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On the asymptotic stability of solutions
of functional differential equations
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by J. TERJEKI (Szeged)

Abstract. The paper deals with stability properties of the zero solution of func-
tional differential equations of retarded type with infinite delay. The main result
is a refinement of the method, used by Mikolajska [7], adopted here to suit the in-
vestigation of asymptotic stability.

1. Introduction. Terminology

Denote by R, R*t, R~ the real, non-negative, non-positive real numbers
resp. and by R" the set of all ordered n-tuples. Let |-| be a norm in R".
C denotes the Banach space of bounded continuous functions ¢: B~ —R"
with the norm |jp|| = sup {l¢(s)|: s e R~}. Given a t € R* and a function
z: (—o0,t]—>R" which is bounded and continuous, we define z, € C by
xz(s) =x(t+s) for se R™. For a given ¢ with 0 < o < oo write O,
= {peC: lp| < ¢}. C, is the closure of C,.

Suppose there is given a functional F(t, ¢).

Consider the functional differential equation

(1.1) Z(t) = F(t, z,).

In the followings we always assume:

1° For every (ty, @) € RT X C, there exist 2 number ¢ > 0 and a con-
tinuous funection x: (— oo, t,+ )—>R" (called the solution of (1.1) through
(o, @o)) such that z, = ¢, # is derivable and absolutely continuous on
(o, to +¢), and satisfies (1.1) in this interval (sce Halanay and Yorke [2]),

2° If the solution # is non-continuable on (— oo, T) with T < oo,

then limsup [z ()| = .
{—=T—0

3° F(t,0) =0 for te R".

We shall denote by x({,, ¢,) any non-continuable solution of (1.1)
through (29, @o), bY ®(?; %y, @) its value at ¢ and by ,(fy, ¢,) the corre-
sponding element of C.
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Now, to avoid ambiguities, we list the stability definitions used in
what follows.

We shall say that the zero solution of (1.1) is

(i) stable at t,, whenever for each ¢ > 0 there exists d(s, {,) > 0, such
that for any g, € Cy(,4,), €ach solution z(%,, @) is defined on R and satisfies

(1.2) [B(t5 %0, @o)| < &, t=1;

(ii) stable, if for every t, € Rt it is stable at t,;

(iii) uniformly stable, whenever for every &> 0 there is a d(e) > 0
such that if ¢, e(_}a(,,, t, € R*, then any solution z({,, ¢,) is defined on
R and satisfies (1.2);

(iv) equi-asymptotically stable, if it is stable and for every i,e R*
there exists A({,) > 0 such that, for arbitrary g, eCd(, ys any (ty, @)
is defined on R, and for'every 5 > 0 there is T'(t,, #) > 0 such that

(1.3) l2(t; o, o)l <y T=t+T(2, n);

(v) strictly equi-asymptotically stable, if it is uniformly stable and
there exists 4 > 0 such that any x(t,, ¢,) is deifned on R for ¢, ¢ R* and
@, € 04, and for arbitrary 5 > 0 there is a T(fy, ) > 0 such that (1.3)
holds;

(vi) uniformly asymplotically stable, if it is strictly equi-asymptotically
stable and for every # > 0 there exists 7(%) > 0 such that if {,e R¥,
@, € C4, then

[2(2; Loy @)l <7m, t=t+T(n);

(vii) exponentially stable, if there exist constants 4 >0, B> 1, a> 0
such that for ¢, € R, ¢, € C 4, any x(t,, ¢,) is defined on R and the following
inequality holds:

(85 20, @o)l < Blipolle =0y 1> 1.

We denote by K the set of strictly increasing, vanishing at zero
continuous functions mapping R* into R™.

In what follows we assume the existence of functions V, w, w,, w,, ...:
R X R*—~>R, which are supposed to be continuous everywhere and con-
tinuously partially differentiable on R x (R"— {0}) with respect to each
‘of their variables. The function V is positive definite, i.e. there exists a func-
tion a € K such that a(|z|) < V (¢, #) holds for ¢t e R* and % € R™.

For every V (similarly for o, w,, w;,...) we define the function
V: R* xC,~R by

. ov
Vit o) =5 (,¢(0>)+Za (4, 9(0) Fy(t, 9),

i=1
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which is called the total derivative of V by virtue of equation (1.1) (F;(t, ¢) is
the ¢-th component of F (¢, ¢)).
Obvicusly, for every solution z(%,,¢@,) of (1.1), if x(¢;1t,, @, #0

for t e [ty, T]1 (T > t,), then V(t, x(¢; t,, o)) is absolutely continuous on
(6, T'] and

d
at V(ty z(t;5 to, ‘Po)) = V(ta %y (to, ‘Po))a te(ty,T).

