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1. Introduction. Let (M, g) be a pseudo-Riemannian manifold with an
indefinite metric g.

Suppose X is a vector field on M. Denote by fy the infinitesimal point
transformation given in an (arbitrary) local coordinate system (u') (1 <i<n
=dim M) of M by

() (' +eX (ul, ..., u"),
where ¢ is an infinitesimal and X = (X’) (i.e., X’ are the local components
of X).

Recall that X is said to be a projective collineation (PC) in (M, g) if any
fx maps geodesics into geodesics without necessarily preserving the geodesic
parameter. X is called a null-geodesic collineation (NC) in (M, g) if any fx
maps null-geodesics into geodesics preserving the geodesic parameter (cf. [3]).
Moreover, if X is a conformal collineation (Conf C) in (M, g), then any fy
maps null-geodesics into geodesics with general change in parameter (cf. [3]).

In the present paper we are concerned with vector fields X for which fy
maps null-geodesics into geodesics of pseudo-Riemannian manifold with
general change in parameter. These collineations seem to be new and we
shall call them general null-geodesic collineations (GNC'’s). For the definitions
of all other motions and collineations used in this paper we refer to [3] and
[6]. As we have just seen, any PC, ConfC and NC is a GNC. We shall see
that any R-linear combination of a PC, an NC and a ConfC is also a GNC.
However, we shall prove that the converse statement fails in general.

In Section 2 we find the conditions for a vector field to be a GNC in
terms of Lie derivatives of the Christoffel symbols and the metric of the
manifold. Section 3 establishes the conditions for a GNC to be a special
curvature collineation (SCC) or a curvature collineation (CC). In Section 4
we study GNC’s in pseudo-Euclidean spaces. We get, among others, exam-
ples of GNC’s which are not decomposable into a PC, an NC and a ConfC.
Other examples of non-decomposable GNC’s are given in Section 6. How-
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ever, as we shall prove in Section §, in a pseudo-Riemannian manifold of non-
zero constant curvature and of dimension = 3, any GNC decomposes into a
PC and a conformal motion (Conf M). Finally, we show in Section 7 that a
GNC gives rise to a quadratic first integral of null-geodesics.

2. General null-geodesic collineations. Let (M, g) be an n-dimensional (n
> 2) pseudo-Riemannian manifold with an indefinite metric tensor g = (g;;).

Definition. Let X be a vector field on M. We call X a general null-
geodesic collineation (shortly, GNC) ‘in (M, g) if every infinitesimal point
transformation fy maps null-geodesics of (M, g) into geodesics of (M, g)
without necessarily preserving the geodesic parameter.

THEOREM 2.1. A vector field X is a GNC in (M, g) if and only if
(2.1) Ly Ty = 9; 64+ @0, 0+ ¥ g,

where I, are the Christoffel symbols, Ly denotes the Lie differentiation with
respect to X, and ¢ = (¢;) and Y = (Y;) are, respectively, certain covariant
vector fields on M and ' = g*y,.

In the proof of this theorem we need the following algebraic lemma:

LEmMMA 2.1. Let W be a real n-dimensional (n > 2) vector space and let h
be an indefinite scalar product in W. If A is a symmetric trilinear form in W
such that A(X, X, X) =0 for any isotropic vector Xe W (i.e., h(X, X) = 0),
then

2.2) AX, Y, Z) =u(X)h(Y, Z)+u(Y)h(Z, X)+u(Z) h(X, Y)

for any X, Y, Ze W, where u is certain linear form in W.

