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ON THE DENSITY MAXIMA OF A FUNCTION
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It is well known that the set of points at which a function of a real
variable takes on a strict relative maximum or minimum is at most count-
able. O’Malley [1] showed that the set of points at which a real-valued
function defined on a Euclidean n-space takes on a strict density maximum
or minimum (defined below) is of measure 0. While a slightly stronger
result is given in this paper, it will be shown that very few additional
restrictions can be placed on the behavior of f on its set of density maxima
even if f is supposed continuous. For example, the image of the density
maxima of a continuous function of a real variable can contain an inter-
val. This will follow from the theorem which states that, given any con-
tinuous function f of a real variable and a closed set P of measure 0, there
is a continuous function g such that g= f on P, and P is the set of density
maxima for g¢.

The following definitions will be needed:

Given a set A, a point z, and a real-valued function f,

1. m*(A) is the Lebesgue outer measure of A, and m(4) is the Le-
besgue measure of A in the event that A is measurable.

2. B(x,r) = {t|dist(x, t) < r}. .

3. D, (A) =_li—1;1m*(A nB(x, h))/m(B(z, h)); similarly, D,(A) is defined
using lim. |

4. For 0< a<1, M (f) = {=|D,(f(t) = f(2)) < a}; similarly, M,(f)
is defined using D,.

5. x i8 a strict density maximum [minimum] of f provided
D(f()>f@) =0 [D,(f(t) <f(x)) = 0].

The set of strict density maxima of f will be denoted by M, (f).
A point « is a strict density maximum if and only if there exists a set ¥

such that z € E, D,(E) = 1, and the function f|E has a proper maximum
at .
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Note. While the main concern will be with functions of a real varia-
ble, the following theorem generalizes readily to a Euclidean n-space
and will be proved in that context. On the real line the definition of
D, [D,] refers to the upper [lower] symmetric density. This agrees with
the usual definition of density when D, =D, =0 or D, =D, =1.

THEOREM 1. If f(x) i8¢ any real-valued function defined on a Ewucli-
dean m-space, then m(M,_,(f)) =O0.

Proof. Suppose not. Then there exists an a with 0 < a’<< 27" such
that m*(M,) > 0. There also exists an ¢ > 0 such that if

1) A= {weﬂ?a|0< h < ¢ implies
m*((f(t) > f(z)) " B(z, b)) < am (B(z, h))},
then m*(4)> 0. Given A, let £ be a measurable set with A < ¥ and
m*(A) = m(E). The collection of all balls B(x, h/2) with x € A and 0 < h
< ¢ covers the set A in the sense of Vitali. So there exists an at most
countable collection of balls B, = B(«x, h;/2) which come from this collec-
tion, cover almost all of A, are pairwise disjoint, and satisfy
m(UBy) < m(E)-(2"a)™".
For each %, let
Y = infly (m*{t € B, |f(1) > y} < 2" am(By)].
It follows that

(2) m* {x € By |f(2) > yi} < 2"am(By)
and
(3) m*{x € B, |f(x) = ¥} = 2"am(By).

If x € B,, then
B, = B(w;y iy/2) = B(=, k).
Thus, from (1) and (3) it follows that if x € AnB,;, then f(z)> y,
(since m (B(z, b)) = 2"m(B,)). But then (2) implies that
m*(AnB,) < 2"am(B,).
Thus

m*(A) =Zm*(A nI) < 2"a ) 'm(By) = 2"am(UB,) < m(E).

This contradiction implies the theorem. y

Note that it follows from the theorem that the set of density maxima
[minima] of any function is of measure 0. On the real line the constant 1/2
cannot be improved, since any strictly monotone f satisfies D, (f(t) > f())
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= 1/2 at every point. That D, cannot be replaced by D, is shown by the
example to follow.

ProBLEM. Can 27" in Theorem 1 be improved for a Euclidean n-space
(n>=>2)% (P 1019)
Example. There is a continuous function f defined on [0,1] and
satisfying
m{xz| D, (f(t) > f(2)) = 0} =1.

