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0. Explicit reference will be made where terminology is not from [3].
Let € be the admissible category of compact metrizable pairs (X, 4),
that is X is a compact metrizable space and A is a closed subspace of X,
and their maps. Let H or more explicitly {H, *, 9} be a homology theory
on ¥ satisfying the Eilenberg-Steenrod axioms (see [3], p. 10).

(0.1) Any map f: (X, A) > (Y,B) in C is called a Vietoris map
if it has the following properties: (1) f is onto, that is f;: X - Y and
fs: A — B defined by f are both onto, (2) f~1(B) = A and (3) for any
yeY, f~1(y) is acyclic, that is, its reduced homology groups are trivial
in each dimension.

(0.2) We say that H has the Vietoris property if for every Vietoris
map f: (X, A) > (¥, B) in ¥ the induced homomorphism f,: H(X, A4)
— H(Y, B) is an isomorphism. By an isomorphism we mean an onto
isomorphism (see [2] and [5]).

(0.3) We say that H is a partially continuous theory on ¥ if, whenever
a pair (X, A) in € is the inverse limit of an inverse sequence of simplicial
pairs (X,, 4,) and simplicial maps =, : (X,,, 4,) > (X,, 4,) for m > n,
m,n =1,2,..., and directed by the natural order, then the natural
transformation #,: H(X, A) > @ = InvLim{H (X,, 4,), 7, «} is @ natural
equivalence ([3], def. (2.3), p. 260).

(0.4) Let H and H be any two homology theories on ¥. We say that
H and H are isomorphic if for each pair (X, A) in € and each ¢, there
exists an isomorphism k(¢q, X, A): H (X, A) - H (X, A) such that for
any map f: (X, 4) - (Y, B) in ¥ the diagrams

kg, X,4) __
H,(X,A)——H,(X, 4)

lf. lf—.
k(¢,Y,B)

Hq(Y’ B) ——*EQ(Y, B)



230 S. KAUL

and
H,/(X, A) H X, A)
al k(g— lA) ol‘
H, ,(4) H, ,(4)

commute (see [3], th. (12.2), p. 288), the homology groups being defined
on the same coefficient group.

In the sequel whenever a statement is true for homology groups
of H in each dimension, we shall merely write H instead of ‘“H, for each ¢”.

MAIN THEOREM. If a homology theory H on ¥ has the Vietoris property
and is partially continuous, then it is isomorphic to the Cech homology theory
on € over the same coefficient group.

Remark. Let H denote the Cech homology theory on %. Let
f: (X,A) - (Y,B) in ¥ be a Vietoris map. Consider the following
diagram:

> H(A) = B (X) 2> B (X, A)— H, ,(4) — H,_,(X) -

P . lf‘l. i lf. ] 2 Ve

..~ H(B)— H(Y) —— HB,(Y,B)— H, ,(B) > H,_,(Y)

If the coefficient group is either an elementary compact topological
group ([4], p. 672) or a field, then since f;1(y) and f, (), for any yeY
and any zeB, are acyclic from condition (3) of (0.1) and f, and f, are
onto maps, it follows from theorem 2 of [2], p. 338, that f,. and f,, are
isomorphisms for each dimension. Also then H is exact ([3], th (7.6),
P. 248). Thus from the Five Lemma ([3], lemma (4.3), p. 16) f.,: H X A)
—~H ¢(Y,B) is an isomorphism for each integer ¢. Hence H has the
Vlctorls property. H also has the partial continuity property ([3], th. (3.1),
p. 261). Hence on the above-mentioned coefficient groups the main
theorem above gives a characterization of H.

1. Let X be a compact metrizable space, and {U,} be a cofinal
sequence of finite open coverings of X, cofinal in the family of all open
coverings of X, directed by refinement.

(1.0) We say that {U,} is a special sequence if (1) U,,, > U,, where
> means refines, and (2) for weU,,,, % < veU,, then

wucv foreachn=1,2,...

