H.

COROLLARY 4.1. If y is an absolute property closed under normal sub-
groups amd quotients, G ey C, and the monotone y-factor cover of G (see
Lemma 2.3) has min-z, then G i8 a hyper-y-group.

Proof. Let Gey C. Since y is closed under normal subgroups, G
has a monotone y-cover by Lemma 2.3. The quotient closure of y implies
condition (a) of Theorem 4.1.

We note that min-v is a considerably weaker condition than min-N,
the minimum condition for normal subgroups. It is routine to show that
min-N implies min-z. The fact that min-r does not imply min-¥ is illus-
trated in the following easy example:

Let {4, | » < o} be a collection of non-trivial groups. Let

o k
G =4, G ={1}, G=D4,fork>1, and G,=G.
n=1 n=1

The set of normal subgroups {Gy};-, forms an ascending series, and
hence a monotone factor cover. The induced binary relation r satisfies
the minimum condition. Evidently, G does not have min-N.

With this in mind, we note that Corollary 4.1 has, as consequences,
several results in the literature; notably Durbin [4], Theorem 1, and
Ayoub [1], p. 220.

We now consider some applications of Theorem 4.1 to non-absolute
properties. It has been noted in Section 3 following Corollary 3.3 (see
the remarks) that if y is the property ‘is in the V-marginal subgroup
of”’, then it satisfies the conditions of Lemma 2.4. It is not difficult to
show that y also satisfies condition (a) of Theorem 4.1. Thus, we have

COROLLARY 4.2. Let V be a variety, V # {1}, and let y be the property
“48 wm the V-marginal subgroup of”’. If Ge y C and a monotone y-cover G
has min-v, then G is a hyper-y-group.

For the variety V = {[, y]} Corollary 4.2 reduces to the class of
residually central groups. Thus Corollary 4.2 gives the results of Dur-
bin [3], Theorem 1, and Ayoub [1], p. 226.

Another class of non-absolute properties has been studied by Stan-
ley [17]. Let 2 be a class of groups closed under subgroups, finite
direct products, and quotientss Following Stanley [17], let G be a group
and let

2(@) = {we@ | @/Cx(a%)e XZ}.

It is easy to show that 2 (@) is a nmormal subgroup of G.
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COROLLARY 4.3. Let X2 be a class of groups closed under subgroups,
finite direct products, and quotients. Let vy be the property H y @ < H < X(@).
If GeyC, then

(i) G has a monolone y-cover &, and

(ii) ¢f & has min-7, G i3 a hyper-y-group.

Proof. To prove (i) we show that the conditions of Lemma 2.4 hold.
Let H, L and K be normal subgroups of G with H ¢ K and L < K. Sup-
pose K/H c X(G/H). Let xe L, and let

.R/L NH = CG/L{\H (.’I) (L nH))GILnH and S/.H = CG/H (:DH)G’H.

Let se 8 and ge G. Then [2?, s]e HNL which forces se R. Thus S < R.
Now G /R is a quotient of G/S and, by the hypotheses, G/Se 2. Thus

G/ReX and (G/LnH)/(R/LNH)cZ.

Thus L/LNH < X(@/LNH); i.e., LJLNH v G/LNH.

The proof of (ii) consists of establishing condition (a) of Theorem 4.1.
The argument is similar to that given in the preceding section and will
be omitted.

Corollary 4.3 encompasses some results of Stanley [16], p. 3.

Although the following argument has been used repeatedly above,
we feel it important enough to isolate as

CQROLLARY 4.4. Let G be a wC-group with min-N and let y satisfy the
following conditions:

() If H, K and L are normal subgroups of G with H =« K and L c K,
then

K/HyG/H = L/LnH yG|LNnH.

(x%) If M, N and Y are normal subgroups of G with N ¢ M and N c Y,

then
M/NyG/N > MY |Yyp@G|Y.

Then G is a hyper-y-group.