Construction. Each real number x € [0, 1] can be written unique-

ly as ' ¢,(x)/n!, where each g, () is an integer, 0 < ¢, (z) < n, and the

n=2

sequence ¢, () has infinitely many non-zero values. For all real numbers z,
get g,(x) = fy(x) = 0. For n > 2 define g¢,(x) and f,(z) inductively as
follows:
27" if n is odd and g¢,(x) =(n+1)/2,
27" if g,(2) = 0 and f,_,(2—gu(@)/n!) > f,_, (@),
9. (x) = 2™ if ¢,(2) =n—1 and f,_, (w_l_qn(w)/'n') > fn—l(m)y

2" if n is even, ¢,(x) is even, and ¢,(z) # 0,
—27"  otherwise,

fn (w) = On (SU) +fn—l(w)'

Clearly, this sequence of functions {f, (x)} converges, at every point x,
to a function f(x). To prove that f(x) is continuous, it will be shown that,
for every m,nam>=n, if |vr—y| < 1/n!, then

|fm (@) —fm(y) < 4-27"—2-27™,
This is clearly true if m = n = 2. Suppose that it is true for n =k
and m =k, k+1,...,k+j. Then, since for all ¢

Gre+5+1 (O < 2-‘k+j+l)7

we have
| fi4i41(®) — Frpsmn (W< 4 2=k _9.0-kti) L 9.9-(k+i+t) c4.0"F _9 .2—(k+1+l)’

and the statement is true for n =k and m = k+j+1.
Now suppose that it is true for n = k and m = k. Then, if

1
|w—yl<m and  fi(2) = fi(¥),

clearly
| fies1(2) = frpa (9) < 2 ’2_(k+l)-

On the other hand, if f,(x) # fi(y), by hypothesis we have

Ife(®) —fr(y) < 4-27F—2.27F = 2.27F,
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By the definition of g, ,, we obtain

fer1(®) = fepr )] = 1fi(@) —fr(y)]| —2-27¢F) L 2.97k+D,

The induction is complete, and thus the statement is true. But then
letting m approach oo, it follows that |x —y| < 1/n! implies

f(@)—f(y)l < 4-27%

and thus f is a continuous function. By observing g, (r) when » is odd at
points « for which k,(x) = (n+1)/2, one can see that f(x) > f(¢) provided

1 dist n—3
-77! < dist(z, 1)< —2—”';'—.

That is, the relative density of the set of ¢ in

[ n—3 +'n—3]
r———, 4+ —
2.0’ 2-n!

such that f(t) > f(x) is no larger than 1/(» —3). Consequently, each x
in A = {x| for infinitely many odd =, k,(x) = (n+1)/2} satisfies

D, (f(t) = f(x)) = 0.
Let
B, = {&|m > n implies k,, ,(z) # m+1}.

Then [0,1]nA4° = |UB,. However,

2m
M(Bn) = H—Z—’IIT-—-}-T = 0.

m=n

Thus m(4) = 1, and f(x) satisfies the hypotheses claimed.

The following result shows that any property which is satisfied by
the graph of some continuous function on a closed set of measure 0 can
be satisfied by the set of strict density maxima of a continuous function.

THEOREM 2. If f: R — R is a continuous function and P is a closed
set of measure 0, then there is a continuous function g which agrees with f
on P such that P is the set of strict density maxima of g.

Proof. Without loss of generality, P is compact, P < [0,1], {0, 1}
c P, and

f(0)+=x fr<o,

f(@) = fl)+1—a if 2>1.

(Heuristically speaking, f(r) will be diminished on the intervals
contiguous to P so as to be small enough on these intervals so that each
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x € P is a strict density maximum of g but not so small as to make tBe
resulting function ¢ discontinuous.)

For z € P°n[0, 1], let I, be the interval contiguous to P which con-
tains 2. Let d, = dist(x, P). Let {I,};—, be an enumeration of the inter-
vals I,. For each natural number », let k(n) be the least number such that

2 1L < n 2.

k=>k(n)
Let
In = {Ii k< k(n)}, E,={zlzel e},
and

Fn =Fni1 NIy
N

Note thaﬁ if I < [0,1]and |I|>n"", then
|EonI| < n i< a7,
and thus
|E,nI| > 1 —n"")I].

Let hy(x) = z+sup[f(t,) —f(t;)], where the supremum is taken
over all ¢,, ¢, with [¢t, —1,| < 2. Define h(z) on each interval I, € £, by

h(x) = min[2hy(|1|72d,), ho(2n7")]
and put
hiz) =0 if zePU(—o0,0)U(l, o).

Note that

ho(x) 18 continuous and strictly increasing on [0, o0);

ho(pz) = pho(2) if 0 <p <1, hy(pw) < pho(®) if p > 1;

h(x) is continuous (it is clearly continuous on each interval contig-
uous to P and, if {r,} = P° and x, — x, € P, at least one of 2ho(|I,”|‘2dzn)
or h(2n~') approaches 0 = h(x,)).