Whenever these two conditions are satisfied we write U, ., > U,.
For a compact metrizable space such a sequence always exists (see
section 4).
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Let then {U,} be a special sequence of coverings of X. Let K, denote
the nerve of U,, and II;'': K,., — K, be a projection map. Then
{K,, IT™}, where for m > n, 1™ =II™_,...II*"1 and II" is the identity,
is an inverse sequence of simplicial complexes and simplicial maps. Let K
be its inverse limit. For any « in X, let o,(x) denote the simplex in K,
corresponding to all the members of U, containing x. Since II’ are pro-
jection maps, IT7(0,, (%)) = o,(x). Hence {o,(z), /Iy}, where 'II?
= II)" |0, (), is an inverse sequence. Let o(x) denote its inverse limit.
We may assume for convenience that a metric is given in X and that
with respect to this metric mesh U, < 1/n for each » =1,2,..., since
{U,} is cofinal.

(1.1) If x,yeX are distinct, then o(x) No(y) = O.

Since mesh U,.< 1/n, there exists a positive integer N such that
no member of Uy, containing « interseets any of its members containing y.
Hence ox(2) Noy(y) = @ and consequently o(x) N o(y) = O.

(1.2) If peK, then there exists an xeX such that p ec(x).

Let p = {p,: » =1,2,...}, where p,eK,. Let o, denote the smallest
simplex in K, containing p,. Let V, denote the carrier of o, ([3], def.
(2.2), p. 234). Since p e K, [T}V (p,,,1) = p,. Again, since [T ! is a simplicial
map and o, is the smallest simplex containing p,, II**!(s,.,) = ¢, for
each n. Since U, ., > U,, it follows from the last assertion and the fact
that /77" is a projection map that V,,, = V, for each n. Lastly, since

mesh U, -0 as n - oo, () V¥, is a single point, say « in X. Then by
n=1
the definition of o, (x) it follows that ¢, is a face of o, (z). Hence p,eo, ()
and, consequently, pec(x). This proves (1.2).
From (1.1) and (1.2) it follows that for any p ¢ K there exists a unique

z in X such that peo(x). Define a function

a: K - X

by setting a(p) = z. Note that a~*(x) = ¢(x) for reX.

(1.3) a s onto.

Since o(x) is non-empty for any « in X, being the inverse limit of
an inverse sequence of compact spaces and maps ([1], th. (3.6), p. 217),
a is onto. This proves (1.3).

Let A be a closed subset of X, and L, denote the subcomplex of
K, consisting of those simplices of K, whose carriers intersect A. Then
{L,,, ﬁ,’{‘}, where IIV'|L,, = ﬁ,’{‘ iIs an inverse sequence of simplicial
complexes and simplicial maps. Let L denote its inverse limit. Then L
is compact, since each L, is ([3], th. (3.6), p. 217) and, therefore, is a closed
Subset of K.
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(1.4) a7 2(4) = L.

If xed, then o,(x) = L, for each n, and hence o(x) =« L. If x¢A,
then there exists a positive integer N such that no member of Uy
containing « intersects A. Hence oy(x) N Ly = O, and consequently
o(r) n L = @. Thus,

L=Uo@=Ualr) =al(d).
Ted xed

(1.5) a ts continuous.
Follows immediately from (1.4).

2. Let (X, A) be any pair in C. Let U be any finite open covering
of X, and R be its nerve. Let 8 be the subcomplex of R defined as follows:
A simplex in R is in § if and only if the intersection of the members of U
defining the simplex in R has a non-empty intersection with A. Thus
any finite open covering U of X defines a simplicial pair (R, 8) corres-
ponding to the pair (X, A4).

Now let (X, A) be any pair in ¢, and {U,} be a special sequence
of coverings of X (see (1.0)). Let (K,, L,) be the simplicial pair corres-
ponding to U, and (X, 4),n =1,2,... It is easy to see that any pro-
jection map II*»*': K, , - K, takes L, , into L,, and thus defines
a simplicial map, which we denote by the same symbol, I1?*': (K, ,, L,.,)
- (K,, L,). Thus a special sequence of coverings of X gives rise to an
inverse sequence of simplicial pairs and simplicial maps corresponding
to the pair (X, 4). We call such an inverse sequence an expansion of
(X, 4).

THEOREM (2.1). Suppose that H is a partially continuous homology
theory on € and (K, L) is the inverse limit of an expansion of a pair (X, A)
in €. Then there exists a Vietoris map from (K, L) to (X, A).

