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On the radius of convexity of some family
of functions regular in the ring 0<|zi< 1

by PAwsz WIATROWSKI (L6dZ)

Introduction. Let # denote the family of all functions of the ferm

p(2) =1+4b2+...,
regular in the circle K = {2: |2| <1} and such that
rep(2) >0 for every ze¢K,
and let #(M) denote its subelass of functions P(2) for which
|P(z)—M| < M, zeI,

where M > 1 is an arbitrary fixed number.

Denote by X the family of all functions F(z) regular and univalent
in the ring 4 = {#: 0 < |2| < 1} which have a single pole at the point
2 = 0 and which may be expanded in some neighbourhood of thig point
in a power series of the form

1
w = F(z) = + ap+a;24-...

Let Z* be the subelass of starlike functions of the family Z, i.e. the
subclass of functions mapping the ring 4 onto regions whose comple-
ments to the plane are starlike regions in relation to the point w == 0.
If F(2)eZ”, then

2T (2) _
o >0 K
thus
2l (2)
~ I =p(2), zek

for some function p(2)eZ.
Pinally let X*(M) denote the subeclass functions of the family X"
for which

‘_ 2T (2)

—Mi<M K.
7(2) |< y Re
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In this paper we determine the radius of convexity of the family
Z* (M) (part I). Hence we obtain in the limit case M = oo the resuli
of [2].

Moreover, the estimates obtained are estimates of the modulus
of the derivative |IF (z)| in the class of functions acute from above and
below (part II).

1.1. By the radius of convexity of an arbitrary subclags U of the
class 2* we mean the upper bound of the radii of circles 2| < 7,0 < r <1,
in which the functions of the family U are convex.

Since a function of the family U is convex if and only if

21" (2)
res — 1-{——171? >0 for every zelX,,
K, ={z: |2| <7}, 0 <r<1, the problem of finding the radius of con-
vexity of a compact family U can be reduced to finding the greatest
value of r, 0 <7< 1 for which

. eI ()

s — 1 —_— >

ol = [+ g I
for every |2| < v and F(z)eU.

Thus the radius of convexity r, of the family Z*(M) is equal to the
smallest root 7y, 0 <7, <1, of the equation Q(r) = 0, where:

(1) Q(r) = min re{ — [l—l— M]}

|2l =r I (2)
F(z) e SH(M)
It follows from the definitions of the families Z*(M) and £ (M)
that I'(2)eX* (M) if and only if
2T (2)
(2) TR =P(2), P(»)eZ(M).

Differentiating (2) we obtain
I1II !
[ ] gy

I (2) P(z)
Thus
Q(r)y = wmin re [P(z)——z—l (z-)~]
2= P (z)
P(2)e P(M)
It is known [1] that p(2) e if and only if

a

3 —_—— = eZ(.
(3) YR P(z), Pr)eZ (M),
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where
___2__ _1—m _1 1
im CTm "TiTh
So
atap'(2)
4 2(r) = min re ——° 2.
(4) 0= w2

2. According to Theorem 1 of [2] wo have

a+2p’ (2) . a+t2p" (2)
5 min re —-—-—-—~ =minre ————
(6) e D@D ee . D@D
n(e)e
where
- 1+ 4 1462 1—1 146z
(6) P*(2) = T i

2 1—e2 9 l—z2'
e=6% z=rd", —1<AI<1, 0<P<2r, 0< < 2n.

We transform for 2 = 76" the fraction appearing on the right-hand
side of equality (B).
First we have

. 1+l
p*(re”?) = (o+ em)-l— (c+ o1a)
with
14-#2 2%
(1 c=e=1Tm o= =T
) o 1—1Ee™*® - iy L7867
N = (1, &, @) = e€* 1—_ree® Na = Na(7y ¥, @) = e6 1--.'7'26"';
(comp. [3]). Thus
(8) p*(ré?) = o+ o (2114 Aa7a),
where
142 1—4
(9) M = ! Ay = —
Let
x = x(r) = |An+ Aanal.
Thugs
(10) 0(4, 1+ Axme) = =y, ly] =1.

