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ON THE FRATTINI SUBALGEBRA OF A STONE ALGEBRA
BY

K. M. KOH (SINGAPORE)

1. Introduction. The Frattini subalgebra @ (A) of an algebra A =
{A; F) is defined as the intersection of all maximal subalgebras of A. The
Frattini sublattices of lattices have recently been studied in several classes
of lattices ([4], [7] and [8]). In this paper * we proceed one step further to
investigate the Frattini subalgebra @(L) of a Stone algebra (L; v, A,
*,0,1>. Since every Stone lattice is distributive, our investigation is
based quite naturally on the results for Frattini sublattices of distribu-
tive lattices [4].

In Section 2 of this paper we shall introduce some basic concepts and
state some fundamental results which will be used in the sequel. The study
of maximal subalgebras and, consequently, that of the Frattini subalgebra
of a Stone algebra, is contained in Section 3. In Section 4, we restrict
ourselves to consider the Frattini subalgebra of a finite Stone algebra.
It turns out that this subalgebra can be determined completely in the
finite case.

2. Preliminaries. For a given lattice L, let L(Vv) and L(A) be the sets
of all v -reducible elements and all A-reducible elements of L, respectively.
Let Irr (L) be the set of all elements of L which are both v -irreducible and"
A -irreducible. Then we have L—1Irr(L) = L(v)UL(A). A sublattice N
of a lattice L is called primeif L— N is either empty or is a sublattice of L.
A prime sublattice N of L is called a minimal prime sublattice of L if N
contains no prime sublattice of L other than itself. Let P(L) and Q (L)
be the posets of prime ideals and prime dual ideals of L, respectively.
A pair (P, Q)e P(L) xQ (L) is said to be minimal in P(L) xQ (L) if

(1) PnQ + @,

(2) P*nQ* = @ whenever (P*, Q*)e P(L) xQ(L) and (P*, @*) < (P, Q).

Dually, a pair (P, Q) is said to be maximal in P(L) xQ (L) if

(1) Pu@QclL,
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(2) P*U@* = L whenever (P*, Q*)e P(L) xQ(L) and (P*, Q*) > (P, Q).

Using this terminology, we can formulate

LEMMA 1 [4]. Let L be a distributive lattice and let M be a subset of L.
Then the following are equivalent:

(1) M is a maximal sublattice of L;

(2) M = PuQ, where (P, Q) is a maximal pair in P(L)xQ(L);

(3) L—M is a minimal prime sublattice of L;

(4) L—M = PnQ, where (P,Q) is & minimal pair in P(L) xQ(L).

In finite case we obtain the following

LEMMA 2 [4]. Let L be a finite distributive lattice. A subset N of L is
a minimal prime sublattice if and only if

(1) N =[a, b}, where a = AN and b = \/N,

(2) ae L(A)—L(v) and be L(v)—L(A),

(3) (a,b) =€ L(v)NL(A).

The Frattini sublattice of a distributive lattice L was proved in [4]
to be identical with L —FE, where E is the union of all minimal prime sublat-
tices of L. Thus, by applying Lemma 2, the Frattini sublattice of a finite
distributive lattice can easily be determined.

Maximal subalgebras of Boolean algebras were extensively studied
by Sachs [9]. For an ideal I of a Boolean algebra B, let I' = {&' |xe I}.
Then I' is a dual ideal of B. In [9] it was shown that if M is a maximal
subalgebra of B, then M = IUI’ for some ideal I of B, and, on the other
hand, if P,, P,e P(B), then (P,NP,)U(P;NP;) is a maximal subalgebra
of B. In fact, these two results can be combined to yield the following
characterization of maximal subalgebras of Boolean algebras:

LEMMA 3. Let M be a subset of a Boolean algebra B. The following are
equivalent:

(1) M is a maximal subalgebra of B;

(2) M = (P,nP,)U(P;NP;) for some P,, P,e P(B) with P, # P,;

(3) M=B—(PNnQ)V(P' NQ’) for some P e P(B), Q eQ(B) with PNQ #O.

LEMMA 4 [9]. Every subalgebra of a Boolean algebra B is the intersection
of some maximal subalgebras of B.