Proof. Let a,: K - X be the map defined as in Section 1 corres-
ponding to an expansion of (X, A). From (1.4), for any zed, o(z) = L
and is non-empty, and also a;*(4) = L. Thus a,|L: L - A is an onto
map. Thus a, defines a map a: (K, L) - (X, 4) which satisfies conditions
(1) and (2) of (0.1). Again, since, for any reX, a !(z) = InvLim{o,(x),
‘II7"}, where o,(x) is a simplex and therefore acyclic in any homology
theory ([3], th. (10.2), p. 119), from partial continuity of H it follows
that a7!(z) is acyclic. Thus condition (3) of (0.1) is also satisfied, and o
is & Vietoris map. This completes the proof.

As an immediate consequence of (0.2) we have

- THEOREM (2.2). If, in theorem (2.1), H has furthermore the Vietoris
property, then
a,: H(K,L) - H(X, A)
18 an tsomorphism.



CECH HOMOLOGY THEORY 233

3. Let {(K,, L,),II}'} be an expansion of a pair (X, 4) in €. For
each =, let 0,: X, - K, be a barycentric map, that is, for any zeX,
0,(x)eInto,(x) ([1], p. 175). It is easy to check that for any xeA,
0, (x)eInto,(x) =« L, and thus defines a barycentric map 0,|4: 4 — L,.
Let us continue to denote the map of the pair (X, A4) into (K,, L,) by 0,.
Let F = InvLim{H(K,, L,),II;:} and 0.: H(X,A) - F be defined
by [0«(2)], = 0,,(Z) for any ZeH(X, 4).

THEOREM (3.1). 0. ¢s a homomorphism.

Proof. It is enough to check that 6, is a well-defined function,
that is 0.(Z)eF for ZeH(X, A), or Il -6, (Z) = 0,, (Z) for all m> n.
Let xeX. Now 6,(x)eInto,(x) for each n and, for m > n, II;’ maps o, (x)
into ¢,(x), hence II,'0,,(x), 0,(x) lie in the same simplex o,(x). Thus
1170, and 6, for m > n are homotopic maps, and consequently 11" -6,,,
= 0,,. This completes the proof.

For each » let II,: (K,L) —~(K,,L,) be the natural projection,
and I7,.: H(K, L) — F be the natural transformation defined by [17.(Z)],
=1II, (Z) for ZeH(K, L) ([3], th. (2.1), p. 259). Let (K, L) and a be
as in Section 2.

THEOREM (3.2). If H. is partially continuous and has the Vietoris
property on €, then 0, = Il.a, s an isomorphism.

Proof. Let peK and a(p) = . Then from the definition of a,
peo(x). Hence II,(p)ec,(x); also 6,-a(p) = 0,(z)eo,(x). Hence 0, o
and 77, are homotopic maps, and therefore 0, -a. = II, for each n.
Consequently, 0.-a« = Il,. Now a, is an isomorphism from theorem (2.2)
and /7. is an isomorphism since H is partially continuous, hence 6, is
an isomorphism and the proof is complete.

THEOREM (3.3). 0, is independent of the choice of a metric in X.
Proof. Let {(K,,L,),II"} be an expansion of (X, A) and 6,, 0,

n) ’n
be .barycentric maps from (X, 4) into (K,, L,),n =1,2,... Since for
any zeX, 0,(x) and 0, (x) both lie in the same simplex o,(z), they are
homotopic maps. Hence 6,, = 0,',*, and consequently 6, = 6, and the

proof is complete.

(3.4) Let {(K,,L,), I17}} and {(P,,Q,), ¥n} be any two expansions
of (X, A) in €, corresponding to two special coverings {U,} and {V,}
respectively. Let InvLim{H (K,, L,), IT;»} = F and InvLim{H(P,,Q,),
y™} =@ and F,G be the corresponding inverse limits for the Cech
homology theory H. Let H(X, A) be the Cech homology group of (X, A)
corresponding to the set of all finite open coverings of the pair (X, 4).
Then there exist isomorphisms h,: H(X, A) — F and h,: H(X, 4) -G
([3], corol. (3.16), p. 220). Let 0,: H(X, A) - F and ¢.: H(X,A) - @Q
be the homomorphisms defined by barycentric maps (see theorem 3.2).