(1.0) imples the equality
oAyt Aama|? = %%,
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Assuming 7, = €, j = 1,2, we find hence the relationship
oM+ A5+ 24, Ay 7s) = #°

and because of
A% =/11(1—'lz)y 'lg "—'lz(l'—ll)
we have

(11) 0? (1— 42, A, 8in? ﬁ‘-;—@i) = u?;

thus 0 < % < .
Coming back to (8) we may thus write p*(re*®) in the form

(12) p*(r€'") = ¢+xy, where |y| =1, 0<x<o.
Now we express (ré)p*’ (re”?) in terms of p*(ré’*) and 7y, 7,.
Agsume

(13) PR =7 R) =T

‘Differentiating function (6) in relation to 2, we obtain because of
(9) and (13)

(14)  2p"(2) = Auapl () Aazpy' (2) = $A,[01° (2) — 114+ $4:[23° (2)— 1].
After some transformations we get

ep™ (2) = ${p"(2)+ A Aa[P] (2)— p; () 12— 1};
thus

(re™)p” (r6") = 48" (re®)— 1]+ } Ay Ao} (16)— 3 (rei®) .

The second term of the last sum may be written in an equivalent

form — 24,2, 0% sin? El—z-i, where, 7 = #,:7,, or by (11) in the form:
$(#*— ¢*)n. Thus
(15) (re®)p™ (re®) = }[p" (1r6”)— 11— $(o?— %),

By (6) and (15) equality (4) assumes the fornt

(16) .Q‘(T) = %lnini'e U(p# (’rei"’)),
A0,

where

(17) U(p* (re®)) = 20— 149" (re") — (¢?— x%) .

p*(re®)+b
3. Let

(18) P (ré®)+b =se*, imi =0,
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Then
—it
Q(r) = ilﬁnre{-s—[za_l_}_(wu_ b)”"(ez—%’)n]}-
Since rene~* < 1,
: 6—# . Qa._ ”2
(19) 2(r) = irm‘m (re{—s—-—[Za—1+ (Ma__b)s]} — )
8, P

From. (12) we have #® = |p*(ré'")— o[ and because of (18)
(20) # = |agh—b— o

Substituting »* from (20) into (19), we obtain after some transfor-
mations
Q(r) 2 mind(s, 1),
8,t
where

(21)  P(s1t) = i{[8—2(b+o)+ %’-]e-ost+s—2b+ fﬂ‘ib"*‘l}.

By (7), (12) and (18) the function ®(s, t) is defined in the region
D ={(s1): c—o+b<s<cto+b, —F@B)<ti<¥(s)}
and on its boundary 6D, where

(22) ¥ (s) = arccos f~a+b2+2b.c+1 y

2(b+4o0)s

e
A

P(8) < ¥(s0),

4. If, at some point (s*, t*) of the region D, ®(s*,1*) = min P (s, t),
(a,t)eD

D(s,t

0D (s, t) -0

ds !

then s*,1* are the solutions of the system of equations

3B (s, 1)

7 0 with the unknowns s and ¢, i. e. of the system

2
(1_%:_) 0o8i41— b‘r!,-l-z_b_‘i_'l‘_1 =0, [3—2(b+-c)—|- aT] gint = 0.

82

Becauge of (22) this system has the following solutions:
8, = l/ab—l-ba-{-_l-, t, =0
and
b+ 2b0+1—8;

8 —a?

1 x=:|:1

8y = b+c+yV(b+c)*—a?, ocosly, =

(*) In the sequel |Va|, for @ > 0 will be denoted by Va.
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(s # a, for if the contrary was the case, we would have r = 0). It is easy
to verify that s,¢J, where J = {s: ¢c—po+b < s <o+ o+ b}. Since

02D (s;, 1) 02D (8y,1) ( 0t D(sy, 1) )2 0
. — 17 ,

2
M >0 and “edt

ds? ads? ot®

we have 8* = s,, t* = #;. Thus

min @ (s, t) = D(s*, 1*) = 2Vab+ bo+1--2b—e.
(s,t)e J ’
If (s,1)edD, then because of @D(s,t) = P(s, —1t) we have
Ps, ¥(s)] = P[s, —¥(s)] = 4(s),
where

