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ON THE DIOPHANTINE EQUATION xP+ y*F = 72

BY

A. ROTKIEWICZ anD A. SCHINZEL (WARSZAWA)

It was shown by Chao Ko [1], [2] that the equation x”+ 1 = z? has no
solutions in positive integers if p is a prime greater than 3. E. Z. Chein [3]
and the first-named author [5] gave simpler proofs of Ko’s result, G.
Terjanian [8] proved that if x, y, z are positive integers such that x2? 4 y*?
= z? then 2p divides x or y. In this paper we shall use some ideas contained
in the quoted papers of Chein and Terjanian to prove the following
extensions of Ko’s and Terjanian’s results.

THEOREM 1. If xP+y®? = z2, where p is a prime greater than 3, x, y and
Z are non-zero integers then

p<2lyl, Ix <8y?r*2

If (x,W=1, 2|x, y>0, 2z>0 then 8|x and there exists another solution
satisfying the same conditions.

THEOREM 2. If X, y, z are positive integers such that x**+ y*? = z2 then
4p|x or 4p|y.

Remark 1. According to a result of Shorey [8]if (x,z) =1 and

. . lo 172
Ix] > 1 the greatest prime factor of z2—x” is greater than c(__g_p) ,

log log p
where ¢ is a positive constant. It follows that under the assumptions of
1 1/2
Theorem 1 both x and y have a prime factor greater than c(—ﬂﬂ— .
: log log p

The proofs of our theorems are based on three lemmas.

~LemMma 1. Let (x,y) =1 and p be a prime > 3. If p|z, 2}z or p }z, 2|z
then the equation xP+ yP = z? is impossible.

For the proof see [6].
LemMma 2. If p is an odd prime and (x,y) =1, pfx+y then

(x"+y"
x+y

,x+y)= 1.
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This lemma is notorious and its proof may be omitted.

LemMMA 3. If under the assumptions of Theorem 1, (x, y)=1, 2|x and
y > 0 then there exist coprime positive integers a, b and an ¢ = +1 such that
a>b, 2lab

ab
and either
) 4o~ (a—b)p —(a—cbyteyr, x=abla=ed)
y Yy
or
3) 4r-1 (_a;b_)p =yP—(a—b)P, x= _—_iaf}fa_-—b)‘

- Proof. From (x, y;) =1, xP+y* =22 it follows that (y,z)=1 and
from 2|x we obtain (z+y?, z—yP) = 2. Thus x? =(z—y®) (z+y") and for a
suitable ¢ = +1

z+ey? =207 xf,
z—¢gyP = 2x5,
X =2x,X3, 2)X3, (x;,Xx3)=1.
Consequently, 2cy? = 2P~ ! x? —2x%; hence
4 x§ =2P"2xP —gyP.
But (4) holds if and only if
&) (2ex; Y +(x3)? = (x§ + 2eyP)>.

From 2 }x, it follows that 2 y x5+ 2ey”?. Since (x,, xz) =1, 2}x5, (x,y) =1,
x,|x, we have (2ex, y, x3) = 1. If p|x8+ 2y” then by Lemma 1 the equation
(5) is impossible. Thus we can assume that pf{x5+2cy?. By Lemma 2 we
have '

CEET N

and (5) implies

(6) 2ex, y+x3 = h®, where h|x§+2ey?, h > 0.
But (6) holds if and only if

) (hx2)*+(x, y)? = (x}+ex, y)2.
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The equalities (x,, x,) = 1, (y, x;) = 1, h* = 2ex, y+x} imply (hx,, x, y) = 1.
Since x, is odd, so is h; thus 4|h>—x2 and 2|x, y. Hence the solutions of (7)
are given by

hlle = a2_b2’ |x1|y = zab’ |x§+£x1 yI = a2+b2,

where a, b are coprime positive integers, a > b, 2|ab. The equality x3+ex, y
= —(a*+b? would imply

x2 = x3+ex, y—ex, y = —(a+eb sgn x,)?,

which is impossible. Thus xZ+¢ex,y = a?+b? and
x3 = x3+ex, y—ex, y = (a—eb sgn x,)?
and since a > b,
2ab
(®) |x,| =a—eb sgn x,, |x| = 5

Since (x;, y) =1, we get (1). If x > 0 there is no loss of generality in
assuming x; >0, x, > 0 and then (4) and (8) give (2). If x <0 (4) gives

—|x,|P = 277 2|x;|P—€y” sgn X, ;

thus ¢ sgn x;, =1 and (8) implies (3).

Proof of Theorem 1. Let x?+ y?? = z2 where p is a prime > 3 and
X, y, z are non-zero integers. We assume without loss of generality that
y >0, z> 0. We shall consider successively the following cases:

@ (x, =1, 2|x, x> 0;

@) (x,y) =1, 2|x, x <0,

(i) (x, y) =1, 2¥x;

) (x, y) # 1.

In the case (i) by Lemma 3 there exist coprime positive integers a, b and
an ¢ = +1 such that a > b, 2|ab and (1), (2) hold. We must have b <y,
otherwise the left-hand side of (2) is greater than the right-hand side.