From this lemma it follows immediately that

COROLLARY. The Frattini subalgebra of any Boolean algebra is equal
to {0, 1}.

3. Maximal subalgebras and the Frattini subalgebra. Let (L; v, A, *,
0, 1), henceforth, more briefly, L, be a Stone algebra. In this section we
shall characterize maximal subalgebras of L, and then determine the Frat-
tini subalgebra @ (L) of L. To achieve this, we first recall some basic con-
cepts which can be found in [3] and [5].
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Two significant subsets D(L) and S(L) of a Stone algebra L, called
the dense set and skeleton of L, respectively, are defined by

D(L) ={ala* =0} and S(L) = {a*|aeL}.

The elements of D(L) are called dense, and those of S(L) are called
skeletal. The dense set D(L) is a dual ideal of L with 1¢ D(L). Thus D (L)
is a distributive lattice with 1. The skeleton S(L) of L is a subalgebra of
L and <{8(L); v, A, *,0,1)> forms itself a Boolean algebra. L is called
dense if S(L) = {0, 1}. For each ae S(L), put

F, = {z|ov** = a}.
Then the set {F,|ae S(L)} forms a partition of L. Moreover, ¥, = {0}
and F, = D(L).
The mapping a, defined by a(x) = x**, is clearly a homomorphism of
the Stone algebra L onto S(L) with aa™' = F, for each ae S(L). We are

now in a position to consider maximal subalgebras of L. First of all, we
have the following

LEMMA 5. Let L be a Stone algebra and let K be a maximal subalgebra of
S(L). Then the set M = | J{F,|ze K} is & mazimal subalgebra of L such
that S(L) ¢ M.

Proof. Since M = | J {¥F,|ve K} = Ka™', it is a proper subalgebra of
L with S(L) € M. To show that M is maximal, let e L — M and consider
the subalgebra A = [MU{u}] of L generated by Mu {u}. Observe that
as u**e¢ A —K and K is a maximal subalgebra of S(L), we have

S(L) = [KV{u**}lgp = [KU{u**}] < A.
Clearly, D(L) =F,< M < A. Thus, we have L = [D(L)US(L)] = A.
Therefore, M is a maximal subalgebra of L.
The following result is the converse of Lemma 5:
LEMMA 6. Let M be a mawimal subalgebra of a Stone algebra L with
S(L) € M. Then M NS (L) is a marimal subalgebra of S(L) and
M=\ J{F,|zeMnS(L)}.

Proof. Evidently, MNS(L) = Ma is a proper subalgebra of S(L).
Since S(L) is a Boolean algebra, Ma = K for some maximal subalgebra
K of S(L). Thus we have Ka~' 2 M. By Lemma 5, this implies that M
= Ka™'. Hence M NS(L) = Ma = K is a maximal subalgebra of S(L)and

M = Ka™' = (Mn8(L)e™ = U {F,|ve MNS(L)}.

Lemmas 5 and 6 deal with those maximal subalgebras M of L which
have the property that S(L) ¢ M. For maximal subalgebras of L containing
S(L), we have the following result:
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LEMMA 7. Let M be a subset of a Stone algebra L. Then the following are
equivalent :

(1) M is a maximal subalgebra of L with S(L) < M;

(2) M is a maximal sublattice of {L; v, A> with S(L) < M;

(3) L—M =PnQ for some minimal pair (P,Q)e P(L)xQ(L) with
PNnQn8(L) = 9.

Remark. The sublattice of (L; v, A) generated by A will be denoted
by [4]y,.) in order to distinguish it from the subalgebra [A] of a Stone
algebra L generated by a subset A of L. Obviously, we have [4], ) < [4]

Proof. The equivalence of (2) and (3) follows from Lemma 1. Thus it
suffices to prove that (1) is equivalent to (2).

(1) = (2). Assume that M is a maximal subalgebra of L. To show that
M is a maximal sublattice of (L; v, A), pick an element ze¢ L — M. Since
S(L) < M, it follows that

[(M{z}] = [MU{z}]y,a-

Thus [MU{z}]y,\) = [M\1{z}] = L, which shows that M is a max-
imal sublattice of (L; v, A).

