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1. Introduction. All spaces considered are compacta (compact metric
gpaces), and all maps are continuous. Let ¢> 0, and let f be a map
from X onto Y. Then f is said to be an s-map if diam(f~'(y)) < ¢ for each
y€ Y. If r is a map from X onto Y, then f is called an e-refinement of r
if f is an e-map from X onto Y e-near r (ie., d ( f(@), r(z)) < & for each
2 € X or, more concisely, d(f,r) << ). The map r is refinable if » has an
e-refinement for each ¢ > 0 or, equivalently,  is & uniform limit of e-
maps for every ¢ > 0. Refinable maps clearly include near homeomor-
phisms (uniform limits of homeomorphisms from X onto Y), but the
notions are not equivalent: the map from the sin(1/r)-continuum onto
an arc obtained by shrinking the limiting interval to a point is refinable,
but not a near homeomorphism, since the domain and range are not
homeomorphic. The notions are not even equivalent when the range
and domain are both polyhedra. Indeed, consider the map from a pair
of tangent disks onto a single disk obtained by shrinking one of the disks
in the domain to a point.

Although X and Y need not be homeomorphic, given a refinable
map from X onto Y, they are closely related, since X clearly must be
Y-like (i.e., there is an e-map from X onto Y for every ¢ > 0). It follows
from this, e.g., that there can be no refinable map from a circle or a triod
onto an arc. Requiring the existence of a refinable map from X onto Y
is a stronger condition than requiring that X be Y-like, however, for we
will show in the next section that there is no refinable map from the
pseudo-arc onto the are.

In Section 3 we will see that if the range and domain of a refinable
map are both ANR’s, then they are quam-homeomorphlc and have the
same homotopy type.

2. Some general properties of refinable maps. Theorem 1 shows that
refinable maps satisfy a property somewhat stronger than weak conflu-
ence; strong enough to prevent the mapping of indecomposable continua
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onto decomposable ones and to imply monotonicity if Y is locally con-
nected.

THEOREM 1. If r is a refinable map from X onto Y and H is & subcon-
tinuum of Y, then there is a continuum C in X such that r(C) = H aend
C contains r~* (int (H)), where int (H) denotes the interior of H.

Proof. For each 4, let h; be a (1/i)-refinement of »r. Some subse-
quence of {k;'(H)} converges to a closed subset C of X which is connected
(even though each h;'(H) may not be). If r(») is in int(H), then, for all
but finitely many positive integers j, h;(x) is also in int(H), since {h;(z)}
— r(x). This means that x eh;'(H) for almost all positive integers j,
and hence z € C.

Definition (Lelek [4]). The map f from X onto Y is weakly confluent
if for each subcontinuum H of ¥ some component of f~!(H) is mapped
onto H by f.

CoROLLARY 1.1. Every refinable map from X onto Y is weakly con-
fluent.

Hence, if X is finitely Suslinian, Suslinian, or hereditarily locally
connected, then Y has the same property, and if X is acyclic and 1-dimen-
sional, then Y is 1-dimensional [5].

QUESTION 1. Do refinable maps preserve the property of being ra-
tional? (P 1033)

COROLLARY 1.2. If r is a refinable map from X onto ¥ and Y is con-
nected im kleinen at p, then r~'(p) is conmected; hence r is monotons if Y
18 locally connected.

Proof. Suppose that Y is connected im kleinen at p, but r~!(p)
is not connected. There are mutually exclusive open sets U and V in X
such that »~!(p) intersects both and lies in their union. The compactness
of X implies that 0 = Y —»(X—UUYV) is open, and p € 0. By hypo-
thesis, O contains a continuum H with p in its interior. By Theorem 1,
there is a continuum € in X which contains r~!(int(H)) =2 »"'(p) and
such that r(0) = H. Hence ‘

Ccri(H)ycsr'(0)c TUYV.

But the continuum O cannot intersect both U and V and lie in their
union.