. b'-'+2bc+1]

() = 4 8%

1
(b—l—c)_ [s*—|—2(a-—bo—b’)+a
With se{o— o-+b} U J U {o-- o+ b},

If at some point s** of the interval J we have A(s**) = minA(s),
aeJ

then s** is a solution of the equation 4'(s) = 0. Since
s*—a?(bt+2bc+1)

4°(s) = 2(b+c)s’ ’
we have
e 4
$7 =Va2(b*+2be+1).
Thus B -
2 — — 2
min 4(s) = 4(s™) = al/_b t2bot1+a—bo—b®

Py ' “2(b+c)
Since 4(s*) < 4(e—g+b) and 4(s™) < d(o+o+Db),
A4(s*) = min 4(s).
8e¢dD
With a fixed M we assume

H(c) = ®(s%, 1), T(c) = A(s™),

where because of 0 < » <1 we have ¢ > 1,
We apply the Taylor formula to the function T'(¢)— I (¢) for an arbi-
trary ¢> 1:

T(e)—H(e) = T(1)—H(1)+(c—1) [T, (1)— H', (1)]+
(0—1)*

+ [T7(14 6 (¢—1))—H"(1+ 8 (c—1)], 0<é<1,
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Since T'(1) = H(1) = 1 and T, (1) = H, (1), because of

, g et Vb2 2b
J‘,' (G) = — c+ + + 0+1 H'(G) = -——-_—b__-—- —'1,
2(b+c)Vbi+2bo+1 Vab+be+1
we have
(0_1)2 r 1’
T(0)—H(c) = [T (146 (c—1)—H" (L+ 8- (c—1))].

Differentiating the functions H(¢) and T'(c) twice in relation to ¢,
we obtain

H'(0) = ——-—A( 6)-3",
—3/2
() = “BL) s L2+ bo— b B(o) 4 b(0--0) (bo+ 1)+ 3B (o)),

2(b+

‘where
A(e) = ab+be+1, B(c) =b*42bc+1.
Because of 2+bc—b2 >0 we find T(c) > H(c) for every ¢ > 1. Thus
(23) min  B(s, 1) = B(s", t*) = 2Vab+ be+1—2b—c.
(a,t)e DU B

5. It follows from (1), (19), (21) and (23) that the radius of con-
vexity 7, of the family X* (M) is at least equal to the smallest root 7,
07 <1 of the equation

(24) Vab+ be(r)+1—2b—e(r) = 0,
‘where

1422
(26) c(r) = 1,

Because of (25) we find from (24)

2Va—1
26) ¥ =‘l/,
( ’ 2Va+1
with
(27) ¢ = o(r;) = 2Va.

Thus we have proved that the radius of convexity is

Te 2 Toy

where 7, is given by (26).
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6. We shall prove that
r. < 7.

To this aim we observe first that if a function p; () of form (6) satis-
fies condition (18) at some point 2z, = 7,6 with s = ¢* and ¢ = t*, then

(28) 1 (2,) = Va.

Denote by 4, and ¥, the values of the parameters A and ¢ correspond-
ing to the function p; (2). Thus

J—l—l 1—12
(20) pi(2) == plo(e)+ =5 Pio(e);
with
I C LTINS €LY _
.'pl.o(z) = 1— s y o Dag(2) = 1—_soz’ leo| = 1.
Next we have
(30) P:.o(zo) = Cy+ 001,09 P:,o(zo) = Cp+ Q072,07

where

Co = €(%9), 00 = 0(%0)s N0 = 771(7'0’ Doy ®e)y J=1,2
(comp. (17)).
Because of 5 = 1,5, and the assumption that % =1, we obtain
(31) o = 7_7k,0 for j#k, 4,k =1,2;
thus

P;,o (%) =§r,o(zo)-
Thus by equating p;(2) in (28) and in (29) we get
(32) ey o(2p) = Va, Aimp} o(2) = 0.,
From (15) we obtain

, @Dy (%) = 305 (2)—L1—3 (82— ),
wpere

1y = |D4 (%) — 0ol = Va.
Thus because of ¢*(r)— o?(r) = 1 we have
(33) %D (%) = —a.