(2) = (1). Suppose that M is a maximal sublattice of (L; v, A).
Since S(L) < M, M is a subalgebra of L. Take an arbitrary element
ze L — M, and observe that

[(Mu{z}]2 [MU{z}]ly, A\ = L.

Thus M is a maximal subalgebra of L.

Summarizing the results of Lemmas 5, 6 and 7, we arrive at the
following characterization of maximal subalgebras of a Stone algebra L.

THEOREM 1. Let M be a subset of a Stone algebra L. Then M is a mawi-
mal subalgebra of L if and only if one of the following conditions holds:

(1) MNS(L) is a maximal subalgebra of S(L) and

M = {F. |loe MNS(L)};

(i) MNS(L) = S(L) and M = L—PnQ for some minimal pair
(P, Q)e P(L) xQ(L).

Maximal subalgebras of the Boolean algebra S(L) can easily be vis-
ualized by Lemma 3, and hence the same can be done for maximal
subalgebras of Stone algebras according to Theorem 1.

By means of Theorem 1, the determination of the Frattini subalgebra
of a Stone algebra is almost immediate.

THEOREM 2. Let @ (L) be the Frattini subalgebra of a Stone algebra L.
Then @(L) = {0}u(D(L)—- E), where
E = U{PnQ|(P,Q) is a minimal pair in P(L)xQ (L)
with (PNnQ)n 8(L) = 9}.
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Proof. Let I be the intersection of all maximal subalgebras of L not
containing S(L). Then, by Theorem 1,

I =N{U{F.lze K} K is a maximal subalgebra of S(L)}
= U{F,lze D(S(L))}.

Hence, by the corollary to Lemma 4, we have I = F,UF,, and thus
I={0}uD(L).

Let J be the intersection of all maximal subalgebras of L containing
S(L). Then, by Theorem 1, J = L—E.

Thus, by the definition and Theorem 1,

®(L) = Ind = ({0}uD(L))n(L—E) = {0}u(D(L)—E)),
as required.

COROLLARY. Let L be a Stone algebra. Then

(i) &(L)N8(L) = {0, 1};

(ii) @ (L) is dense.

According to Lemma 4, every subalgebra of a Boolean algebra is
the intersection of some maximal subalgebras. The same statement,
however, does not hold for Stone algebras. Indeed, it is not difficult to
construct a Stone algebra L with {0, 1} <« @(L), and hence the subalgebra
{0,1} of L cannot be any intersection of maximal subalgebras of L.
Furthermore, if L is a dense Stone algebra satisfying A.C.C. or D.C.C.,
then, by Corollary 1 to Theorem 1 in [7] and our Lemma 7, one can show
that every subalgebra of L is an intersection of maximal subalgebras of
L if and only if L is a chain. In spite of this, we do have the following
result:

THEOREM 3. Let A be a proper subalgebra of a Stone algebra L with
D(L) < A. Then A is the intersection of some maximal subalgebras of L.

Proof. Let A be a proper subalgebra of L with D(L) < A. We first
prove that A = (Aa)a~!. The inclusion 4 = (Aa)a~! is trivial. To prove
the converse, let we (Aa)a™!. Then there exists ae A with za = au, i.e.,
r** = a**e¢ A. Since ¥ = r**A (sva*), x**c A, and xva*e D(L) < A, it
follows that z¢ A. Hence 4 = (Aa)a™!, as was to be shown.

Now, observe that ANS(L) = Aa is a subalgebra of S(L). If Aa
= 8S(L), then L = S(L)a™! = (Aa)a™! = A, a contradiction. Hence Aa
is a proper subalgebra of S(L). By Lemma 4,

Ae = N K,,
tel
where, for each ie¢ I, K; is a2 maximal subalgebra of S(L). Let M;= K,a™!
for each ie I. Then, by Lemma 5, M, is a maximal subalgebra of L. Our
proof will be complete if we shall show that
A =M,

iel
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This is indeed the case for