Remark. On the contrary, to see that a refinable map need not
in general be monotone, consider the chainable continuum M, made up
of a sequence of sin(1/z)-continua, as indicated in Fig. 1. If points of M
on and between the dotted. lines A and B are identified whenever they
lie on the same vertical line, the resulting map is refinable but clea.rl'y
not monotone; its range is a single sin(1/z)-continuum.
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COROLLARY 1.3. Let r be a refinable map from X onto Y. Then X is
decomposable if and only if Y 48 decomposable.

Proof. Since X is Y-like, it is easily seen that if X is decomposable,
then so is Y. If ¥ is decomposable, then Y contains a proper subcontinuum H
with non-empty interior. By Theorem 1, there is 4 continuum C in X contain-
ing #~!(int (H)), an open set in X. Since C has a non-empty interior, X
is decomposable.

-——— e - - —

Fig. 1

THEOREM 2. If r i8 a refinable map from X onto Y, and the point q
separates Y, then some point of f~1(q) is a weak cut point of X.

Proof. Pick h er~!(H) and k € »~'(K), where H and K are mutually
separated sets whose union is ¥ — {g}. There is a sequence {g;} such that,
for each 4, g; is a (1/i)-refinement of » and such that the sequence {g;'(¢)}
converges to a point p of X. Note that p e r~!(q).

Now, suppose that M is a continuum in X containing % and k, but
not p. Then there is a positive integer n 50 large that g,'(¢q) misses M,
gn(h) € H, and g, (k) € K. So the continuum M intersects both of the mutu-
ally exclusive open sets g, !(H) and g,;'(K), and lies in their union, a con-
tradiction.

COROLLARY 2.1. If r i3 a refinable map from X onto Y, and X is
locally connected and has no cut point, then, if y € Y, X —r~1(y) is connected.
Heénce Y has no cut point.

Proof. If, for some y € Y, r~'(y) separates X, then since r is mono-
tone (Corollary 1.2), ¥ separates Y. By Theorem 2, some point of r~!(y)
is a weak cut point of X, and hence a cut point, since X is locally con-
nected. But this contradicts the hypothesis.

QUESTION 2. Suppose that r is a refinable map from X onto ¥ and Y
is locally connected at y. Does it follow that if r~'{y) separates X, then y
is a cut point of Y ¥(?)

(1) E. E. Grace has recently answered Question 2 in the negative.
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QUESTION 3. Suppose that 7 is a refinable map from X onto Y and
K is a subcontinuum of X. Under what conditions is 7| K refinable? (P 1034)

QUESTION 4. Suppose that there exist maps, f from X onto Y and ¢
from Y onto X, such that both compositions fg and gf are refinable. Need
there exist a refinable map from one of X and Y onto the other (see [3],
Theorem 5)% (P 1035)

3. Refinable maps on ANR’s. If the domain of a refinable map is
assumed to be an ANR, then a number of interesting results follow, many
ag corollaries to the next theorem. We will need a lemma and a definition.

LEMMA (see [6], Lemma 1). Let f be a map from X onto the ANR A,
and let ¢; > 0. Then there is a positive number c, such that if g, is any 6-map
from X onto any compactum Y, then there is a map g, from Y onto A such
that d(f, g29:) < ¢;.

Definition. If f is a map from X onto Y, and ¢ > 0, then
L(f,¢) = sup{e| if H c X and diam(H) < ¢, then diam (f(H)) < ¢}.

That L(f, ) > 0 follows from the uniform continuity of f.