Simultaneously we have from (14) for 2z = #,, because of (9)

w2 ) zo

zo?:’ (%) =

14

V) o(zo)—l]-
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In view of (32) and (33) we obtain hence the equality
(34) 3a—1 =im?p; (z).

From (32) we get 4, = 0 or impy,(2) = 0. Supposing that the second
of these equalities holds, we would have because of (34) a = }, which
is impossible. Thus 2, =0 and

P: (%) = H_Pr,o (zo)'l‘P;,o(zo)]-
We shall find ;. Assuming
Mo = iﬂm: img,, =0,
we ghall have hy (30)
P:o(zo) = Oy o COS B+ 70o8In B g,
thus because of (34) and (27) and of the identity c?(r)— o%(r) =1 we

get hence

@ 3 1
Cos By = —l/ 1 and sing,, = 4+ o

4q— d4a—1.

From condition (31) because of (7) we find ¢, = 0 or ¢, = =. Asguming
@, = 0, we obtain

e¥1,0 = &
1—' 60.’)‘0 !
thus
26—1 _
(35) gy =~ iil/jf‘__l_,
l/a(4a—1) a(4a—1)

Thus we have proved that if p*(z) = p; (2), where

(@) =i[1+ N 1—-|—saz:|

2 1—Boz 1-——_802

and ¢, is defined by (35), then the function U (p*(re®)) given by formula
(17) attaing ot the point 2z = 7, & minimum equal to zero.
Thus
Q(ry) =0
(comp. (16)).
The function p; () has been assigned by condition (3) to the function

22— (sp-+&)2+1

(36) Pi(%) = a (@—2)2"— (a—1) (eg I E0) 2+ &




94 P. Wiatrowski

of the family # (M), and to this function we assign a funection Fj (2) from
the family X*(M) satisfying the differential equations

273 (2) <P} (2)

Fi (2) F5(2) |emo

=—P:(z); = —1,

(37)

(comp. (2)).

Taking into account (36) we may write equations (37) in the form
' (2) +_ _ 22— (ey+50)
Ty () (@—2)2— (a—1)(e+&p)2+a

We distinguish two cases: 1° & # 2, 2° a = 2.

1° The rational function of the variable z which appears on the
right-hand side of equation (38) hag the poles 2;, 2, (|2, < |2,|) with z; < —1
and 2, > 1 and the left-hand side expression of (38) is a regular function
in the circle K, thus the integrals of these functions exist along any reg-
ular curve I' ¢ K with the origin and with the end-point at 0 and z,
respectively, where zeX.

Thus we conclude from (38) that

0
: o 23— (&p+&)
9 0823 6) = | g (o D T8

where logzFy (2) = I(z) denotes the unique branch of a multivalent fune-
tion L(z) = logeF, (2) such that I(0) =
Denoting the integral in (39) by I(z), we get

(38)

_ 1 & &
1) =Mt Loy f —a/zl) 1~alz2
with
a—2 -1 -
hy (2) =10g'[ —— - aa (e0+ so)z+1]slog(1-——z-zl—) (1——-::),
h (0) = 0.
Next
(2 &+ &
(40) I(z) = 7—a T P pATTP——" ha(2),
where
hate) = log "Z: h0) =
- 2

Because of (40) we obtain from equa.tion (39)

Fi(z) = )

z
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where
” —b_releqjl/zl . —bree,+V4
! 11—y T T Ty
Yée
K =22 A = bire’e,+1— b2,
va’ FeaT
2° If ¢ = 2, then equation (39) becomes
2z gy— &q \%
10 'F' — e 0 _0
B =, (eo+so) )
where
hg(2) = 1og(1-.-,s°';e° z), he(0) = 0.
Therefore

3 \sis (VTas)e
1— ———Z) ‘e
( V14

F}(e) = ;

Summing, we obtain
(1— zzl—l)(l-}-k)(l—b)—l,(.l_ zzz—l)(l—k)(l—b)j‘l_z—l for M >1,

41) Fi(z) = ‘
(41) o (2) l(.l—3'14—”22’)5’9[3)[13(141/2'3_1'2)]z_1 for M =1.

