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1. Introduction.” Throughout this paper the function f(s) is real
of period 2r, defined for all se(— oo, 00). As in [1], p. 16-20, we denote
by M(u), N(w), and M,(u), N.(u) (k =0,1,2) the suitable pairs of
non-negative continuous functions complementary in the sense of Young.
For the inverse functions the symbols M~!(v), N~!(v) ete. will be used.

Consider the n-th interpolating polynomial of f

n

% + ) (a{™cos ks -+ b{™ sinks)
k=1
with nodes
Q) n . ;
& = 2%—1—1] (=0, 41, £2,...);
write

14

a™
Ton(@3f) = o=+ D (A7) A7) (0 coskat Bsinks) (0 <v <),
k=1

where

1 2)...
gs 1, an (ot )(a+m>' (@+m L acoms 1),

Denote by w,(s) the step function which is equal to 2xnj/(2n-41)
for se(s™, s (j =0, +£1, +2,...). Introducing the integral notation
as in § 1 of [5] and putting

1 t 4
(1) = 5 + (A543 cos K,
k=1

we have
T+

1
@i f) == [ FOEs(s—a)dw, ().

z-m
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It is well-known ([8], p. 95) that the kernel of these Cesaro means
can be represented in the form

sin{(v+ 3+ 3a)t— 3 ma} 2%a

K@) = A% (25in }1)* ! »(25in }2)?

(191 <1)

for 0 < t < w. In particular, K?(¢) is identical with Dirichlet’s kernel.

The main theorems of this paper concern the convergence
of oy ,(x;f), a8 n>» — oo, for functions f belonging to the classes £
and V3, which are defined below.

The class Z consists of all functions f(s) which satisfy the following
conditions:

1° f(s) has in (— =, =) at most a finite number of infinite disconti-
nuity points (z is an infinite discontinuity point for f if, for every neigh-
bourhood U of #, f is unbounded in U), all of the form x;, = 2=r, with 7,
rational,

2° f(s) is Riemann-integrable in every closed interval containing no z,,

3° f(s) has a 2n-periodic majorant f*(s) (|f| < f*(s)), non-decreasing
in some left neighnourhood and non-increasing in some right neighbourhood
of every x,, Riemann-integrable in {(— =, =) in the improper sense. Without
loss of generality, we shall further suppose that the sets of points of
infinite discontinuity for f(s) and f*(s) are identical.

The following fact is principal. Given any feZ and an arbitrary > 0,
there is a positive ¢ such that

Zp+o

D[ fr@do s <e  (9¢<0,2m))

k :l?k—o‘

uniformly in » > 0. Indeed, let f(s) be infinitely discontinuous at the
point x, = 2=r, (r, = p/q) only. Assuming that

W< m<s  (0<plg<l),
and putting

Hn 1 — max {f* (3(n) f* (sﬁ)l)}’

we have
' z)+0 x)+0
f f*(8)dw,(s) < f f*(8)ds+ (s, — ™ H,, ,
$1—d El—

for sufficiently small ¢ > 0. But

854-)1_5”1 q
SLas Nt R ——1 <g—
x,— s +p(2n+1)—lq =1,
and
901—85"’ q

e — "—‘1 < _1.
5 —a, T D—pEnty L



TRIGONOMETRIC INTERPOLATION, III 147

Consequently,
371+U $l+0
J rr@do ) <@+1) [ fre)ds<e
r1—o T -0

for some positive o. The case of x, = s{™ is trivial. This proof suggests
also our general assertion.
Consider now partitions
P={a=t<h<..<(<t{, <..<t,=b}

of an interval (a, b) and the sequences U = (ug, %, ..., %,_,) of non-
-negative numbers such that

Write

Vae(fi 6, 8) = sup > M(|f(ti0)—f(t))

and
p—1
Vie(f5 o b) = sup D' 1f(tyn) = f(t)] -

These quantities are called the first and the second M-variation of
f in <a, b). R
By the inequality of Young ([8], p. 16),

(1) V;1(f§ayb)< Vulf; a,b)41.

Also, it may be shown (see [8], p. 171) that if V3 (f; a, b) < oo,
then there is a number 8 > 0 such that V,(6f; a, b) < co. Some other
properties of M-variations can be found in [2] and [4]. The class of all
f’s for which V3,(f; 0,2n) < oo will be denoted by V3,.