THEOREM 3. Let r be a refinable map from X onto ¥ and let ¢ > 0.
Then there exists a positive number & such that if f is a 3-map from X onto
an ANR A, then there exist a map g, from X onto Y e-near r and an e-map g,
from Y onto A such that d(f, g.g,) < e. ‘

Proof. Pick d < L(r,¢), and let f be any d-map from X onto an
ANR A. There is a positive number ¢, < & such that any map ¢,-near f
is also a d-map. By the Lemma, there is a positive number ¢, such that
if g, is a ¢;-map from X onto Y, then there exists a map g, from Y onto 4
such that d(f, g.g,) < ¢,. Since r is refinable, there is a ¢,-map g, so close
to r that d(g,, r) < ¢ and 6 < L(g,, ¢). Let g, have the properties mention-
ed above. Then g,g, is sufficiently close to f so that d(f, g,9,) < ¢ and ¢.9,
is @ d-map. To see that g, is an e-map, suppose that z € A. Then

diam ((g.91)"" (%)) < 8 < L(g1, €),

whence diam (g;'(»)) < e.

Definition. Let 2 be a collection of spaces. The space X is said
to be 2-like if, for each ¢ > 0, X can be e-mapped onto some element of 2.

COROLLARY 3.1. Let r be a refinable map from X onto Y and let ? be
some collection of ANR’s. Then X 18 P-like if and only if Y is.

The special case of this corollary, in which 2 consists of an arc, was
first shown by E. E. Grace.

COROLLARY 3.2. If r is & refinable map from the ANR X onto Y,
then X and Y are quasi-homeomorphic, t.e., X is Y-like and Y is X-like.
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COROLLARY 3.3. If r i8 a refinable map from the ANR X onio Y
and ¢ > 0, then there exist maps g, from X onto Y and g, from Y onto X
such that

(i) d(rgs,idy) < & (in a sense, r almost has a right inverse),

(ii) d(g:19s,1dy) < & and d(gag:,idx) < e.

Proof. Pick ¢ > 0 so that ¢ < ¢/4 and ¢ < L(r, ¢/4). By Theorem 3
(letting A = X and f = idx), there exist maps g, from X onto Y and g,
from Y onto X so that

(a) d(g,7) <o,

(b) d(g29.,1dx) < 0.

Suppose that y € Y, and pick = so that gl(w) = y. Then, using (a)
and (b), we have

a(rgs(y), y) = d(rgsg:(2), 9:(2))
< d(rgag:(2), 7(2))+d(r(2), g:(2)) < tet+is = }e.
This verifies (i), and (ii) follows since

d(glgz(?/)y ?/) d(glgﬂ(y 792(?/))+d(7'92(?/ )< tetie<e

CoROLLARY 3.4. If r is a refinable map from X onto Y and X is an
ANR, then Y-homotopy dominaites X ; if Y 18 also an AN R, then r is a homotopy
equivalence.

Proof. Since, for ANR’s, maps sufficiently close together are homo-
topic, this follows immediately from Corollary 3.3 (ii).

QUESTION 5. Do refinable maps preserve shape? (P 1036)

QUESTION 6. If r is a refinable map from X onto Y and X is an
ANR, need Y also be an ANR? (P 1037)

As observed earlier, refinable maps are closely related to near homeo-
morphisms. Bing’s Shrinking Criterion, extracted from [1], gives condi-
tions that imply that a map is a near homeomorphism. There are several
versions; a typical one is

THEOREM (Bing [1]). The map r from X onto Y is a near homeomor-
phism if and only if, for each ¢ > 0, there is a homeomorphism f from X
onto X such that rf i8 an e-map e-near r.

Dropping the condition that f be a homeomorphism gives a necessary
and sufficient condition for refinability, as the next corollary shows.

COROLLARY 3.5. The map r from the ANR X onto Y is refinable if
and only if, for each ¢ > 0, there is a map f from X onto X such that rf is
an e-map e-near r.

Proof. The condition clearly implies that » is refinable, since rf is
an e-refinement for r. Conversely, suppose that r is refinable and &> 0.
There are an (e/2)-refinement h of r, and a positive number 8 < & such
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that if d is any 4-map from Y to Y, then dh is still an (¢/2)-map (and
hence an ¢-map). By Corollary 3.3 (i), there is @ map g, from Y onto X
such that d(rg,,idy) < 6/2. Write f = g,h, and note that rg, is a J-map,
8o that rf = (rg,)h is an e-map. Also,

a(rf,r) < d(rgeh, B)+-d(h,r) < 30+ 3e<e.