Proof. Fix Xe W such that h(X, X) = 1. Let Y be a vector in W such
that h(Y, Y) <0. The equation h(Y+AX, Y+ AX) =0 has two solutions 4,
and ).2 (ll # )»2) such that /11 Az = h(Y', Y) and )'l +).2 = —2h(X, Y) By the
assumption on 4 we have

A(Y4+AX, Y4+AX, Y+AX)=0 for A =4,, 4A,,

that is,
(23) RAX, X, X)+322A(X, X, V)+3LA(X, Y, Y)+A(Y, Y, Y)=0

for i = 1, 2. Multiplying the first equation of (2.3) by 4, and the second one
by 4,, and subtracting the resulting equations we find

A, Y, V) =34, AX, X, )+ 4,4, (4, + 1) A(X, X, X)
or
(24)  A(Y, Y, Y)=3h(Y, Y)[A(X, X, Y)-3h(X, Y)A(X, X, X)].
Now, define the linear form u in W by
u(Z)=AX, X, Z)-}h(X, Z)AX, X, X), ZeW.
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The relation (2.4) shows that A(Y, Y, Y) = 3u(Y)h(Y, Y) for any Ye W such
that h(Y, Y) <O0. This clearly mplies (2.2), completing the proof.

Proof of Theorem 2.1. The parameter-independent equation of a
geodesic in (M, g) is
Dy .Dp

P’ dt 4 ar =0,

where p' =du'/dt, t is an arbitrary parameter of the geodesic and D/dt
denotes intrinsic differentiation along the geodesic. Hence X is a GNC if and
only if

Dp' _Dp’
25) Ly (pfd—’t’—p'—’”)=0

dt

for any null-geodesic, i.e., for any geodesic such that g;; p' p' = 0. By the same
method as, e.g., in [3], p. 22, we show that (2.5) takes the form

(2.6) (O Ly Ty —0m Ly TL) p" P p' = 0
for any null-geodesic. But, by Lemma 2.1, from (2.6) we find
(27) &4 LxTia— 0 Ly Tly+ 8} Ly Ty — 0 Ly T+ 8] Ly Ty
— 081 Ly Ty = iy Gra + Uf, Gim + 4f’ G
for some w: (= —uJ). Write
Aijk =giaLx T3  and Ujim = GjaTiv uz.
Lowering the indices j and i in (2.7), we rewrite it in the form
28 g jm Aix1 —Gim Ajkl + 9k Aim—9ga A jimt9gji Aimk— it Ajmk
= UjimJi1 + Ujik Gim + Ujit G -

Note that A;; = A,; and wuy, = —u,. Set, moreover, 4; =g*® A,, and
B; = g® A,,,. Transvecting (2.8) with g’ we get

(29 (n+1) Ay — g Ai— gis A = g + Wi+ 9% Uiy Goy-
Hence, by the transvection with g*!, we have
n+1 2
2.10 ab ih — [ i
(210) 9 air = % T2

Permuting (2.9) cyclically with respect to all indices, adding the resulting
equalities, and using (2.10) we find

1
(2.11) A+ Agi + Ay = ) [(B; +24;) g + (B + 2A4))gy;

+(B;+24) gu].
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On the other hand, transvecting (2.8) with g*' we obtain

Ujim = m(zAimj —2A;mi +9jm Bi—gim B))-

This together with (2.10) substituted into (2.9) gives
(212)  (n=1)(n+4) Ay + 2(Aiss + Assi + Aiir)

= [(n+3)Bi—24,1gu+[(n+2) A, — B, 191+ [(n+2) A, — B gu-
Finally, substituting (2.11) into (2.12) and writirig

_ nA—B _(n+1)B,—24,
T(m=Dm+2 ' (m—-D)(n+2) "’

Pi

we get A =Yigdu+ @9+ Oudij wlﬁch gives (2.1). Conversely, one can
easily see that (2.1) implies (2.6). This completes the proof.
ProposiTioN 2.1. A vector field X is a GNC in (M, g) if and only if

(2.13) Gijx = (@i +Y) g +(0;+¥;)) g + 204 9;;

for certain covariant vector fields ¢ and Y, where the comma denotes covariant
differentiation with respect to g and a = Lyg.

This proposition is an immediate consequence of our Theorem 2.1 and
the following relation (cf. [6]):

—
Ly Ty = 39" (Qj5. + Gys,j— i, 5) -

CoroLLARY 2.1. In Theorem 2.1 and Proposition 2.1 the covariant vector
field (n+1)p+y is a gradient.
Indeed, by (2.13) we have

(n+1)@i+y; =3(g" ag),.