Several important special cases of (1.1) have been investigated.
One of them is the class of equations treated by Krasovskii [4], where
has poperty: there exists h > 0 such that, if ¢,y €C and @(s) = p(8) for
se€[—h,0], then the equality F(t,¢) = F(t,y) holds for all te R*. In
this case equation (1.1) is called an equation with finite delay.

The stability behaviour of these equations — as it was proved by
Krasovskii — can be studied in a way analogous to Lyapunov’s method
[6], with Lyapunov functions replaced by Lyapunov functionals. With
the aid of these functionals one can state necessary and sufficient conditions
for some stability properties and can answer some special problems (e.g.,
that of stability in the first approximation). But in concrete problems the
construction of these functionals — without using the explicit form of the
solutions — is rather complicated. Therefore some other methods, with
ensure only sufficiency, but can be applied easily, are of great importance.
Such a result is Razumikhin’s method [8], where the stability is ensured
with the use of Lyapunov functions. Razumikhin proved the following
theorem on equations with finite delay. If there exists a function V with

(L.4) V(t,9) <0
on the set
(1.5) {(t,9): V(t+s,9(s) <V ¢(0),secRE},

then the zero solution of (1.1) is stable. Razumikhin tried to apply his method
to the investigation of asymptotic stability, but his result — as it was
observed by Mikolajska [6] — was incorrect. A fairly well applicable
theorem on asymptotical stability was obtained by Krasovskii [4], who

proved (for equations with finite delay) that if instead of (1.4) we assume
the imequality

(1.6) V(t, 9) < —e(ip(0))

on the set

(1.7) {t, 9): V(t+s,99) < f(V(t, 9(0), s € B},
and if

(1.8) Vt,z)<b(jz]), teR*, reR",
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where ¢, f, b e K and f(v) > v for v > 0, then the zero solution of (1.1) is
asymptotioally stable. Later on, assuming the same conditions Driver [1]
proved the uniformly asymptotical stability of the zero solution.

In 1969 Mikolajska [7] obtained a result more gencral than that of
Razumikhin’s. She studied — using functions w,, w,,..., w, — the sta-
bility at 0 of the zero solution of some special equations with finite delay.
In the scalar case there are assumed (instead of the positive definiteness
of the function w) the inequality zw(f, ) > 0 for ¥ #* 0 and the positive
definiteness of |w(l, #)|. Inequality (1.4) was used in a sharper form
@(0)o(t, ¢) < 0, required, however, to hold only on the set

{(t, 9): dlw(t, p(0)| < |e(t +5, 9(s) < |o(t, (0))}, s e B™}.

Seifer [8] studied the stability at 0 of the zero solution of equations
with infinite delay of the type in which F (¢, ¢) = F(t, v) if ¢(s) = p(s)
for se[—t,0]. It was shown that ¢f there exists a function V with (1.4)
on the set (1.7) and with (1.8), then the zero solution is stable at 0. He gives
an example shoving that Krasovskii’s theorem mentioned above is not
valid for equations with infinite delay.

Our main result is a refinement of the method used by Mikolajska,
applied so as to suit the investigation of asymptotical stability. As corol-
laries we get an extension of the theorems of Razumikhin, Krasovskii,
Mikolajska, regarding (1.1), and a generalization of Seifert’s result.

We also give examples to show that our results can be used in several
cases in which the above cited theorems cannot be applied.

2. The exposition of the method

In this section we present our method giving some relatively simple —
but not too special — results. We use a single function V. The results
will be formulated in Section 3 with more than one auxiliary function.