A = (da)a™! = (N K)o =N (K™ =) M,.
tel el iel
4. Finite Stone algebras. In this section we shall confine ourselves
to the study of Frattini subalgebras of finite Stone algebras. Gritzer and
Schmidt [6] proved that a finite distributive lattice L is a Stone lattice

if and only if
L =[],
i=1

where, for each ¢ =1, ..., n, K; is a finite distributive dense lattice. This
result enables us to obtain from Theorem 2 a description of the Frattini
subalgebra of a finite Stone algebra L in terms of the Frattini sublattices
of its components K ;. Since there is a definite way to determine completely
the Frattini sublattice of a finite distributive lattice [4], our result enables
us to determine the Frattini subalgebra of a finite Stone algebra in a definite
way. As a corollary to our result, we can provide necessary and sufficient
conditions for a finite Stone algebra to be represented as the Frattini
subalgebra of some finite Stone algebra. For any Stone algebra L, @ (L)
always contains {0, 1} as a subalgebra. Thus, it is interesting to inquire
what necessary and sufficient conditions should be imposed on L so that
& (L) attains the lowest bound. A solution to this question will be given
for the finite case.
We first state the following

n
LeMMA 8. Let L = [] L; be a finite product of lattices and let ae L,
i=1

a # 1. Then a is A-irreducible if and only if

6 =<y, ligy @ Ly, 100,
where a; is A-irreducible in L; and a; #* 1, for some 1.
For v -irreducible elements, the dual statement is true.
We are now going to prove the following main result:
THEOREM 4. Let L be a finite Stone algebra and let

L= ﬁK,-,
1=1

where, for each i =1,...,n, K; is a finite distributive dense lattice. Let
D (L) be the Frattini subalgebra of L and let ®(K;) be the Frattini sublattice
of K; for i =1,...,n. Then

n

o) — [](@E)vLy)uio}.’

i=1
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Proof. Let ae ®(L). If a is 0 or 1, then, clearly,

ae [ [(@(E)v{L}) {0}

=1

Thus we may assume 0 < ¢ < 1. By Theorem 2, #(L) = D(L)u{0}.
Thus

@ = {Bryeeey By oaey By

where a; > 0; for each ¢ =1, ..., n. Now suppose, to the contrary, that

as [ [ (@)L {13) {0}

Then there exists an ¢ such that a;¢ @(K;)U{l;}. Therefore 0; < a;
< 1,, and there is a maximal sublattice 4; of K; such that a;¢ A;. Obvi-
ously, S(K;) = {0;,1;} = A;. Hence A; is a maximal subalgebra of the
dense Stone algebra K; by Lemma 7. Let

A == KIX cee XKi_1XAiXKi+1X see XKn.
It is not difficult to check that A is a maximal subalgebra of L. Since
@ = lyyeeny iy eeny Grpd A,

we have a¢ (L), a contradiction. Hence

o(I) < [ [(@(E)u{L3)u{0}.

Conversely, let
@ = by, eoey gy ooey iy e [ [(B(E U {1} U {0},
i=1

If @ is 0 or 1, then ae®(L). Thus, assume that 0 < a < 1. Observe
that as a;e D(K,)U{1;} = K;,—{0,}, it follows that ae D(L).

Suppose that a¢ @(L). Then there is 3 maximal subalgebra M of L
such that a¢ M. If M= | J{F |ve K} for some maximal subalgebra K of
S (L), then, clearly, ae D(L) = F, < M, which is impossible. Therefore,
by Theorem 1, M = L — PN for some minimal pair (P, Q)e P(L) xQ (L)
with (PNQ)N S(L) = @. Since L is finite, by Lemma 2, a¢ [x, y] for some
e L(A)—L(v)and ye L(v)—L(A) with

(¢,y) < L(v)NL(A) and [x,y]nS(L) =@. !

Obviously, 0< o <y < 1.
As z is v -irreducible in L, by Lemma 8,

Z = <04y ...,0;_,4, Zi50p415 .00y 0,0,
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where x; is v-irreducible in K; and x; > 0;. Since y is A-irreducible in
L, by Lemma 8 again,

Y=gy ooy Yy gy -0y 1y, ey 1)y

where y; is A -irreducible in K; and y; < 1;. (Here, without loss of gener-
ality, we assume j < 4.)