Given two ordered sets

. A = (a5 ...5a,), B =(b,by...,0,)
of n real numbers, consider the sequences

A =(aiya;’--°7a:)a B’ =(b;$b;y-°-’b:) (y<mn)
in which

, nE+41 , nk+1
o= D & and b = Db (k=1,2,..,),
f=ng+1 j=np+1

where 0 =n; < n, < ... < m,,, = n. Denote by ||A'||M1 the upper bound

of the sums )
D) lailw,

k=1
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taken over all non-negative sequences U = (u,, %,,...,u,) such that

Z Ny(u,) <1
k=1

Write I' = 1/N;'(1)N;'(1) and
Sy, m,(4, B) = 3}3;{1 {14 12z, " 1Bl 1, } -

Applying inequality ( )'of [3] and reasoning as in § 5 of [6], we easily

get the estimate
b' {F+2M ( ) ( )}SMle(A B)

needed in the sequel.

(2)

2. Fundamental lemmas. Start with the following
2.1. LEMMA. If 6€(0, ©) and fek, then

z+n R
lim (f + [ )f(8) K (s—2)dw,(s) = 0
Nn=v—>00 x— x+6
uniformly in xe(— oo, co).
Proof. Consider the integral

T+

Io, (@) = [ f(8)K3(s—w)dw,(s)
xz+4
which, is 2rn-periodic in z. Arguing as in § 2 of [5], we conclude that for
any f Riemann-integrable over {— =, m),
(3) lim J7,(x) =0 uniformly in .

n=y—>00
Now let fe£, 1e{—m, ™). Suppose that the majorant f* is infinitely
discontinuous at the points #,, ,, ..., «, belonging to (— =, 2r). Choose
an arbitrary e >0 and the intervals I, = (z,— o, 2, + o) such that

r zpto
Z [ rr@do<e (n=0,1,2,...).
Write i
x4+ T+7
Ins(@) = [ {f(8)—g(8)} K2(s—)dw,(s)+ [ g(s)Ki(s—z)dw,(s),
, z+6 z3s
where

0 for sel, (k =1,2,...,7),

g(8) = e
f(s) for remaining se(— m, 2%).
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The first integral does not exceed (in absolute value)

r zxpto

1 €
S8} o ;zk[; f*(8)dw,(s) < 2ol

Since g(s) is Riemann-integrable, the second integral tends uniformly
to zero. Thus the relation (3) holds for any f of class Z.
Evidently, the integral

z—8

Tho@) = [ f(&) K (z—s)dw,(s)

behaves analogously. Hence the result follows.
2.2. LEMMA. If 8¢(0, ) and fe V3., where

8
M(u):u‘”“(log%) (—l<a<0,8>—1/a)

for small w >0, then

4T

lim (zf_ + f )f(s)K:(s—w)dw,,(s) =0

n=v—>00 T—T x+8
uniformly in &e(— oo, o).
Proof. Confine our attention to

T+

Ia. (@) = [ f(8)K;(3—@)dw,(s) (—m < &< ).

x40
As it is easily seen,

T+

1£(s)] m Tf(s)]
, vEmie—ap <G | Gy

< n2H [ 5t 27 0 <v<n)
S — LSS
0\ 2n+1 ’

where H = sup |f(8)] < oo. Hence

—M<IKT

o 7T sin{(»+ 3+ $a)(s—o)— 4 ma}
Tl = [ e e e e a0 ()

x+4

uniformly in x. Therefore, setting

_ cos{}a(s—x)— 3ma} _ sin{}a(s— z)— irna}
Fy(s) = fi0) e Bale) =10 T P ln,
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we obtain
z+m
Tho@) = g5 +f Fy(5)sin v+ ) (s — 2) dw, (8)+

4,

T

z+n
+ a5 | Fu)eost+ Ds—a)day(s) +o(1)
)

