FASC. 2

A METRIZATION THEOREM

BY

PHILLIP ZENOR (AUBURN, ALABAMA)

If X is a space, then $\mathscr{F}X$ will denote the space of closed subsets of X with the exponential topology, and $C^+(X)$ will denote the space of continuous functions from X into the non-negative reals. In [1], Borges shows that the space X is stratifiable if and only if there is a function T taking $\mathscr{F}X$ into $C^+(X)$ such that (1) if $H \in \mathscr{F}X$, then $H = \{x \colon [T(H)](x) = 0\}$, and (2) if $K \subset H$ are in $\mathscr{F}X$, then $[T(K)](x) \geqslant [T(H)](x)$ for each x.

It is the purpose of this note to prove the following

THEOREM. The following conditions on a T_1 -space X are equivalent:

- 1. X is metrizable.
- 2. There is a continuous function T taking $\mathscr{F}X$ into $C^+(X)$ such that
- a. if $H \in \mathcal{F}X$, then $H = \{x : [T(H)](x) = 0\}$;
- b. if H is a finite set and $p \in H$, then $[T(\{p\})](x) \geqslant [T(H)](x)$ for all x.
- If $\{U_1, U_2, ..., U_n\}$ is a finite collection of subsets of X, then $\langle U_1, U_2, ..., U_n \rangle$ denotes the set to which the member H of $\mathscr{F}X$ belongs

if and only if H intersects each U_i and $H \subset \bigcup_{i=1}^n U_i$. A set B will be called

a basic open set in $\mathcal{F}X$ if and only if there is a finite set $\{U_1, U_2, ..., U_n\}$ of open subsets of X such that $B = \langle U_1, U_2, ..., U_n \rangle$.

If K is a subset of X and U is a subset of $[0, \infty)$, then (K, U) denotes the set $\{f \in C^+(X): f(K) \subset U\}$. The statement that B is a subbasic open set in $C^+(X)$ means that there is a compact subset K of X and an open subset U of $[0, \infty)$ such that B = (K, U).

We will make use of the following result:

LEMMA (Wilson [2]). A T_3 -space X is metrizable if and only if there is a semi-metric d for X such that, whenever,

$$\lim_{n\to\infty}d(x_n,p)=\lim_{n\to\infty}d(x_n,y_n)=0,$$

then

$$\lim_{n\to\infty}d(y_n,p)=0.$$

Proof of the theorem. First, suppose that X admits a metric d. For each H in $\mathscr{F}X$, define T(H) by [T(H)](x) = g.l.b. $\{d(x,y)\colon y\in H\}$. It is well known that T(H) is in $C^+(X)$. We must show that T is continuous. To that end, let (K,U) be a basic open set in $C^+(X)$ that contains T(H); then U is an open set in $[0,\infty)$ and K is a compact set in X such that $[T(H)](K) \subset U$. Since T(H) is continuous, there is an $\varepsilon > 0$ such that if $r \in [T(H)](K)$ and if r' is in $[0,\infty)$ such that $|r-r'| < \varepsilon$, then r' is in U. Let $W = \{S_{\varepsilon}(y)\colon y\in H\}^*$. (If H is a set collection, then H^* denotes the union of the members of H.) For each k in K, let h(k) be a point of H such that $|d(h(k),k)-[T(H)](k)|<\varepsilon/3$. Since K is compact, there is a finite subset $\{k_1,k_2,\ldots,k_n\}$ of K such that $\{S_{\varepsilon/3}(k_i)\colon i=1,2,\ldots,n\}$ covers K. Then

$$V = \langle W, S_{s/3}(h(k_1)), S_{s/3}(h(k_2)), \ldots, S_{s/3}(h(k_n)) \rangle$$

is a basic open set in $\mathscr{F}X$ that contains H. Let H' be a member of $\mathscr{F}X$ in V and let y denote a point of K. We would like to show that [T(H')](y) is in U. Since $H' \subset W$, $[T(H')](y) > [T(H)](y) - \varepsilon$. Let j be an integer such that y is in $S_{\varepsilon/3}(k_j)$ and let p be a point of H' in $S_{\varepsilon/3}(h(k_j))$. Then

$$T(H')(y) \leqslant d(y, p) \leqslant d(y, k_j) + d(k_j, h(k_j)) + d(h(k_j), p)$$

 $< \varepsilon/3 + T(H)(y) + \varepsilon/3 + \varepsilon/3.$

Now, to show that condition (2) implies that X is metrizable, let d be the function taking $X \times X$ into $[0, \infty)$ defined by

$$d(x, y) = [T(\{x\})](y) + [T(\{y\})](x).$$

Claim 1. d is a semi-metric on X.