Besides the function V (with the poperty: a(|z]) < V (¢, #), t € R,
@ € B, where a € K), let there be given a,f e K with a(r) < f{(r)<r
for r > 0 and f: R~ X Rt —R™* such that f(0, v) <o for v € R and f(s, v)
is increasing in s for fixed ». For a given r > 0, t e R* and ¢ € R* with

t<t, we define the set
Z(t, ¢, ) ={(p €C,: a(r) < V(t+s, p(8) <r,se[i—t,0];
f(s, V(t+s,¢p(s)))<r,seR'}

and introduce the notation:

2(t, ia r) = Sup{V(t,tp): peZ(t, '1’7 r)}
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Moreover, let a function k: Rt —-R* be given, k(1) <t, and let us define
the set

N(@t) = E}o(Z(t, R(1), r)n{p € Cpr (2, 9(0)) = B(r)})-

THEOREM 1. Assume that we can find functions V, a, 8, f, h with the
above properties. Then:

1°¢ The conditions

(A) for every t,e R* there is b, € K with V(to—l-s,q;(s))gb,o(]lcpll),
seR™, pe(,,

(B) V(t,9) <0 if te R*, h(t)> 0 and ¢ € N(2),

(C) for every teR*, re(0,a(o), ve(h(t),t| and se[z,t] the set
Z(s, T, r) 18 not empty, the function z(s, t, r) is integrable with respect to s

and
t

fz(s, T, r)ds < f(r)—a(r),

imply that the zero solution of (1.1) is stable.
20 If (A), (B), (C) hold together with
(D) lim (sup{f(s,v): 0 <v<a(o)}) =0,

§—>—c0
(E) B(r) <r for every 0 < 7,

(F) for every r e (0, a(g)), to € R* there ewists an interval [T, (ty, ),
T.(to, r)] = (p, ©) such that Z(s,t,,r) is mot empty for s e[T,(ty,7),
T, (ty, 7)1, the function z(s, ty, r) is integrable with respect to s and

Talto,7)
2(8, ty, rYds < a(r)—r,
Ty(tg,7)
then the zero solution of (1.1) 4s equi-asymptotically stable.
First we prove some lemmas:

LEMMA 1. Let v(t) be continuous on [t,,1,] differentiable on (i, t;)
and let v(t,) < v(t,); then there emists t* € (t,,t;) such that v(s) < v(t*) if
s € [t,, t*) and v(t*) > 0.

The proof goes easily by using e.g. the function

1) = Folt) + 50t + 5 w—) (t—1,).

Let x(t,, @,) be a solution of (1.1) defined on ( — oo, T), where T > .
Put v(2) = V(t, 2(; 8, @o)).

LEMMA 2. Suppose that conditions (B) and (C) are satisfied. For arbi-
trarily given r and t, (0<r<a(o),t,<t;<T), if fls,v(t,+98)<r,
-8 € R™ and v(t,) < a(r), then v(t) < B(r), t € [t;, T).
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Proof Suppose the assertion to be false, i.e., assume that the set

= {t: v(t) > B(r),t €[t,, T)} is non-empty. Put ¢, = infQ. Then »(t,)

= ﬂ(r) Choose arbitrarily i; € Q. By Lemma 1 there exists ¢, € (¢, t;)

with #(,) > 0 and v(2) < v(3,) for t € [,, ¢,). Let »" = ~'(v(1,)). According

to the definition of #,, v(f,) < a(r) < a(r’) and v(?) < B(r) < B(r') for
t € [t,,1,]. Therefore there is i, €(t,,?,) such that »(f;) = a(r’) and

(2.1) a(r’) <o) < B(r'), te(tyt,).

Now we show that for any ¢ e[i,,1,]
(2.2) fls,v(t+s)) <, seR™.

Indeed, if s e(?,—17,0), then v(t+s) < B(+') and thus f(s, v(t+5))
v(t+s8) < B(r)y<r'. If se(—o0,t,—1t], then according to the mono-
tonicity of f and the assumptions of Lemma 2 we have

fls,v(t+s) =f((s+t—14)+t,—t, v(t+s))
<Sls+t—ty, v((s+t—t)+t))<r <.
There are two possibilities:
(a) 1, < h(ly),
(b) t, > h(t,).
Case (a) leads to a contradiction because, according to (2.1), (2.2),
t, > 0 and the definition of 7, we have @, € N ({,), h(t,) > 0, and therefore,

on account of condition (B),v(f,) = V(t4,w,4(to,q;0)) < 0 (contrary to
the choice of i,). t
4
If (b) is satisfied, it follows from (¢) that f 8,1y, r)ds < B(r')—a(r’).
But from (2.1) and (2.2) we have z,(%,, @o) eZ(s ts, '), 8 € [t,, t,]; there-
fore »(8) < z(s,%,,7’) and so we have the contradiction:

t4
B(r')—a(r') = v(ty) —o(ts) = [ d(s)ds

t2
¢
< fz(s, 1y, r')ds < ,B(f’)—a(r').
:

The proof of Lemma 2 is complete.