A J“(w)-l- J°2($)+ (1)

as n =y — oo,
Suppose that

s < o 0 <8 < s < L < D < 2t m < 8.
Then

Iy (@) =

= +12F(s‘"’)sxn(v+%)(s(”’ )

and, by the Abel transformation,

27 LS
Jid@) = 5o D7 Y {Fu(s)— Fi(sf}sin -+ (e —a) +

m+1 =
T (n) S ] n)__ — p° a
+ gy Pl )g,; sin (v-+4) (sf7— ) = B3, (2) + T3, (a).
Since
H S o2n+1
(n) n)__
[Fy(sm’)] < (@sing )T’ ,=2k sin(v+ 3) (s — ) | < 21

we have
) 1
T, ,(z) = 0(—) as n=>v - oo,
Y

uniformly in z.
Further, let

p=—1/a, 1/p+1llg=1, 0<y<(B/p)—1

Write
 (4) = u? / (log—:—)qy (¢ = 6me)

for ue(0, 47>, and

1 — 1
= v Fw +Z ( )M (,,)
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The last series converges, because

Blp _ 1 a\?

M*(v)@"”( pl) ;B <o (7 1o )
log —
v

if v is small enough. Thus, inequality (2) yields
By, (#)] < QV(Fy; @+ 8, &+ m) Vi (G5 ,; 4+ 8, 2+ ),
where

t
G,..(t) = fsin (v—l—%) (s—ax)dw,(8).

Denote by V(g; a, b) the ofdinary variation of g(s) in {a, b), and set

.1 —e-t 1 1
9z(8) = (2807 (8— ) ) ¥a(8) = cos o a(s—a)— o mar.
Then,

1 —a-—1
V(pg; 2+ 6, 2+ 7w) = (2sin§ 6) —g~e-1
and
1
Vg v+ 6,w+n)<§a(n— s).
Congequently, for all z,
Vu(Fy; o+ 68, o+ )

_ Vilfso+ 8,2+ 7)
(28in 36)*+T

< (28in38)"* 7 {2V (f; 0, 2r)+ H N~} (1) (1+ $am)}.

+HN(1) V(p,ye; v+ 6, #4)

To evaluate the J-variation of GZ,(t), let us choose

2
2, = o+ 2v—}—1/1 (A=0,1,2,...,%), 2, =x+m.
Taking non-negative u, such that
D N(w) <1,
A=0
we have
v z v
A+1 . 1 | 9
,12 f sin v-}—E (s—x)dw, (8)| u; < v 1 Zul
=0 2z, A=0

on . (v+1)°
g1 UTOY (v+1) < Qogr 0y’

C = const

~
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(see [3], p. 453 and [1], p. 25). Analogously, for any subsequence {z T+l
of {z;};*' and for all %, > 0 such that.
ZN(«%,-) <1,
i=e
we have
A 1 1)
. ‘V
. 1 d <
2 f sm(v+ 2)( x)dw, (8) | 4; 2v+1 {log YT Y

i=e %4
Consider now an arbitrary partition
=t <th<..<K<t, <..<t<t, =0+
r
together with non-negative w,; satisfying the condition 'ZN w.
Let us write =0

r b

Z f gin (v+ %) (s—m)dd)n(s)) w,

=0

f sin(v—l—%) (s—x)dw,(8)| w

(3 3]

where )" denotes summation over all these ¢ for which <%, t;,,) contain
no 2z, (A =0,1,...,7). The integrand is of constant sign in <z, 2;,,).
Hence

L1 25+1

2‘_{ sin v+1}) (s—x)dw, s)’ ,\Z’ gin(v+3) (s—=x (8).w‘i

for some subsequences {z;} and {w,}. Furthe_r,
tit1

Z” f sin(v+ 3) (s — @) do, (s)| w

? li

27‘C 1

< ..
21 4 Wi

Therefore, by the above estimates,
V(65,5 @+ 8, v+ ) < V(G5 @, o4 m) < 20

uniformly in z (0<v<n, n =0,1,2,...).
Collecting the results, we obtain
(v+1)°
{log(»+ 1)}

uniformly in . Similar calculations show that this relation remains true
for J,2(x), too. Thus the proof is completed.