From Theorem 2.1 it is clear that PC’s, Conf C’s, NC’s and any their R-
linear combinations are GNC'’s. In the sequel a GNC will be called essential
if it is not such a combination. Note that if a GNC is not essential, then ¢
(and therefore y) is a gradient. For an essential GNC, ¢ and y may be non-
gradients (even local), as we shall see in Section 6. Examples of essential
GNC’s will be given in Sections 4 and 6.

3. GNC’s and CC'’s. In this section we determine necessary and sufficient
conditions for a GNC to be an SCC or a CC. Here and in the sequel,
considering a GNC X, we shall denote by ¢ and y the covector fields that it
determines as in (2.1).

ProprosiTION 3.1. A GNC X is an SCC if and only if
@i =V¥;;=0.
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Proof. The condition defining an SCC is (Ly I' j-k)_, = 0. Thus, by Theo-
rem 2.1, a GNC is an SCC if and only if

Pj. S+ Pr o5+ Vigu =0,

which is equivalent to ¢; ; = y;; = 0. The proof is complete.

ProPosITION 3.2. Let X be a GNC in (M, g). If X is a CC and n > 3,
then @; ; = Y, ; = Ag;; for a certain scalar function A on M. The converse is true
in any dimension.

Proof. The condition defining a CC is Ly Rj,, =0, where R indicates
the curvature tensor of the manifold. Since (cf. [6])

Lx Rfiu = (Lx r _iik),l - (Lx r}z),k,
we have for a GNC, by Theorem 2.1,
(3.1 Ly Rj'u =@ Ok — ?jk o + (@1 — 1) 53 + W! 9jx— 'I’fk 9gji-

From this we see that to obtain the assertion we need only to prove that the
vanishing of the right-hand side of (3.1) implies ¢, ; = ¥; ; = Ag;;. Thus, let us
suppose

3.2) @1 0k = Pk 01+ (Put— P1) O+ Vi1 Gy — Wi g = 0.
From (3.2), by contraction with respect to i and k, we find
(3.3) nQ;. —@u;+¥;. = 1,

where u = y°,. Hence, by contraction with g, we obtain u = ¢%. On the
other hand, contracting (3.2) with g/, we get

20,1 —@j+(n—1)y;, = ugj.
Subtracting the last equality from (3.3) we have y;, = ¢;,. This applied to
(3.3) gives (n+1)@;;—@,; = ug;. Therefore
_H_
Qja = " gdji-

This completes the proof.

4. GNC'’s in pseudo-Euclidean spaces. First we recall that for any vector
field X in any pseudo-Riemannian manifold we have (cf. [6])

(41) Lxlq;k = ijk+X'R;kr'

Let (E", g) be a pseudo-Euclidean space of dimension n > 2 with the
Cartesian coordinates (u', ..., u"). In this case I = 0 and Rj; = 0. Thus, by
(4.1) and Theorem 2.1, we see that a vector field X is a GNC in (E", g) if and
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only if it satisfies the system of differential equations
4.2) 0 0; X' = @; 04+ 0, 05 +¥' g,

where we have put ¢, = /o',
THeoREM 4.1. For n > 3, take Cartesian coordinates (u!, ..., u") in E" so
that

ds? =) e,(du’)?,

where e, = +1 (a=1, ..., n), is the fundamental form of (E", g). Then a
vector field X is a GNC in (E", g) if and only if it is of the form

4.3) X' =4(Bui+D;e)¥ e,(u)?+Y (4 +C,uw)u"+ B,

where B, B, C;, D; and Aj (i,j =1, ..., n) are arbitrary constants. Moreover,
X is essential if and only if B # 0.