In paper [15], Slotterbeck studies factor covers ¥ with only finitely
many elements. Suppose that G has such a factor cover . Then the
induced monotone cover ¥ (Lemma 2.2) has only finitely many elements
and, accordingly, has min-z. Further, if Theorem 4.1 is applied to 2,
the resulting series will have finite length. We have essentially proved

COROLLARY 4.5. If G has a y-cover & consisting of only finitely many
elements, and v satisfies the conditions of Lemma 2.4 and Theorem 4.1 (or
Corollary 4.4), then G has a y-series of fimiie length.

Theorem 2 of [15] is related to Corollary 4.5.
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5. In this section we are concerned solely with relative properties y
of the following type: V is a variety, V # {1}, and v is the property
“ig in the V-marginal subgroup of”. '

The methods here make an essential use of a local technique of Mal’cev
[11]. Exposition of the method may be found in Robinson [14], p. 94-99,
or Hickin and Plotkin [7]. We use the terminology of Robinson’s book
[14]. As a cautionary note, we shall apply the Mal’cev method to the
finite subsets of a group, whereas the applications in [12] apply the
method to subgroups. The use of subsets will require some additional
argument, but the method remains valid.

Our first lemma shows that any group with a yp-factor cover has
a chain of normal subsets with y-factors.

LeMmA 5.1. If G has a y-factor cover, then there is a complete chain
of normal subsets {G, |1 < a < g} such that, for each A < o and each defining
word W(zy,...,xz,) of V,

TeGrpy = W(yoo. 00y, . 0,) W(Zyy ooy 2,) e Gy
for 1 <j< n and each n-tuple (24, ..., x,)e G".

Proof. We take a monotone y-cover of G and define the binary
relation v as in Definition 2.2. Let F be a finite subset of G with 1e¢ F.
We define a series of subsets 1 = Fyc F, = ... ¢ F;, = F of F as follows:

F, =1 and

F,=F; ,V{xeF |yrx and yeF =>yeF,; ,} for ¢ >1 (ie., F; =
F,_,u the set of all r-minimal elements of ¥ —F;_,).

The finiteness of F' insures the existence of a k such that F, = F.
The F; have the following properties for 0 <17 < k:

(a) if @, 9,2 F and xe F;, then 2%¢ Fy;

(b) if W(2,, ..., z,)is a defining word of a variety V, and the words
By @y eeey By Wiy oory@yyoony @)y W(Tyyoony @)y W(Zyy...,2,)7)
W (@yyeeey @Ljy ooy L) W(Zyy ooy @)™ (1<j<m) belong to F, and
ze F; (+ > 1), then

W (Zyy ooy @yy oeny @p) W(Byyoooy @) te Fy_y.

Prove (a) by induction on . If x¢ F;_,, the conclusion follows from
the induction hypothesis. Suppose re F';— F;_,. If ye¢ F and yra?, it follows
that yrr (see (2.2)). Hence ye F;_, and we have 2%¢ F.

The proof of (b) is similar; induct on ¢. If ze F;_,, the conclusion
follows from the induction hypothesis. If z¢ F;, we have

-1
2= W(Tyy .oy @Dyy .oy @) W(Ry, ..., 3,)" T,

Since ze¢ F, z¢ F;_,.
Let € be the local system of all finite subsets ¥ of G that contain 1.
With each Fe% we associate a series of subsets satisfying (a) and (b).
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The Mal’cev limit of these series induces a series of the same type in G
(see [14], p. 97-99, for the details).

Lemma 5.1 gives seemingly little information about the existence of
series of subgroups. The most that we can deduce is that if G has only
a finite number of conjugacy classes, and satisfies the conditions of Lem-
ma 5.1, then G has a y-series. This fact however, is subsumed in the
results in Section 4 on min-N.