Assume first that a < 6y2. Since x is even, y is odd,

(‘tz_—j;:bl)y:-’-—;w =1 (mod 2)
and (2) gives

4* " lla—eb+ey and 47" '<a+y<6y’+y.
Hence p < 2y+1 and since p is odd, p < 2y. Moreover, (2) gives

a

(a, y)

le (yP —bP);
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hence

a <(a, y)(y*—bP) < yP*?
and by (2)
9) x=‘—‘a—b—(‘;;8b2<8a2 < 8y?rt+2,

Assume now that a > 6y2. Since y is odd, we have y # 4b. If we had y > 4b

+1 it would follow
P —_ p
() <ol
y y

b 1
—_—— > _—— i =
(1 a) (l 5 ) ife=1,
( ())>a’(l——) if e=—1.
Thus we would get from (2)

_ 1 4 P
(X—l) >4(1—i),
y 6y

a contradiction. Therefore, y < 4b—1 thus

(ﬁb)‘, = af (y+ l)p
y y
P p
a»(1+(_))<a»(1+i) if =1,
a 6y

b\ 1Y
a’(l+— <a”(l+——) if e=—1.
a 6y

Therefore, we get from (2)

P 14
(ﬂ) <4(1+i),
y 6y

5 14
1+—— ) <a4.
( +6y+1) <

Since y>b =1, we have y > 3 and

5\ (Y,
— ) =>(= .
(l+6y+l) (19) >

On the other hand,

(a—eb)P+ey? >

On the other hand,

]

(a—eb)P+¢ey? <
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Thus p <2y and the estimate (9) for x is proved as before.
In the case (i) by Lemma 3 there exist coprime positive integers a, b
such that a > b, 2|ab and (1), (3) hold. Since.

Y —(a=by
y—(a—b)

it follows from (3) that
4*~lly—(a-b), 4" '<y—(a-b<y

=1 (mod 2),

and trivially p < 2y.

The equation xP+ y?” = z2 nges directly |x| < y? < 8y2"+2

In the case (iii) x? +y2”-— 2% implies

x*=@z-y)z+y?), -y, z+yP) =1
and
z—yP=x], z+yP=x%, x;>|x|,

(10) x5 —x§ = 2y°.
In virtue of Zsigmondy’s theorem [10] the left-hand side has a prime factor
of the form pk+1. Since it divides y, we have y > 2p+1.

If x, <p we have |x| =|x,|x, < x3 < p? < y%
If x, > p we have

x5—x8 > xB—(x;—2) > 2x87 1,

and (10) gives
2xB™1 < 2pP;  xy < yPPm ),
Hence |x| = |x,] x; < x}3 < y?PP~1 < 33,
In the case (iv) we proceed by induction with respect to (x, y). If

(x, y) =1 the theorem holds as we have just proved. Assume that it holds
if (x,y) <d and let (x,y)=d > 1. If q is a prime dividing d and

¢lix, &Il y, ¢'llz

we infer from x?+ y?? = z2 that either 28 < a, pf <y or 28 > a and px = 2y,
in which case a is even. Let us put

5= B if 28<a,
a2 if 28 > a.
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2 s

The numbers xq~ 2%, yg~% and zq~ 7 satisfy the same equation as x, y, z,
moreover (xq~ 2%, yg~% < dq~% <d. Hence by the inductive assumption

p<2yq~% |xq”*| <8(yq~%)**?
and p < 2y, |x| < 8y??*2. The inductive proof of the first part of the theorem
is complete.
To prove the second part let us note that if (x, y) =1, 2|x, y>0,z2>0
then by Lemma 3

either x >0, xy =4ab(a—eb) or x <0, xy = —4ab(a—b)

and 2|ab, 2 yy implies x = 0 (mod 8). Moreover by (5) the equation x?+ y*?
=z2 besides the solution (2x,x,, y, 2x8+¢ey?> has also the solution
{2ex,y, |X,3], |x§+ 2ey?|>. If the two solutions in question were identical we
should have x, =¢y, y =1, 2e+¢& = 3, (26x,)’+ 1 = 3%, which is impossible
for p > 3.

This completes the proof of Theorem 1.

Remark 2. By using estimates for linear form in logarithms of
algebraic numbers one can drastically improve the bound for p in the case of
x even, (x, y) = 1. Unfortunately we cannot do it in the case of x odd.

Proof of Theorem 2. If x?7+y?? =22, (x, y) = 1, 2|x we infer from
Lemma 3 that for some coprime positive integers a, b and an ¢ = +1

o= 4ab(a—eb)

’ :
o 4"“<a—:) = (a—eb)P+ey®.

Hence T—I; =c? (2P ! cP)? = (a—&b)’+¢ey?. By Lemma 1 we have p|c; hence
y
plx and since 8|x?, it follows that 4p|x.

If 2)x then 2|y and by symmetry 4p|y.

Remark 3. According to a theorem of Vandiver (see [4], Satz 1046) if
xP+yP+2P =0, where (x, y,z) =1 and p is an odd prime then

x? =x (mod p?), y’=y (mod p?), z°=z (mod p?).

Combining this result with Theorem 2, we get that if x2?+ y?P = z2? then
4p?|x or 4p?|y (by a more delicate argument given in [7] even 8p3|x or
8p%|y). Unfortunately we have no similar result for the equation x27P+ y2?

=2

Note added in proof. It follows from the Faltings theorem [11] that
the equation x?+ y?? = z2 has only finitely many solutions satisfying (x, y)
=1 for every given prime p > 3.
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