LEMMA 3. Suppose that (F) is valid and T = oo. Then for arbitrarily
given 1, 1, (0 <7 < a(e), t, = 1,), if v(1) < r for t € [ty, co) and f(s, v(t,+9))
< r for s e B, then there exists ty, € [t,, T,(t,, r)] such that v(t,) < a(r),

Proof. Assume that our lemma is not true for some 0 < r < a(p)
and f, >1t,. Then a(r) < v(t) <r for te[i,, Ty(t,, r)]. Similar reasonings
as in (2.2) show that for all te[t,, T,(t, )] we have f(s,v(t+s))<r
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for s e R~. Hence ,(t,, p,) €Z(t,t,,r) for te[t,, T:(t,r)]. By using
(F) we obtain:
To(ty, 1)
a(r) < o(To(ty, 1) = o(Talty, 7))+ [ o (B)de
Tyt 1)
Ta(t1,7)
<r+ f z2(t, t,r)dt<r+a(r)—r

\ Tytpr)
which is a contradiction.

Proof of Theorem 1.1° We first prove the statement concerning
the stability.

For a given e with 0 < ¢ < gand ¢, € R* put d(e, #,) = b,;l(a(ﬂ-l(a(e)))).
Here the functions b, , a, g are given in the assumptions of the theorem,
the function e belongs to K and a(|z|) < V(¢, %) for t € R*, 2 € R*. We
prove that the number d(e, ?,) so defined satisfies the requirements for-
mulated in the definition of stability.

Let ¢, 5(7,,(8, ¢, and let (%, ¢,) be a non-continuable solution on
(—o0, T). Then

v(t) = V(to’ Z (o3 Ty, ‘Po)) = V(t, o) < a(ﬂ_l(a(e))).
From Lemma 2 with , = t, and r = §~*(a(c)) we get
(2.4) v(t) = V(t, ®(t; 1o, @o)) < ale), telty, T).

The positive defineteness of ¥ shows that from (2.4) follows |z(2; ¢y, @,)l
< & t € [ty, T'). The assumptions on (1.1) given in Section 1 ensure T = oo;
therefore the zero solution of (1.1) is stable.

2° Let o’ with 0 < ¢’ < ¢ be chosen arbitrarily. In order to prove
the equi-asymptotic stability of the zero solution of (1.1) it will be sufficient
to show that there exist sequences {s;} and {z;} snch that s;—0 and

(2.5) v(t)<s, telr, o,

for ¢ =1,2,..., where v(t) = V(t, z(¢;t, @o)) With @, € Cyy, ., chosen
arbitrarily.

Such sequence {s;} and {7;} can be constructed as follows.

Define the sequence {s;} recursively by s, = a(o’), $8; = B(s;_,),
4 =1,2,... Since 8 € K and since B(r)<r, r > 0, it is easy to see that
$;—0 as i—oo.

To construct the sequence {r;} let us define 0 < H(r) < oo for 0 < r
< a(p’) such that

sup{f(s,v): 0<o<a(e)}<r i s< —H(r).
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Let 7o =ty and v; = Tylr,_, +H(s;_1), 8:-1), 2 =1, 2, ... (T,(¢, r) is given
in assumption (F) of Theorem 1).

We shall prove (2.5) by induction. For ¢ = 0 (2.5) follows from (2.4)
with ¢ = o’ and T = oo. Assume (2.5) for 4 =0,1,...,7—1 (1 <j); we
shall prove it for ¢+ = j.

Let us apply Lemma 3 with » =s;_, and ¢, = 7;_, +H(s;_,). The
conditions of Lemma 3 are satisfied, since if s € (—H(s;_,), 0], then

f(s, vty +H(8;_y) +3)) < ’U(Tj—1 +H (s;_,) ‘|'3) < $j-a-

Should it happen that s < —H(s;_,), then according to the definition of
H(s,_,) we would have f(s, 'v(r,-_l+H(s,-_l)+s)) < 8;_,. Hence we obtain
that there exists f, € [r;_, + H(8;_,), Ta(v;_, +H(8;_,), 8;_,)] such that v(t,)
< a(s;_,). Thus from Lemma 2 (r =s;_,,? =1,) it follows that »(t)
< B(s;_,) for te[t,, o). Because of t, << Ty(r;_,+H(s;_,),s;_,), We see
that (2.5) holds for ¢ = j and thus, by induction, for every ¢ = 0,1, ...
Q.e.d.