We shall now prove that + = j. Firstly, let us observe that an element
e ={€1y...y6,...,6> is in S(L) if and only if ¢, is 0, or 1, for each
k=1,...,n Thus, if 7+ # j, we then consider the element

U = (lUgy eony gy eony Up)y

where u; = 1, and u; = 0, for each k = . Clearly, ue S(L) and < u < ¥.
Therefore, ue [z, y]NS(L) # G, a contradiction. Hence ¢ = j and we have

2 =1<05y.0090;_1,2,0;4,...,0,),
Y =<1y ey Ly Ysy 1i+17 vy 10,
where x;e K;(A)—K;(v),y;e K;(v)—K;(A) and 0;< 2, < y; < 1;.
We now claim that a;¢ @ (K,). Since ae [z, y], we have x; < a; < y;.
If #; =vy;, then a; = x; = y;e Irr(K;), and so K;—{a;} is a maximal
sublattice of K;. Thus a;¢ ®(K,). Assume 2; < y;. Our aim is to prove
that (z;, y;) < K;(v)NK;(A). Let 2;¢ (%;, y;) and write

2 =gy ooy i1y 2 Ligay oeey 1,0,
2" ={0py .00y 0,1, 24, 0;r1y .05 0,0

Clearly, 2,2'¢ (2, y). Since [z, y] is a minimal prime sublattice, we
have z,2'¢ L(v)NL(A). Therefore, by Lemma 8, z;e K;(v)NK;(A).
Consequently, we have (x,,v;) < K,;(v)NnK;(A), a8 required. Hence [x;, ¥;]
is a minimal prime sublattice of K; with a;¢ [z;,y,;]. By Lemma 2, a,¢ ?(K,),
which is a contradiction. Hence

o) 2 [ [(@(E)u{1)v{o}

and, therefore, Theorem 4 follows.
COROLLARY 1. Let {L;|1 =1, ...,n} be a finite family of finite Stone
algebras. Then

o H L) = (H ((Z) — {0})) U {0}..

COROLLARY 2. Let L be a finite Stone algebra. Then ®(L) = {0, 1}
if and only if L is a direct product of finite chains.
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Proof. If L = HK,, where, for each i = 1,...,n, K, is a chain,
then ®(K;) =0 and hence, by Theorem 4,

o(L) = ([ [ (@)U {13))u {0} = {1} {0} = {0,1}.
Conversely, assume that
L=[]EK and o@L)={0,1}.

Then, by Theorem 4,

[[(2E)ving) = .

If there exists an i such that K, is not a chain, then, by a corollary
to Theorem 1 in [7], we have |®(K,)| > 2, and thus

_]_7 (o(K,)u{l)) > {1},

a contradiction. Hence L is a direct product of finite chains.

Recall that a Stone algebra I is injective if, whenever B is a subalgebra
of a Stone algebra A, then any homomorphism of B into I can be extended
to @ homomorphism of A into I. Balbes and Gritzer [1] pointed out that
a finite Stone algebra I is injective if and only if I = C}* x C} for some m, n.
Thus we have

CorOLLARY 3. If I is a finite injective Stone algebra, then ®(I) = {0, 1}.
COROLLARY 4. Let L be a finite Stone algebra and let

L =]"]K,..

1=1

Then ®(L) is a chain if and only if there exists ke{l,...,n} such that
O (K,) and K; for each © # k are chains.

COROLLARY 5. Let Fg(n) be the free Stone algebra on n generators.
Then

O (Fy(n) == [ [{Fp(1X)U{lx}—X|X < {1, ..., n}}U{0},

where Fp,(|1X|) is the free distributive lattice on |X| generators.

Proof. By a result of Balbés and Horn [2], we have

Fs(n) = [ [{Fey(1XDIX < {1, ..., n}}.
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Thus, by Theorem 4,
®(Fg(n)) =~ ”{ds(FD(o.l)(lX[))U{lx}\X < {1, ...,n}}u{0}

= [[{®(Fp(i X))V {1x}1X < {1,..., n}}U{0}.
Hence, by Lemma 1 in [7],

?(Fs(n) = [ [{(Fo(1X)~X)U{lg}| X < {1, ..., n}}uU{0},
so that the assertion follows.