Proof. Let us suppose that X is a GNC in (E", g), n = 3. Since any
vector field on E" is a CC in (E", g), by Proposition 3.2 we must have 0; ¢
= ¢;y; = Bg;;. However, in our case B = const. Indeed, 0;p; = Bg;; implies
(¢« B)g;i—(0; B)gy; = O, that is, ¢ B = 0. Therefore

¢@; = Be;u'+C; and y; = Be;u'+ D,

(no summation over i), where C; and D; are certain constants. Note that, in
view of Proposition 3.1, X is an SCC in (E", g) if and only if B =0.

Thus, to find all GNC’s in (E", g), we need to solve the following system
of differential equations (cf. (4.2)):

6,‘ 51 Xi = (BeJuJ+CJ) 5;+(Be,‘ uk+Ck)5j-+(Bui+ei D,) ej (51,‘

(no summation over j and k). Formula (4.3) gives the all solutions of this
system. Conversely, one can easily verify that any vector field given by (4.3) is
a GNC in (E" g).

In the diagram of Katzin and Levine [3] one can see that any PC,
ConfC and NC is an 'SCC in (E", g). It is not hard to verify that a GNC in
(E", g) is not essential if and only if it is an SCC. So, X is not essential if and
only if B =0 in (4.3). This completes our proof.

THeOREM 4.2. Take coordinates (u', u?) in E? so that ds* = 2du’ du? is
the fundamental form of (E?, g). Then a vector field X on E? is a GNC in
(E?, g) if and only if it is of the form

4.4) X'=Hu’+Q, X?=Fu'+P,

where H, Q, F, P are functions on E* such that H, Q depend only on u!, and F,
P depend only on u®. Moreover, X is not essential if and only if

4.5) RZH=0 Q=0 &#F=0, &P=0.
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Proof. Suppose that X is a GNC in (E?, g) and X; = X°g,,. With the
help of (4.2) we obtain

0= 0,0, aj Xi— 6 g aj X;=(g (Pj)gki—(ak ‘Pj)gu
+(0 o — 0 ) gji + (W) g — (O ¥ g1

Hence, by the contraction with g* and the use of g¥(d,y,) = 0, Y, + 0, §, we
find

2000;— 0; 0+ Oy ;—(0, Y2+ 0,¥,)g,; = 0.
Therefore, we must have
@, =%3u* 0, h+9), @, =% 0, f+p),
Y, =f—3W?o,h+q), Y,=h—3u'0d,f+p),

h, q, f, p being certain functions, where h and q depend only on u!, and f, p
depend only on u?. Now, solve the following system:

(4.6)

00 X; = 0iguit+ O gji+Vigjx-

In view of (4.6) we obtain X, = Fu!+ P, where F and P are functions
depending only on u? and such that d,F = f and 0% P = p. Consequently,
X? = Fu' + P. Similarly, one can find X' (= X,) = Hu?>+Q, where H and Q
are functions depending only on u' and such that 6, H = h, 3 Q = q. Thus,
any GNC in (E?, g) is of the form (4.4). The converse is easy to verify.

As we know, a GNC X in (E?, g) is not essential if and only if it is an
SCC or, by Proposition 3.1, 0;¢; = d;; = 0. But in virtue of (4.6), this holds
if and only if equalities (4.5) are satisfied. This completes the proof.

For the description of PC’s and Conf C’s in (E", g) see [1] and [4].

S. GNC's in manifolds of constant curvature. First we prove the follow-
ing lemma:

LeMMA 5.1. Suppose we are given a GNC X in a pseudo-Riemannian
manifold (M, g), n > 3, so that condition (2.1) is satisfied. Then ¢ and  are
local gradients if and only if the Ricci tensor fulfils the identity a;, R}’ = a;; R,
Where a,-_,- = Lx gil and R."’ = Risgsj, RU = Rsijs.