By simple modifications (where necessary) of the proof of Theorem 1
we obtain:

THEOREM 2. Suppose that we can find functions V, a, B, f, b with the
properties formulated at the beginning of this section. Then:

1° If conditions (B), (C) hold together with
(G) there exists b € K such that

Vi, »)<b(lz|), teR,wekR",

then the zero solution of (1.1) 48 uniformly stable.

2° If (G), (B), (C), (D), (E), (F) hold, then the zero solution of ‘(1.1)
s strictly equi-asymptotically stable.

3° If (G), (B), (C), (D), (E) are satisfied together with

(H) for 0 < r < a(p) there exists T(r) > 0 and for t € R there exists an
interval I(t,r) < [t,t-+T(r)] such that

z(s,t,r)ds < a(r)—r,
I, r)

then the zero solution of (1.1) 4s uniformly asympiotically stable.

4° Let (G), (B), (C), (H) be satisfied and if a(r) = ar, B(r) = Br with
some constants a, B, 0 < a < f < 1; suppose that there is a constant L > 0
such that T(r) < L for 0 <r < a(p) (T(r) is as in (H)) and that there exist
B> 0,v> 0 such that for 0 <7 < a(p), s € B~, we have sup{f(s, v): 0 << v
< 7} < Bre™, then the zero solution of (1.1) is exponentially stable.
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3. Some extensions and remarks

1. In the case of equations with finite delay, the function f may be
neglected, because
v, se[—h,0],
0, se(—oo, —h),

f(s,v) =

satisfies the assumptions of Theorems 1 and 2.

2. The problem is similar in the case of some equations with infinite
delay. To see this, one must allow the dependence of f on f. Namely, if
f: Rt xR~ xR*—R™* and if, for fixed ¢, », f(t, s, v) is non-decreasing in s,
if, further, f(¢+p,s—p,v)<f(t,s,v) for ¢, peR", seR™, veR™,
f(£,0,v) <o for te RY, ve R*, and if instead of (D) the assumption

(D’) for every r > 0, t € R*

lim (sup{f(t,t—¢,v): 0<v<r}) =0
m v

is required in Theorem 1, then the statements on the stability properties
remain valid.

Using this remark we have: If for every t € R* there exists h(t) >0
such that F(t,9) = F(t,y) whenever @(s) = p(s) for se[—h(l), 0], if
t—h(t)—>oc as t—>o0 and if the function t—h(t) is non-decreasing, then

v, se[—h(?),0],

f(t, 8,v) = 0, se(—o0, —h(1),

satisfies the assumptions of Theorem 1.

3. Using k auxiliary functions (1 < k < n) we can give an extension
of Theorem 1. Instead of the set Z(t, #, r) we use sets with finer struecture.

Let there be given functions w,, w,,...,®w, and write (t,®)
= (w,(t, @), ..., w(t, ©)). Let a, f € K be given with a(r) < g(r) <7 for
r > 0. Further let f: R~ x R*~R* be such that f;(s,v)>0 for seR",
v € R*; £,(0, v) < |v;| for v € R* and the function f;(s, v) is non-decreasing
in s for a fixed v € R* for every ¢ =1, ..., k.

Denote by K, the set:

K, ={weRF: |v]<r,i =1,...,k}.
For a givenr > 0,te R*,ie R*,i<tand i =1,...,k put

ZF (1,5, 1) ={p € Oyt alr) < wyft+s, () < B(r), s € [F—1, 0];
w(t+s,p(s) eK,,seli—1,0];
f(s, w(t+s, go(s)}) ekK,,s eR‘},
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Zi (1,8 1) = {peCy: —B(r) < wift+s,9(s) < —a(r), s e [—t, 0];
w(t+s,e(s) e K,,se[f—t,0];
f(s, w(t+s,<p(s)))eK,, s eR'},
M@, t,r) = {cp €0, a(r) < oft+s,9(s)) <r,se[f—t,0];
w({t+s,p(s) eK,,se[t—t,0];
1ls, w(t—}-s,«,v(s)))eK,,seR‘},
M;(t,E,7)={peC; —r<wft+s,p(s) < —al(r),se[i—t,0];
w(t+s,p(s) eK,,se[i—t,0];