THEOREM b. Let K be a finite Stone algebra. Then K ~ @ (L) for some
finite Stone algebra L if and only if
(1) K ts dense, n
(2) K —{0} can be represented as [[ K;, where, for each i =1, ..., n,
i=1

either |K;| =1 or K; >~ ®(L;) for some finite distributive lattice L; with
11' € L’l( \ ) .
Proof. We first prove the necessity. @ (L) is clearly dense. By The-

orem 4,
n

&(L)—{0} = [ [(#(L)u{1}), where L = ﬁLi.

=1

For each i =1,...,n, let K; = ®(L;)V{1,;}.

If &(L;) =9, then K; = {1,} is a singleton.

If &(L;,) #9, we have two cases. If 1,e #(L;), then K, = D(L,)
and 1;e L;(v). If 1,¢ ®(L;), then 1;e Irr(L;). Let m be the maximal ele-
ment of L;(v). Then me ®(L;) by Lemma 3 in [7]. Let C = {ce L;|
m < ¢ < 1;}. Construct a new lattice L] = (L;—C)U{a, b} by adjoining
two new incomparable elements a, b to the lattice L;—C in such a way
that avb =1, and aab = m. Obviously, L] is finite, distributive and
1,¢ L (v). Moreover, ®(L}) =~ ®(L;)V{l,} = K;,.

To prove the sufficiency, let K be a finite Stone algebra satisfying
(1) and (2). For each ¢ =1, ...,n, if K, ={1,}, we set 8; = {0,} ®{1,}
~ C,; if K; =~ ®(L;), we set 8; = {0,} ®L;, where 0; is the new zero
element of §;. Let

8 =[]s..
=1

As 8; is a finite distributive dense lattice for each ¢ =1,...,7n, 8 is
a Stone algebra. Observe that if §; = {0,} ®{1;}, then

D(8;)V{l} =~ K,
and if §; = {0,) ®L;, then
D(8)V{l} = P(L)V{l} = (L) = K; as L;e Ly(v).
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Hence, by Theorem 4,

n

D(8) = H(Q(Si)u{li})u{o} =(”K,-)u{0} = (K—{0))u{0o} = K.

This completes the proof of Theorem 5.

Finally, as a by-product of the proof of Theorem 4, we have the
following result:

THEOREM 6. Let {L;|4 = 1,...,n} be a family of finite distributive
n
lattices and let L; = {0;} ® L; for i =1, ...,n. If ®([]L;) is the Frattini

n i=1_
sublattice of || L;, and ®(L;) is the Frattini sublattice of L;, then
i=1

o([]2) ([ 2) = [T @Zavid).

Proof. Let
n n
.E == ”‘Zl atnd. L - ”L‘i'
i=1 i=1

Then L is a Stone lattice with D(L) = L. By modifying slightly the
argument of the proof of Theorem 4, we can show that the left-hand set
is contained in the right-hand set. The reverse inclusion follows from the
following lemmas and the proof of Theorem 4.

LEMMA 9. Let a be a maximal element of S(L). Then a is A -irreducible
in L.

Proof. As a is maximal in S(L), there is a unique ¢ such that

a6 = 1y, 1,04 100,510,

Then, by Lemma 8, a is A -irreducible in L.

LeMMA 10. Let [x, y] be-a minimal prime sublattice of L and let ye D(L).
Then [z,y]NS(L) = O.

“Proof. Assume that we [z, y]NS(L). Then

U = €;

~

>3

()

where, for each ¢ =1,...,m, ¢ is a maximal element of S(L). Since

/\ €; = Ue [w7 ?/]

i=1 !

and [z, y] is prime, it follows that e¢;e [#, y] for some 4. Clearly, y <1
and ye D(L) by assumption. Thus y¢ S(L), and so we have z < ¢; < ¥.
But this contradicts Lemma 9 since every element of [, y) is A -reducible.
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