ASSERTION Q DISTINGUISHES TOPOLOGICALLY $\omega^* AND m^*$
WHEN m REGULAR AND $m > \omega$

BY

R. FRANKIEWICZ (KATOWICE)

We consider the following question: can ω^* be homeomorphic to m^* for $m > \omega$, ω denoting the set of non-negative integers? Here m^* stands for $\beta m - m$, where βm is the Čech-Stone compactification of the set m with the discrete topology. Only the case $2^\omega = 2^m$ is of interest, since only in that case the weights of ω^* and m^* are equal. We answer the question for regular m negatively in ZFC + non CH + Q, where CH stands for the continuum hypothesis and Q is the following assertion (Rothberger [4]):

For each family \mathcal{X} of less than 2^ω functions $f: \omega \to \omega$ there exists a function $g: \omega \to \omega$ such that for each $f \in \mathcal{X}$ the set $\{n \in \omega: f(n) \geq g(n)\}$ is finite.

Assertion Q is known to be a theorem in the theory ZFC + non CH + Martin’s Axiom (Kunen and Tall [2]) which is consistent if ZFC is (Martin and Solovay [3]); in that theory, $2^m = 2^\omega$ if $\omega \leq m < 2^\omega$ (see papers [2] and [3]).

The problem to distinguish ω^* and m^* by means of ZFC axioms only seems to be open. (1021)

A free ultrafilter in a set is a maximal filter on that set not containing finite subsets.

The space m^* consists of all free ultrafilters on m; the topology on m^* is generated by sets $U^* = \{p: U \in p, \ p \in m^*\}$, where U is an infinite subset of m.

An uncountable cardinal κ is called measurable if there exists a free ultrafilter q on κ such that $\bigcap \mathcal{U} \in q$ for each countable subfamily \mathcal{U} of q.

An ultrafilter $q \in m^*$ is called a P-ultrafilter if for every sequence consisting of members of q there exists a member U of q such that $U - V$ is finite for each V from that sequence.

LemMA. Let m be non-measurable and let q be a P-ultrafilter on m. Then there exists a countable subset a of m such that $a \in q$.
Proof. Since m is non-measurable, there exists a sequence $\{a_i : i \in \omega\}$ such that
\[a_i \in q, \ a_i \supseteq a_{i+1}, \ \text{and} \ \bigcap_{i \in \omega} a_i = 0. \]

Since q is a P-ultrafilter, there exists an infinite $a, a \in q$, such that $a - a_i$ is finite for all i and $a \subseteq a_1$. Hence the sets $a \cap (a_i - a_{i+1})$ are finite. But a is infinite and equal to
\[\bigcup_{i < \omega} (a \cap (a_i - a_{i+1})), \]
thus a is countable.

Let $V = \{m - a : a \subseteq m, \ \text{card} \ a \leq \omega\}$. Since $\text{cf}(m) > \omega$, m being regular, there exists a filterbase of cardinality m such that the filter generated by that filterbase contains V.

For instance, the set
\[\mathcal{F} = \{m - a : a \text{ is an ordinal, } a < m\} \]
in such a filterbase.

Theorem (ZFC + non CH + Q), Szymański [6], Solomon [5] for $m = \omega_1$. Let m be a regular cardinal, $m < 2^\omega$, and let $\{a_\xi : \xi < m\}$ be a family of closed-open subsets of ω^* linearly ordered by inclusion. Then there exists a P-ultrafilter q on ω such that
\[q \in \bigcap_{\xi < m} a_\xi. \]

Theorem (ZFC + non CH + Q). ω^* is not homeomorphic to m^* whenever m is regular and such that $m > \omega$.

Proof. Only the case $m < 2^\omega$ requires a proof. Let f be a homeomorphism from ω^* onto m^* and let
\[\mathcal{F}^* = \{a^* : a \in \mathcal{F}\}, \quad \text{where} \quad a^* = \text{cl}_{m^*} a - m. \]

The family \mathcal{F} is linearly ordered by inclusion and $\text{card} \ \mathcal{F}^* = m$.

The family
\[\mathcal{G} = \{f^{-1}(a^*) : a \in \mathcal{F}\} \]
is also linearly ordered by inclusion, and each element of \mathcal{G} is a closed-open subset of ω^*.

From the above-quoted result of Szymański we infer that there exists a P-ultrafilter $q \in \omega^*$ such that $q \in \bigcap \mathcal{G}$. The ultrafilter $f(q)$ is a P-ultrafilter on m, f being a homeomorphism. We can see that $f(q) \in \bigcap \mathcal{F}^*$. This means that each element of \mathcal{F}, and, therefore, each element of V, belongs to $f(q)$. The ultrafilter $f(q)$ is not a P-ultrafilter on m. In fact,
m is non-measurable by Ulam’s theorem (Ulam [7], and Jech [1], p. 167), m being not greater than 2^α.

In other case, by the Lemma, a countable a would exist with a ∈ f(q); however, we know that m − a belongs to V and, therefore, to f(q); a contradiction.

REFERENCES

Reçu par la Rédaction le 29. 4. 1976