f(s, w(t+s, q)(s))) eK, se R‘}
and

2@, =SuP{w t,p): peZf(t, i, r )},
zr (¢, t,7) sz{d’i(tvq’ :p€Zi(t, ¢, 1)},
mi(t,%,7) = Sllp{a.),-(t,(p): pe Mf(t,1,r) }s

m; (L, 1) = inf{‘bi(t"l’): peM; (1, E;'r)}-

Further, given functions A%, h~: R*—R* with ht(¢), A~ (1) <1, let
us define
Nf(,r) = {q) eC,: w-(t, @(0)) = B(r);
a(r) < w;(t+8, p(s)) < B(r),s € (R (2)—1, 0);
w(t+s,9(s)) € Ky, 8 € (h*(2)—1, 0);
fls, o(t+s,9(9)) e K,, s e R},

Ni(t,7) =g eCp aft,p(0) = —B(r);
—B(r) < wift+3, p(s)) < —a(r),s e (h~(t)—t, 0);
w(t+8,9(8)) € Kgp, 8 € (b~ (1) —1, 0);
flsy @ t+s, 2(3)) e K,, s eR‘},

Ny(t) = U (N @, ) oM (8, 7).

THEOREM 3. Suppose that there exist funclions w,, w,, ..., 0., a, f,
fy B, ™ with the above properties and that a(|z|) < |w(t, x)| for t € R, x € R".
1o If

(A’) for every t,c B* there exists b, € K such that |o(t,+s,p(s))|
< bto(”'P”)’ peC,, sekR™,
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(B') for every i =1,...,k, if teR*, h(1)> 0 and ¢ e N,(t), then
“’i(t7 ‘P(O)) a;i(t7 @) <0,

(C') for every T with R*(t)<t<t, h (1)< T<1t resp., if the set
ZF (s, v, 7), Z7 (s, 7, ) resp., is non-empty, secr,t] (¢ =1,...,k), then
the function zf (s, T, 7), 2; (8, T, r) resp., is integrable and

¢

t
[t (s, 7, nds <Br)—a(r), [z (s,7,7)ds > a(r)—B(r),

then the zero solution of (1.1) is stable.
20 Let (A'), (B"), (C’) be satisfied, B(r) <, r> 0; suppose that for
r > 0 we have limsup{|f(s, v)|: |v| <7} = 0, and assume the condition:

8§—>— 00
(F') for every r> 0, tye RY, i =1, ..., k, if M} (t,1,,7), M;(t,1,,7)
resp., is non-empty for some t € (t,, oo), then there exist intervals [Ty ;(t,, r),
T{i(to’ ], [Tl—,i(toy r), T::i(to’ )] < (t,, ) such thatm; (s, ty, r), m; (s, ty, 7)
resp., 18 inlegrable and

T3 itgr) T3 {lor?)
f m; (s, ty, rVds < a(r)—7, f m; (8,14, r)ds > r—a(r).
Ti': {on) 7 {tr)

Then the zero solution of (1.1) is equi-asympiotically stable.

4. Here we give another extension of Theorem 1. In this extension

(@, y) denotes the scalar product of vectors %,y € R* and |z| = l/m.
Let there be given w(t, ) = (o,(¢, %), ..., w,(t,#)) and assume that
lo(t, x)| is positive definite. Put a, 8 € K, a(r) < f(r) < r for r > 0. Fur-
ther, let f: R~ x R¥~R* be such that f(s,v)< |»|] and f(s, ) is non-
decreasing for a fived v.

Define the set

Z(t,t,r) = {(p €0, a(r< ’w(t—{-s, (p(s))’ <r,

selt—t, 0];f(s, w(t+s, (,v(s))) 7,8 eR‘]
and put

k(t, ¢, r) = sup “w(t7 (p)]/‘w(t, ‘P(O))l: peZ(t,t, T)}y
#(t, 1, 7) = sup (o (t, ¢(0), & (¢, @)/ (¢, p(0)|: ¢ €Z(2, ¢, 7))

Further, write

L]

M, t,r) = {q) eC: pez(t,i,r);

0 w(t+s, p(s))

w(ti‘P )) _ ) I
0 oft+s, p(s)

ot @

¢
< fk(z, t,r)de, s e[f—t,O]}

i+s

(
(

7 — Annales Polonici Malhematici XXXVI1.3
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and
m(t,t,r) = sup “w(t, ‘P(O))’ ot (p))/|a>(t, ‘;’(0))': peM(,t, 7')'

THEOREM 4. Assume that there exist functions o, a, f, f with the above
properties and a function h: R*—R™T such that h(t) < t.