(v+1)°
{log(v+1)}"

) as n=v —»> oo,

T () = 0(
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Remark 1. In the case n = O(») it may be supposed f > 0. Indeed,
observing that

B @) < 5 2 PACURS ATN]

and applying the inequality of Holder’s type ([3], p. 453 or [8], p. 175),
we get

| By, (2)] <

Vi (Fy; w+6,x+n)-(2n+1jM—l(

17 )
2v+1 o2n+1)’

whence
R; ,(x) = O(»*(logn)”) as n>» — oo.

The conclusion is now evident.

Remark 2. Also we can prove that the Fourier- Lagrange coefficients
a™, ™ of feV?%, are of the order O (k*/(logk)”) as n >k — oo, where y
is an arbitrary positive number less than —af—1 (cf. 3.3 of [5]).
Finally, we shall give an auxiliary result proved. in [4].

2.3. LEMMA. Let f(s) be continuous at every point of the interval {a, b),
and let

Vi, (f; a—m, b+19) < oo

for some n > 0. Suppose that, for any positive integer k and all integers r
large enough (r > k),
rNy(u) < N (ru/k)

whenever 0 < rulk <1 (I being fixed). Then,
llmVM f, 5,m+6) =

6—0
uniformly in xela, b).

3. Main results. Now we shall present two theorems similar to that
of [6], p. 275, [7], p. 610, and [5], § 3.

3.1. THEOREM. Suppose that fe is continuous at every point x of an
interval {a, b), a < b, and that

Vi, (f; 8—7,b+7) < oo
for some positive 7, where °
Mo(u) = exp(—u~""%) (B, >2)
for sufficiently small w > 0. Then )
lim o, (z; f) = f(2)

n=v—00

uniformly in xela, b>.
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3.2. THEOREM. Given any ae(—1,0), let M(u) be as in 2.2 and let
2+a)

a

1)%
My(u) = u-”"(log;) (ﬂo > —

for small u > 0. Suppose that fe V3, is continuous at every  of {a, b>, a < b,
and that
Vg (f5 a—n,b49) < oo
for some n > 0. Then
lim o, ,(2;f) = f(=)

n=v—>00
uniformly in xela, b).
Simultaneous proof. To fix the ideas, let —rt<a<b<
Considering ae(—1, 0> and d¢(0, ©), we write

-6 x+6 T+

0 3 ) — f(x)——(f S+ f){f(s (@)} K (s— ) doy (5).

In view of 2.1 and 2.2, the first and the third integrals tend to zero
uniformly in x. Hence

(@3 )= f(@) = T, (2, ) +0(1) a8 0> > oo,

where
x+4

L@, 8) = [ {f6)—f(@)} K (s—a)dw,(s)
z—9d

- Z{f (5§)— f (@)} K3 (6" — )

if
s <r—o<sM<s <. ... <M<t o<,

Next, the Abel transformation gives

Lon(@, 0) = o0 +1 Z{f(s‘"’) —f(s{)} K (8™ — @) +
(7") afo(n) __ —
+ o +1{f ) — w)};m(sg 2) = T\+T,.

Choose, for small > 0, the following pairs of positive convex func-

tions:
-1 ' c\2 .
M,(u) = exp (W)’ M,(u) = /(log;) if a =0,



TRIGONOMETRIC INTERPOLATION, IIT 155

where 2 < B, < B¢, 1 < B < B1—1, ¢ =1, and

Bs

1\~
M,(u) = u‘”“(log;) , My(u) = u”‘”“’/(log%) if a<O0,

agsuming that —(2+a)fa< B < By 1<Bf< —(1+aB)/1+a), ¢=>1.
Clearly, the series
2o ()
I I

t
i(t) = [ Ki(s—x)dw,(s)

~27

converges. Writing

and reasoning as in [6] and [7] (see also [5], § 2), we observe that the
first variations

Vi, (P35 8— 0, 2), Vi, (P75 @, @+ 6)

are bounded uniformly in z, n,». By (1) this extends to the second
M,-variations, too.
In view of (2),

. 1 1
T < {F+ZM:‘(;)M;‘ (;)} Vie, (fs #— 8, @+ 6) Vi, (9335 20— 8,549).

u=1
Hence, by continuity of f and 2.3,
|Ty|+ T >0 as 6 -0+,

uniformly in x, n, », and the desired results follow.

Remark. If n = O(»), the last theorem is valid for arbitrary M ()
in which # >0 (see Remark 1 to 2.2).
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