234 S. KAUL

Since {U,} is a special covering, it has a subsequence {U,, } such that
Uy > Vi, k=1,2,... We may assume without loss of generality that
{U,} itself has this property. Let 4,: (K,, L,) - (P,,@,) be any pro-
jection maps, » =1,2,... Now -4, and A,-1I): (K,,, L,) = (P,, @),
being projection maps, are homotopic. Hence for H -4, = 2,,-H) ,
and {4,,}: {H(K,, L,), I} — {H(P,, Qn)’@:f} is a map. Let 4.: F -G
be its inverse limit ([3], def. 3.10, p. 218). From the definitions of 2, &,
and A, it follows that A.-h, = h,.

Again, because 1, is a projection map, 1,-0, and ¢ are homotopic
for the image of each x in X lies in the same simplex in P, . Hence 4, -0,
= ¢,, for each »n and, therefore, 1.-0. = ¢., where 1. is defined for H

just as A, was for H. Since the inverse sequences above are in the category
of triangulable pairs and their maps, there exist natural isomorphisms
H(K,, L, ~ A(K,,L,) and H(P,,Q,) ~HP, Q) (3], th. (10.2),
p. 119). Let 1,: F — F and l,: G@ — G be their inverse limits. Then the
diagram

G
e, I
G

commutes. Thus we have ,

THEOREM (3.5). h 11, 0. = h,2 1, @..

THEOREM (3.6). If H satisfies the Vietoris property and is pairtially
continuous, then for any pair (X, A) in € the isomorphism k(X, A): H(X, A)
— H(X, A) given by k(X, A) = h;t+1, 0, = hy1-1,-II,-a;! is independent
of the expansion.

Proof. k¥(X, A) = h -1, -0, is an isomorphism since 6, is an iso-
morphism from theorem (3.2). It is independent of the expansion from
theorem (3.5). k(X , A) = h -1, -II,-ay?, since Il,-ay! = 6, from theorem
(3.2). This proves the theorem.

We may remark that, in view of theorem (3.3), k(X, 4) is also
independent of the choice of a metric in X, since 6, is so.

4. THEOREM (4.1). If H has the Vietoris property and is partially
continuous, then, for any map f: (X,A)—->(Y,B) in ¥, kE(Y,B)-f.
= fu-k(X, A).

To prove this theorem we choose metrics in the given pairs for
convenience and construct special sequences as follows.

Let V, be any finite open covering of Y. Let zeX and f(z) = v.
Let v(y) be an open set of diameter < 1 containing y and such that #(y)
is contained in each member of V, containing y. Let w(x) be an open
get containing x such that diam u(x) < 1 and f{u(x)] < v(x). This con-
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struction carried out for each x in X gives rise to an open covering of X
which has a finite subcover U, = {u(z;): iel,}. Let Vi = {o(f(;)): iel,}.
If V; does not cover Y, let V|, be a finite open covering of Y— U V,,
each member of which is such that its diameter is << 1 and its closure
is contained in each member of V, containing it. Then U, refines both
UV, = {f1(v):veV,} and f~1(V,), where V, =7V, UV,. Also by
construction ¥, > V, and the mesh of both U, and V, is less than 1.
We agree to denote a vertex in a nerve by the open set to which it corres-
ponds.

Let (K,, L,) be the nerve corresponding to (X, 4) of the covering
U,, and (P,, @,) and (P,, @,) be the nerves corresponding to (Y, B) and
coverings V, and V, respectively. Let ay: (K,, L;) - (P,,Q,) be any
carrier map with respect to f. That is a, is the simplicial map obtained
by extending linearly the vertex correspondence defined as follows:
The vertex in K,, corresponding to #eU,, is mapped into a vertex v in
P, for veV,, provided f(u) = v. We note then that:

(4.2) For any xeX, ay(o,(2)) = o,(f())-

.Let A,: (K., L,) > (P,,Q,) be the carrier map with respect to f
defined by the vertex correspondence wu(w;) — v(f(2;) for each iel,.
Now define a vertex correspondence: (P,,Q;) — (P,,@,) as follows:
If v in V, is a member of V,, that is v = v(f(;)) for some ieI,, then
v - ag(u(w;)). If v in V is a member of V", then v - weV, such that
v < w. Let yy: (Py, Q1) > (Py, Q,) be the linear extension of the above
correspondence. Then by the construction we have: y, is a projection
map, and if y;(v) = w for a vertex v in P,, then ¥ « w. Furthermore
vorh = a.