10 If (A’) holds together with:
(B”) (o(t, 9}, © (¢, 9(0) <O for teR* with hit)>0 and for

@€ L>)0(M(t, r(t), r) n{peC: B(r) = |oft, <p(0))“),

(C) ftz(s, 7, r)ds < B(r)—a(r) for te RT and v e (h(?), t],

then the zero solution of (1.1) is stable.
20 Let (A'), (B"”) and (C") be satisfied and B(r) <r, r> 0; suppose
that for r > 0 we have imsup {f(s, v): |[v| <7} =0, and assume the con-
s>—c0
dition:
(F"’) for every r > 0, t, € R there exists an interval [T, (ty, 1), Ts(ty, r)]
c (ty, o) such that
Ty(tg,7)
m(s, t,r)ds < a(r)—r.
Ty(tg,m)
Then the zero solution of (1.1) is equi-asymplotically stable.

5. Our results can also be reformulated so as to involve partial stab-
ility.

Let P: R*—R" be a projection. The zero solution of (1.1) will be called
P-stable at t,, if instead of (1.2) it satisfied the condition |Pz(¢;i,, @)l
< ¢ for t € [t,, o). Analogously there can be defined the properties of
P-gtability, equi-asymptotical P-stability ete.

It can be easily seen that if in our theorems instead of the positive
definiteness of |w(t, #)] we require a(|Px|) < |w(t,w)| for te R, x € R,
where a € K, then we can state the corresponding P-stability property.

4. Some applications

~

In this section we give some applications of our theorems without
proofs; we construct only the auxiliary functions, where it seems to be
necessary.

COROLLARY 1. If there exist a function V and, for every t, € R*, a function
bi, € K such that V(tg+s, p(s)) < by (lgl) for s e R™, ¢ € C and Vt,9) <0
on the sel

{(t: @): V(t+3799(3)) < V(ty 9"(0))’ $ ER_Ia
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then the zero solution of (1.1) ¢s stable. If there exists b € K such that V (¢, x)
< b(|w|) for te R, e R", then the zero solution of (1.1) is wuniformly
stable.

This result is an extension of Razimikhin’s and Seifert’s result men-
tioned in Section 1.

Set g(r) =r, a(r) <r, h(t) =1 and f(s, v) = v. With these functions
the stability of the zero solution follows from Theorem 1 and the uniform
stability follows from Theorem 2.

COROLLARY 2. Suppose that there exist a function V, functions b, ¢ € K,
and a continuous function f : R~ xR*—R™, such that f (8,v) < for v> 0,

lim sup {f(s, v): v<r} =0, f(s, v) 18 non-decreasing in s for a fized v,

f(O,v) is non-decreasing, V(t,») < b(lz|) for te R, x e R", and f’(t,go)
< —(lp(0)]) on the set

{(ta @): f('g’ V(t“l‘sa lP(S))) < V(f': 90(0))7 s € R_}'

Then the zero solution of (1.1) is uniformly asymplotically stable.
In particular, if (1.1) is an equation of finite delay and if

-

f(S,’D) = f_(v)y SE[—h,O],

0, s €(—o0, —h),

where 0 < f(v) < v, f(v) is non-decreasing, then the above corollary implies
then theorem of Krasovskii and Driver mentioned in the introduction.

Put a(r) =fA(0, 7). Define a function g: R~ xR*—>R* by f(s, )
=_;‘(0,g(s, v)) and let f(s, ) = min(g(s, v), »). Choose g e K such that
a(r) < B(r) < r for r > 0. Finally, set h(t) = ¢, t € R*. Then this corollary
follows from Theorem 2.

COROLLARY 3. Consider the scalar equation

(4.1) &(t) = p)a()+-g(t)a(t—= (1)),
where functions p, q, T are continuous on R*. If p(t) <0, ¢(t) <0, 0 < 7(2)

< h (h constant) for t € R, and if there exists a, 0 < a < 1, with

¢
sup { f (ap(s) +Ig(s)l)ds: t e RY, v e [0, min(z(1), t)l} <1l—a,

{—z

then the zero solution of (1.1) is uniformly stable. If, moreover, [(p(s)+
0

+q(s))ds = — oo, then the zero solution is strictly equi-asymptotically stable.
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Equation (4.1) was investigated by Mikolajska [7], who proved
that if

fap )+ lg(s))ds <1—a, teR",7el0,min(z(t),),

then the zero solution is stable at 0.