Let g(x) = f(x) — h(x). Then g(x) is continuous and, in order to show
that each = € P is a strict density maximum for g(x), it will suffice to
show that, for each x € P,

(4) limm{te [z, z4h]|g(t) = g(x)}-h™" =0.
h—o+t

A parallel proof will yield that, for each z € P,
lim m{t e [z —h,z]|g(t) > g(®)}-h~" =0,

h—ot

and thus that each x € P is a strict density maximum for g.
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Case (i). Let x be a left-hand end point of a contiguous interval
I, € #,. Choose h < 0 80 small that A < |I,] and

(5) 2ho (1117 d;) < ho(207)
whenever * < t< x+h. Then
h(t) = 2ho(IL17dy) > ho(dy) > |f(2) —f ()]
and it follows that
g@t) =f(O)—h(t) < f(2) = g{@)

whenever t € (z, x+ h).
Note. Whenever « is either end point of I, € #, and (5) holds, then

h(t) > k(I ndy) = |f(2) —f()].

Clearly, (4) holds for the point z; thus (4) holds for each left-hand
end point of intervals contiguous to P.

Case (ii). Let « be a point of P which is not a left-hand end point
of any contiguous interval. Let m be a large natural number and choose
¢ > 0 so small that ¢ < 1/2, ¢ < 1 — 2, and no interval of #,, meets [z,  +h]
whenever 0 < h < e. Given h with 0 < h < ¢, determine n so that (n+1)""
< h<n~'. Consider any interval I,e.#,,, such that I, c [z,x+h].
If I, € #,, then n > 7 > m and, for ¢ € I, satisfying nd, > 2 |1,|, it follows
that

ady > L%, L' =70, k(21017 %dy) = he(277Y),
and
(6) 2ho (11,172 dy) > ho(2777).

Consequently, h(f) = h,(2% ') on an interval I, < I,, where

L = Q=2 > (1 —m )|

1

Now, since |t —z| <n~ ", we have

h(t) = ho(2777) > ho(n™") = If(2) — f ()|

at each point ¢t e I,. (Note that te I € #;,, and In[x, 2 +h] # O and (6)
holding for ¢ imply h(t) > [f(t) —f(2)].)

Now consider an interval J = (u, v), if such an interval exists, satis-
fying Je g, n>n>m and < u<x+h<v. As noted above, there
is an interval J = J on which (6) holds and, consequently, g(t) < g(z)
on J. Let (a,b) > J be the largest such interval on which (6) holds. If
te(u, a), then, since

fw)—f@)<h(u—x) and g(z) = f(2),
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we have
0<g(t)—g(x) = f(#) —f(u)+f(u)—f(2) —h(t)
< f(#) —f(w) +ho(u —2) —2ho(IL,)~*d,).
Applying the Note from case (i) to the interval [u, t] yields
0<g(t)—g(x) < ho(u"‘w)—ho(lItl_zdt)
< ho(u—2) — ho((v — %)~ 'R (t—u)).
Whence, ‘a is at least as small as the number @ which satisfies
ho(u—x) = ho((v—u)"'% (@ —u))
and, since h, is strictly increasing, we have
a—u<a—u = (u—a)(v—u)m'.
Thus

: a—u
Ty, —_
<m b

U—2x

a—u
and ———<m,
v—u

and this implies that
[w, a]ln [z, 2+ k]| < hm~?

Now, if t e (b, v) and if (5) holds for ¢, since
F@)—f(@)< ho(v—x) and g¢(z) = f(a),
by applying the Note of case (i) to [t, v] we obtain
0 < Ro(IL17" dy) — [f (1) — ()]
and
0 <g(t)—g(@) = f(t) —f(v) +f(v) —f(2) — ()
< () —f(v) + ho(v — ) — 2Ry (11| ;)
< hy(v— @) — ko (11,172 dy) < ho(v — @) —ho((v —u) ™' 7 (v —1)) .
So b is at least as large as the number b satisfying
v—2 = (v—u)"'m(v-0>).

Thus

v—b
and -—
V—T

1

v—b< (v—x)(v—u)n" <m L.

Now, if [b,v]n[z,x+h] 7&0 then x-+h e[b,v] and it is easily
checked that
wj—h—l'j <.'v—b’
h v—2x

so that |[b, v]n [z, x+h]| < hm™.




252 J. FORAN

Putting these observations together with the fact that J and the
intervals I, are the totality of intervals in .#, , which meet [z, 2+ h],
we have

m{t ez, z+h]IfO) < f@)}>1A—-m™)1—m )h—2hm~".