Remark. Note that if X is not an ANR, then there need not exist
maps such as f in Corollary 3.5. Indeed, consider the map on the sin(1/x)-
continuum described in the Introduction.

THEOREM 4. Assume that r maps the k-sphere S* onto Y, where bk = 1
or 2. Then r is refinable if and only if r is a near homeomorphism.

Proof. We give only the argument for §%; that for §' is easier.
Y must be locally connected since 8 is, so # is monotone by Corollary 1.2.
It follows from Corollary 2.1 that no point-preimage separates 8% so Y
must be homeomorphic to 8 by a theorem of Moore [8]. But Youngs has
shown [9] that every monotone map from §* onto itself is a near homeo-
morphism.

QUESTION 7. Is Theorem 4 true for ¥ > 2% (P 1038)

4. Refinable maps on arc-like continua. Assume that r is a refinable
map from X onto Y. Then X is arc-like (or chainable) if and only if Y is
(Corollary 3.1). Since the only locally connected arc-like continuum is
the arc (see [7], Theorem 6), the assumption in this section that X is an
ANR implies that r is a (monotone) near homeomorphism on an arc, by
essentially the same argument as in Theorem 4. Assuming instead that Y
is an arc proves more fruitful.

THEOREM 5. Assume that r is a map from the arc-like continuum X
onto [0, 1]. Then r i3 refinable if and only if r 18 monotone.

Proof. If r is refinable, then r is monotone by Corollary 1.2. Suppose
that r is monotone and ¢ > 0. By a chain in this argument, we will mean
a sequence ¢,, Cy, ..., ¢, 0f sets, not necessarily open, such that ¢; inter-
sects ¢; if and only if |[¢—j| < 1. Let s,, 8,, ..., 8, denote a chain of non-
overlapping intervals of length less than ¢/2 covering [0,1] with 0 in s,.
For each i, let K; = r~'(s;), and let z; denote a point of K, such that
r(z,) =0, r(z,) =1, and r(x;) lies in the interior of 8; for 1 < ¢ < .
Since r is monotone, K; is a continuum for each ¢, and K,, K,, ..., K,
is a chain. Pick > 0 so that d< e, if ¢ #j, then 8 < d(x, K;), and
if [i—j|> 1, then é < d(K;, K;). We know that X is arc-like; let f
denote a §-map from X onto [0, 1], and note that f(K,), f(K,), ..., [(K,)
is a chain of intervals covering [0, 1], and if ¢ + j, then f(#;) is not in f(K,).
It follows that the sequence f(w,),f(®s),...,f(®,) is either increasing
or decreasing; assume the former. Then there is a homeomorphism A from
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[0, 1] onto [0, 1] such that Af(x;) = r(=x;) for 1 < ¢ < n. Now, Af is a 4-map,
and hence an e-map. Also we have

WKL) < (r(@s)s (@) S 8iU8 Vs, for 1<i<m,

and similar relationships if ¢ =1 or =, while r(K;) = s; for each 2. It
follows that d(kf, r) < & and hf is an e-refinement of r.

Remark. The equivalence between monotonicity and refinability
in Theorem 5 breaks down if the range of the map is not an arc, even if
it is-a hereditarily decomposable, arc-like continuum. The map described
earlier on the continuum M in Fig. 1 is refinable, but not monotone.
On the other hand, the map from M onto the continuum Y, obtained by
shrinking only the lowest limiting interval of M to a point p, is monotone
but not refinable. Indeed, if f is any map from M onto Y, then f~!(p)
contains some arc-component of M, which is large; so M is not even
Y-like.

COROLLARY b5.1. Every hereditarily decomposable arc-like continuum
admits a refinable map onto an aro.

This follows since every such continuum has an upper semicontinuous
decomposition to an arc (see [2], Theorem 8).
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