Put V{,2) = |z, a(r) =ea-7, ,B(r) = fr, where 0 < a< <1 are
constants. f is given as in Remark 1, k() = (t —z(¢))*. Then Theorem 2
can be applied. (The assumptions requlred in Section 1 are satisfied by
(4.1); see e.g. Hale [3], Theorem 3.1 and Theorem 4.2. )

CoroLLARY 4. Consider equation (4.1). If q(t) <0, 0<<7(t)<<h,

f[q(s )|ds < C < 1 for t € RY,

-yt
(=]

fp*(s)ds< o and f(p(s)—i—q(s))ds = — oo,

0
then the zero solution is strictly equi-asymptotically stable. Without the last
assumption the zero solution is umiformly stable.
It was proved by Mikotajska [7] without the last assumption that
the zero solution is stable at 0.
The statement follows from Theorem 2 with

¢
V(t,z) = lelexp(— [ p* (S)dS), a(r) = S

0

B(r) = (0+-~—C)r, h(t) = (t—z(t))*.

In the above corollaries, instead of the boundedness of z(t), it is
sufficient to require ¢ — 7 (¢)—>o0 as t—oo.

COROLLARY 5. Constider the scalar equation
= f(t’ m(t_"’(t))) +9(t, %),

where f: Rt xR—~R, g: Rt XxC—>R. Assume 0<Lt(t)<h for teR*
(h = constant),

(4.2) zf(t, ) < —a(t)z?, teR*, zeR,
lg(t, )| < Oa(t)sup {lo(s)p(s)|: se R™}, teR", peC,

where 0 is a constant, 0 < 6 < 1,0 <o(s)<1lforseR,c(s)—>0ass—>—o0,
¢
1—6
a(8)ds<e<———, teR" (c = constant)
(i) + 1+6

and [ a(s)ds = oo. Then the zero solution is equi-asymptotically stable.
0
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In particular, if z(f) = 0 and if
g (¢, @)l < Oa(t)sup {ip(s)l: se[—h,0]} for teR*, peC,
then (4.2) and the condition fa(s)ds = oo imply the equi-asymptotic
(1]
stability. Winston [10] investigated the above equation using the latter
assumptions (but (4.2) was in a sharper from) and proved the asymptotic
stability.
Let N be so large that
N-21-9 -
—_—>¢
N 1+67 7

and define

1—6 N-1
a(r) =(0+ 2 )r, B(r) =(9—|— T(l—e)),-,

Vit,x) = lzl, f(s,0) =0o(s)v, k() =(t—z(t)".
The statement follows from Theorem 2.

COROLLARY 6. Consider the equation (1) = Ax(t)+- Bx(t—1), where
T > 0 i8 a constant. A and B are n by n matrices.

As regards this equation, Hale [3] obtained a result concerning the
asymptotic stability, in the case where the eigenvalues of A have negative
real parts. Here we present a result assuming that the real parts of the
eigenvalues of B are negative.

Let D be a solution of D*B-+TBD* = —2E (F is the unit matrix,
D exists and is positive definite [5]). Denote the greatest eigenvalue of D

D*A+TAD?
by 4, and that of D‘l——;t D! by p.

If there ewists an a, 0 < a < 1, such that
|IDAD™ !4+ |DBD Y < (1—a)/t and
p* +T(IDAD Y| +\DBD )[4 < a(p™ +1/29),

then the zero solution of the above equation is equi-asymptotically (even expo-
nentially) stable.

This assertion follows from Theorem 4 by
w(t,®) =Dz, k() =[t~7]", alr)=ar, Br)=24pr,

v, 8€[—7,0],
78, 0) ={0’ se(—o0, —1),

where f# is a constant such that 0 <a < 8 <1 and |DAD™ |4 |DBD™!|
< (B—a)/r.
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For example, if 4 == 0, B ix symmetrical and

14-22 —V1 42
22

T|B| <

’

where — A is the greatest eigenvalue of B, then the zero solution is expo-
nentially stable.

We remark that in the case of 4 = 0, B symmetrical (the eigenvalues
of B are negative), then, using Theorem 3, we can prove the asymptotic
stability in the case 7 |B| < 1. If the eigenvalucs of B are not all negative,
but the zero solution of #(t) = Bx(t) is asymptotically P-stable (t|B| < 1),
then also the trivial solution of z(¢) = Bz (t — 1) is asymptotically P-stable.
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