It can easily be verified that Fj (2)eZ*(M). Since

eFy ' (2))
5’ (2)

re (l+
for z = 7,, thus the function F; () is not convex in the circle |2| < r for
7 > 7. Thus because of 7,> 7, and 7»,< 7, we obtain 7, = 1r,.
Thus we have
THEOREM 1. The radius of convexity of the family ZM(M) is given
by the formula

VeM+1
re = :
2VOM +VoM —1

(42)

Passing to thelimitin (42) as m —~1 (M — oo), we obtain r, = 3712 [2].

II.1. Basing ourselves on the results obtained in part I of this paper,
we obtain an acute estimate from above of the modulus of the derivative
| B (2)|, F(z)eZ* (M) at an arbitrary fixed point 2z, of the ring A.
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Let F(2)eS" (M). Since
log (¢2 F' (2)) = logl* F' (2)| +iarg (¢* F’ (2)),

we have

Pl 0. o
(43) 2+MGFVJ—rmﬁmwFMh ol =7,

becauge of which

r%mg(rzm'(z)ngl— min re{—_[1+ﬁw-]}.

gl=T I"
F(yl)aIEO(M) » ’ (Z)
Hence by (23) we have
0 , 1+4+2b-+o(r)—2Vab+ bo(r)+ 1
= loglr* 7' (7)) < 220 L =
r r
Thus

r

log| ¥ (9)) < |

14 2b+c¢(8)—2Vab -+ bo(s)+1 i
s

g, |2 =7r.
s

Oarrying out the integration and replacing ¢ by 2z, we obtain the
following estimates from above of |’ (2)| in the family of functions Z* (M):

(44) | (20)| < B(l2ol, M),
‘where

2a
—9 2 — 2
(45) B (%, M) = 17;"2( aVl—r ;;]/a,ﬁ vir? )

2v

X ' ety ) =7
(vl/l-—1'2+l/a9—'v"r“‘ k=1

with

2 b_l—m m =1 1
T 14w’ T 14w’ - '

»=Va'—2b, a i

Estimate (44) is acute, the equality sign holds for function (41).
2. Let

2F" (2) }

f(r) = max 're{—[l+ )

12| e=r
F(e)e J*(M)
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Proceeding similarly as in part I of this paper and preserving the
notation adopted there, we obtain first

0(r) < matx"l’(sy 1),
where N
p(s, 1) = 1}[3+2(b-|— o(r))-l-a?z]‘cost—s——zb— b2+2b:(r)+1
Since
_ o) o(r)+o(r)]+D
(a.tﬁ?%fww{s’ h= o(r)+o(v)+b '

we obtain because of (43)

o , o) [o(r)+e ()14
(46) ralog(rzll‘ (@))) > 1~ o(+olr)+d

Dividing both sides of inequality (46) by » and then integrating
in the interval [0, 7], we have

c(s)1[o(8)+ o(s)]
o(8)+o(s)+0

integrating and replacing 2 by 2,, we obtain the estimation

ds;

1—
lmevn/f[

(47) 1B (20)| = W2l , M),
where
_ al(2—a)
%Bb%@+2“4] for a #2 (r = |a),
(48)  Aleol, M) = {
;r & for ¢ = 2.

Estimation (47) is acute, the equality sign holds for the function

— 2/(2~-a)
—i—(l-[-zaasz) foxa#2(3=-l—z°—1),

%

F*(Z)= 1
—¢€
2

for a = 2.

Thus we have proved

THEOREM 2. If F(2)eX* (D), then at every point z of the ring 0 < |2] <1
the following acute estimate of the functional I (z)| holds:

U(Jel, M) < |F'(2)] <B(l2l, M),
where the functions W(|e|, M) and B(|z|, M) are defined by (46) and (48).
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