Starting now with the covering V, of Y we construct coverings
U, and V, of X and Y respectively, just as U,, V, were constructed
starting with V,, except that: (1) The mesh of both the coverings is < },
and (2) while choosing u(x) to define an open covering of X, we not only
have f(u(z)) = v(f(«)), but furthermore that #(w) is contained in all the
members of U, containing z. Note then that U, > U, and as before
V,> V,.

Let (K,, L,) and (P,, @,) be the nerves with respect to (X, A) and
(Y, B) of U, and V, respectively. Let IT?: (K,, L,) - (K, L;) be any
projection map, and set y, = A,-IT7. Then clearly y, is a carrier map with
respect to f. Let 1,: (K,, Ly) — (Py, @,) and ui: (Ps,@,) - (Py,@,)
be defined in the same way as 4, and ] were above. So that y}-2, = A,-II}.

It is clear that this construction can be carried out inductively to
get expansions {(K,, L,), II7'} and {(P,,@Q,), y,}, where I’ and v
are the usual compositions, and maps {1,}, where 1,: (X,, L,) >(P,, €,),
n =1,2,..., are carrier maps with respect to f such that for m > n,
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A I = yit-2,.. Let g: (L, K) - (P, @) be the inverse limit of the inverse
system
{4} {(Epy L),y I} — {(Ppy @) ¥}

and a: (K, L) - (X, A)and 8: (P,Q) — (Y, B) be defined as in Section 2.
LEMMA (4.3). f-a = B-g.
Proof. Since 4, is a carrier map with respect to f, from (4.2) for any
wveX, d,(0,(®) = o,(f(x)). Hence g(o(z)) = o(f(x)). Now let peK, and

a(p) = @. Then peo(w) and g(p)eo(f(z)). Thus B(g(p)) = f(=) = f(a(p)).
Hence -9 = f-a

Proof of Theorem (4.1). Consider the diagram

-1 A=l

H(X, A~ H(K, L, o, F F——H(X, A)

l’* I l" A 111 l v l
g1

H(Y,B)-*-H(P, )_e _»G_ﬂﬂ(y B)

where the symbols not defined above are defined as in (3.4).

Now (I) commutes because of Lemma (4.3). (II) commutes since
v,'g = A,-II, and from the definition of ¢. (III) commutes by the same
argument as (*) does in (3.4). (IV) commutes because k, and k, are natural
transformations. Hence the proof follows from the definition of 4 (X, 4)
and k(Y, B).

5. THEOREM (5.1). If H has the Vietoris property and is partially
continuous, then for any pair (X, A) in €, a- k(X,A) =Kk(A)-0, where
0 and 0 are the boundary operators of H and H respectively.

Proof. Let {(K,,L,), II}'} be an expansion of a pair (X, 4) in ¢
corresponding to a special sequence {U,}. Then {W,} is a special sequ-
ence on A, where W, = {u N A: ueU,}. From the definition of L, it is
clear that the nerve of W, is isomorphic to L, under the correspondence
w —u N A for each vertex u of L,. Hence we may regard {L,, ¢y},
where ¢ = II'|'L,,, as an expansion of A. The homomorphisms d,:
H(K,, L,)—~>H, ,(L), »n =1,2, . define a homomorphism y,: G,
— FE,_,, since (II’"]L )e+0, = 0,-IT7% ([3], axiom 3, p. 11), where G,
= InvLim{H (K, H"‘} a.nd E _y = InvLim{H, ,(L,), (II}'| L)s}.
Similarly, for H We get vq: Gy —~ E,_. Consider the following diagram:

—1
Cge I l, hu

Hy(X,A)—— H/(K,L)—— @, —— H (X, A)

G
| —
o s o b D
. un B, - .E

-1 q-—-1 AHq I(A)
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Diagram I commutes (see [3], axiom 3, p.11), and the commutativity
of the other diagrams can be established by the same arguments as in
the proof of theorem (4.1) above. Hence the whole diagram commutes
and completes the proof of the theorem.

6. Proof of the main theorem. The proof follows from (0.4) and
theorems (3.6), (4.1) and (5.1) above.

As theorems (3.6), (4.1) and (5.1) do not depend on exactness for their
proofs, we get, from the main theorem and theorem 7.6 ([3], p. 248),

THEOREM (6.1). If H is a partially exact homology theory on € and
satisfies the Vietoris property and-is partially continuous, then H is exact
provided the coefficient group is either a compact topological group or a vector
space over a field.
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