We now discuss properties of the factor cover which insure that
the series constructed in the proof of Lemma 5.1 will be a series of sub-
groups. This is essentially requiring that the F';’s of the preceding proof
enjoy some sort of subgroup properties; specifically we need

(c) If ,y,zye F and x,ye F;, then xye F,.

This property is & condition on 7, which we formally state as

THEOREM 5.1. If G has a monotone y-factor cover and the induced
binary relation v satisfies

(%) Vz,y,2¢@, 2tay = 210 or 2vy,

then G has a vy-series.
This theorem gives another characterization of a y-series, i.e.,

COROLLARY 5.1. G has a y-series if and only if G has a monotone y-factor
cover satisfying (x).

6. Factor covers with directed upper or lower sectioms. Let V be
a variety of groups, V # {1}. In this section we admit properties y of
the following type:

(i) v stands for ¢is in the V-marginal subgroup of”,

(ii) » stands for “is a normal V-subgroup of”.

Our main result here is

THEOREM 6.1. If G has a y-cover & = {(U,, L,) | 2 G—{1}} and
either the U,’s or L,’s are directed, then G has a y-series.

COROLLARY 6.1. G has a y-series if and only if G has a y-factor cover
& =|{(U,, L,) | xe G—{1}} such that either

(a) the U,'s are directed, or

(b) the L,s are directed.

We need some special terminology for the proof of Theorem 6.1.

Definition 6.1. Let V be a variety of groups and K<@. Let V(@)
=({Y | Y<G, Y c K and K/Y is contained in the ¥V-marginal subgroup
of G/Y}.

It is easy to show that K [V g(G) is the V-marginal subgroup of G/V ¢ (&).
Further, if K <« A <B, then Vg(A) € Vg(B).
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Definition 6.2. If V is a variety of groups, V(G) denotes the cor-
responding verbal subgroup of Q.

The following lemma is due to Hickin and Phillips [6]:

LEMMA 6.1. Let V be a variety of groups.

(@) If y is of type (i), then G has a y-series if and only if, for every finitely
generated subgroup {1} # K of @, Vge # K°.

b) If y is of type (ii), then G has a y-series if and only if, for every
finitely generated subgroup {1} # K of G, V(K% # K.

Proof of Theorem 6.1. Suppose that y is of type (i), and. that the
L.s are directed. Let K = {x,,...,,> be a finitely generated subgroup
of G. We may suppose without loss of generality that L, c...c L,
Then, for each ¢ (1 <¢<n) and each ge@, z/L, is in the V- margmal
subgroup of G/L, . An easy argument shows that K¢ /K®NL, is in the
V-marginal subgroup of G/K°nL, , so that Vge(@) # K°. The appli-
cation of Lemma 6.1 (a) shows that G has a y-series.

Now suppose the U,’s are directed. Let L, = Vy_(@). Then L; # U,
and U,/L; is in the V-marginal subgroup of @ /L‘ Further, the directed-
ness of the U,’s implies the directedness of the L)’s. By the first part
of this proof, G has a y-series.

Suppose yp is of type (ii), and the L,’s are directed. Let K = <{z,, ..., z,>
be a finitely generated subgroup of &, and suppose L, < ... c L,,. Now

K°c R = U, U,,...U,,

and, for each ¢ (1 <1t < n),
V(Ug,) = Ly <= L.

Thus R/L, is generated by normal V-subgroups. It follows that
R/L,, has an a.scendmg V-series. Consequently, K¢/ K°nL, ~ KGLZ”/L 2
has a V-series (a subgroup of a group with an ascending V-serles again
has a V-series). Since K®/K®NL, is generated by the normal closure
of a finite set,

V(K®|K°nL,) # K°/K°nL,_

Thus V(K% s K¢ and the application of Lemma 6.1 shows that G
has a V (= ) series.

For the U,’s directed, let L; = V(U,); then {(U,, L}) | ze G — {1}}
is a yp-factor cover with directed lower sections. By the first part of this
case, G has a y-series.
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