To establish this, first, let x be a limit point of the set H and let $\varepsilon > 0$. Since $T(\{x\})$ is continuous, there is an open set U containing x such that if $y \in U$, then $[T(\{x\})](y) < \varepsilon/2$. Since T is continuous, there is a basic open set B in $\mathscr{F}X$ such that if $H \in B$, then $[T(H)](x) < \varepsilon/2$. Since $\{x\}$ is degenerate, there is an open set U' in X such that $\{x\} \in \langle U' \rangle \subset B$. Thus, if $y \in U'$, then $[T(\{y\})](x) < \varepsilon/2$; and so, if $y \in U \cap U'$, $d(x, y) < \varepsilon/2 + \varepsilon/2$.

Suppose now that x is not a limit point of the set H. Let $2\varepsilon = [T(H^-)](x)$. We will show that if $y \in H$, then $[T(\{y\})](x) > \varepsilon$; and so, if $y \in H$, then $d(x, y) > \varepsilon$. To this end, let $\langle U_1, U_2, ..., U_n \rangle$ be a basic open set in $\mathscr{F}X$ that contains H^- such that if K is in $\langle U_1, U_2, ..., U_n \rangle$, then $|[T(K)](x) - [T(H^-)](x)| < \varepsilon$. Let $\{x_1, x_2, ..., x_n\}$ be a finite subset of X such that $x_i \in U_i$ for each i. Then, if y is a point of H, it must be true that $\{y, x_1, x_2, ..., x_n\}$ is in $\langle U_1, U_2, ..., U_n \rangle$. Hence

$$[T(\{y\})](x) \geqslant [T(\{y, x_1, x_2, ..., x_n\})](x) > \varepsilon.$$

This establishes the truth of claim 1.

Claim 2. d satisfies the conditions of our Lemma.

Suppose that $\{x_i\}$ and $\{y_i\}$ are sequences of points of X, and x is a point of X such that

$$\lim_{i\to\infty}d(x_i,y_i)=\lim_{i\to\infty}d(x,x_i)=0.$$

We wish to show that $\{y_i\}$ converges to x. To see that this is so, suppose otherwise; i.e., suppose that there are an $\varepsilon > 0$ and an infinite subset \mathscr{N} of integers such that $d(x, y_j) > \varepsilon$ for each $j \in \mathscr{N}$. Let $H = \operatorname{cl}\{y_j \colon j \in \mathscr{N}\}$. Let M denote an integer such that if $j \in \mathscr{N}$ and j > M, then x_j is not in H. Then, since $K = \{x\} \cup \{x_j \colon j \in \mathscr{N}, j > M\}$ is compact, there is a $\delta > 0$ such that if $p \in K$, then $[T(H)](p) > \delta$. Let $\varepsilon = \delta/2$. Then there is a basic open set $\langle U_1, U_2, \ldots, U_n \rangle$ in $\mathscr{F}X$ containing H such that if $H' \in \langle U_1, U_2, \ldots, U_n \rangle$ and if $y \in K$, then

$$|[T(H)](y)-[T(H')](y)|<\varepsilon.$$

For each $i \leq n$, let z_i be a point of U_i so that if $j \in \mathcal{N}$, then

$$\{y_j, z_1, z_2, \ldots, z_n\} \subset \langle U_1, U_2, \ldots, U_n \rangle.$$

Thus, for each $j \in \mathcal{N}$ such that j > M,

$$d(x_j, y_j) \geqslant [T(\{y_j\})](x_j) \geqslant [T(\{y_j, z_1, z_2, ..., z_n\})](x_j)$$

$$> [T(H)](x_j) - \delta/2$$

which contradicts the assumption that $\lim_{n\to\infty} d(x_n, y_n) = 0$.

REFERENCES

- [1] C. J. R. Borges, On stratifiable spaces, Pacific Journal of Mathematics 17 (1966), p. 1-16.
- [2] W. A. Wilson, On semi-metric spaces, American Journal of Mathematics 53 (1931), p. 361-373.

AUBURN UNIVERSITY
AUBURN, ALABAMA 36830

Reçu par la Rédaction le 4. 11. 1971