Since m is an arbitrarily large number, (4) holds for z. Since = was
an arbitrary element of P, each element x € P is a strict density maximum
for g¢. y

In order to have each density maximum of g belong to P it is suffi-
cient to follow through with the above construction after having rede-
fined f on the intervals contiguous to P so as to make f linear on each such
interval. It is then readily observed that the construction does not yield
any density maxima for g other than the points x € P. Thus Theorem 2
is proved.

Next it is shown that any F, of measure 0 can be contained in the
set of density maxima for a continuous function.

THEOREM 3. If E i8 an F, of measure 0, F is a closed subset of E,
and f 18 a continuous function, then there is a continuous fumction g which
agrees with f on F such that each point of E i3 a strict density mazximum of g.
Moreover, given ¢ > 0, g can be chosen so that |f(x) —g(x)| < e.

Proof. Again, without loss of generality, £ < [0,1], and {0,1} € F.
Write E as (JF, with F, = F and F,}. As in Theorem 1, let

f(=) if xe{0,1],
Jo(@) =1 f(0)—= if <0,
fAY+1—z if z>1.

Now, let f,,, (k = 0,1, ...) be the function determined by applying
the method of Theorem 1 to the function f, with P = F,_, and the fol-
lowing alteration of the function k& to the function &,:

fxzel, eg,,

by = min[2ho(11,]72d,), hy(2n77), -27*];

if xeF,, set h,(x) =0.

Here, hy, I, and #, are determined by F, and f,. It follows that each
point of F, is a strict density maximum of f,,, for ¥ = 0,1, ... (by minor
modification of the proof of Theorem 1). Now, at each point z € [0, 1],
£u(@) > fi1(2) and, since

[i(@) = fr1(®) = () < e-27%,

it follows that g(x) = limf,(z) is a continuous function and that

f@—g@I< Y ea* =
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Moreover, g(z) = f,.(z) on F, and g(x) < fi(x). This, along with the
fact that each point of F, is a strict density maximum of f,_,, implies that
each point of F, is a strict density maximum of g. Thus the theorem is
proved.

One might suspect that the functions produced in Theorems 2 and 3
might have been constructed so as to be piecewise linear on each interval
contiguous to the compact set. Theorem 4 shows that, in general, this
cannot be accomplished. This result and the method for proving it were
suggested to me by Richard Fleissner.

THEOREM 4. Let P be a perfect set of measure 0. Suppose that f is a con-
tinuous function and the set of end poinis a, of intervals contiguous to P which
satisfy

Tm f(z)—f(a,) _
zeP |} ’ r—a,

18 dense in (a, b)nP, where (a, b)nP # B. Then, for every function g such
that ¢ = f on P and g t8 piecewise linear on each interval contiguous to P,
there exists a point x € P such that x ¢ M(g).

Proof. Without loss of generality, suppose that on a dense set of
left-hand end points ¢, in P, f satisfies

Tm f(@)—f(c,) — oo,
zeP r—c,

f is continuous, and f is piecewise linear on intervals contiguous to P.

It remains to show that not every point of P belongs to M,(f). Let m"
be the slope of the first linear piece of the graph originating at ¢,. Choose
h, > 0 so that this piece is defined on (c,, ¢, + &,). Then each m,, is negative
(otherwise, ¢, ¢ M,(f)). Choose ¢,{0 and consider the set A, consisting
of all # e P which satisfy

(7) f(cn) _f(w) < |mn|h’n
and
(8) (f(cn) —f(w))(cn—w)_l > Imnls';l'

Each 4, is open in the relative topology on P and, for each £,
Ek = m An
n=k

is dense in P. By the Baire, Category Theorem, () E, # 9. Let x € (N E,..
Then z € 4, for infinitely many ». Consider such an » and the set of 2
satisfying

(9) Co < &+ h < ¢y +(f(ca) —f()) Im,]| 7",
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Since, by (7),
(f(cn) _f(m)) |mn|_l < hn’
we have
f(w_*_h) =f(cm)_ lmnl(w"i"h_ n)°
But, by (9),
z+h —c, < (f(cn) _f(w)) |mn|—l .
Consequently, f(x -+ h) > f(x). Finally, the relative measure of
T (ews Cut (F(0)) = f(@)) Imy )
in the interval (w, en+ (f(c) —f() lm,,l“l) is given by
(L + (e — @) Im,| (f(e) —f () Y) 7,

which, by (8), is larger than (1+¢,)"".
Thus, since this is true for arbitrarily large =, it follows that
D,(f(®) >f(x)) > 1/2. Thus @ ¢ M,(f) and the theorem is proved.
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