Proof. By Proposition 2.1, equality (2.13) is fulfilled. The integrability
condition of (2.13) is
(5-1) @ Rju+a; Ry = —(0i+ Vi) g+ (@i + Vi) gii

— (@it Vi) i +(@jx +¥;50) 9it— 2(Pr. 1 — 914) 935
Contracting (5.1) with g** we get

(52)  @sRP—a, Ry = —n(p,+Vi)+(0° s +¥° ) gu—2(0i,1— 1)
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Hence, by the antisymmetrization, we find
a R —a,R® = —(n+4) (@i — @) —nWi1— ¥,

But, by Corollary 2.1, we have y;,—y,; = —(n+1)(¢;,;—¢y,;). Therefore, we
obtain

as; R’ —a R’ = ("2 —4)(¢;1— (Pt,.'),

which completes the proof.
Let us now assume that (M, g), n > 3, is a pseudo-Riemannian manifold

of non-zero constant curvature, i.c.,
Riju = u(gugp—9gugj), 1= const #0.

Let X be a GNC in (M, g). By Lemma 5.1, ¢ and ¢y are local gradients.
Therefore (5.2) gives us

(5.3) uay = Agiu— @i i—Vi,
for some scalar function A. On the other hand, using (3.1), we have
LyRj = —(n—=1) @ =Y +V¥° G-

In our case this gives

(5.4) (n—Dpay = —(n=1)@jx—Vjx+V¥° 59
which compared with (5.3) yields
(5.5 (@) pa;; =@A—-v)gi;— @i (b) ¥i; =vgy;

for a certain scalar function v.

From the integrability conditions of (5.5) (b) one can find uy; = —v ;.
So, defining w = —v/u, we have y; = w;. Hence (5.5) (b) takes the following
form:

(5.6) '/’i.j = — U@g;;-
Assuming a = g"a,, and contracting (5.4) and (5.5) (a) with g we get
ua+ (ps.s = '//s,s and ua+ ‘ps.s = n(l—v),

respectively. Hence A—v = y° /n and, finally, A—v = —puw because of (5.6).
Substitution of the last relation into (5.5) (a), covariant differentiation of the
resulting expression, and using (2.13) lead to

(5.7 Oij = —mU@i+¥) g +(@j+ V) g+ o+ V1) gij].
Now define vector fields X, and X, by

. r 1
(5.8) (a) Xy = —Z(fp'ﬂlf), (b) X3 =;l/l'-

With the help of (4.1), (5.6), and (5.7) we can verify that X, and X, are a PC
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and a ConfM in (M, g), respectively, and moreover

Ly Ty = Ly, '+ Lx, T
Setting Xo = X — X, — X, we see that X, is an affine collineation in (M, g).
Actually, X, i1s a motion in (M, g) (cf. [5]).

Thus we have proved the following theorem:

THEOREM 5.1. Let (M, g), n>= 3, be a pseudo-Riemannian manifold of
non-zero constant curvature u. If X is a GNC in (M, g), then we have a
decomposition X = Xo+ X, + X,, where X, is a motion, X, is a PC given by
(5.8) (a), and X, is a Conf M given by (5.8) (b). So, up to adding a motion X,
X is determined uniquely by ¢ and Y via the relation

. 1
X' = Xt o (W' =
u

Remark 5.1. Let (M, g) be as in Theorem 5.1. From this theorem we
obtain the following:

(a) If X is an NC in (M, g), that is, if we have ¢ = 0, then from (5. 7) it
follows that = 0. This means that X is a motion.

(b) If X is a GNC in (M, g) such that ¢ =, then X is a motion.

(c) If X is a ConfC in (M, g) (in this case, ¢+ = 0), then it must be
a ConfM.

6. Two-dimensional examples. Let R? be the plane with Cartesian coor-
dinates (u!, u?). Suppose we have an open and connected subset Vof R? and a
non-constant scalar function h defined on ¥, depending only on u? and such
that u! +h(u?) > 0 for any (u', u?)e V. We take (u!, u?) as coordinates on V.
All geometric objects considered below will be defined with respect to these
coordinates.

Let g = (g;;)) be a pseudo-Riemannian metric on V given by

911 =922=0, ¢g12=92 = C[“ +h(u2)] 1/2,

where C is a non-zero constant. Then the non-zero Christoffel symbols are
those related to

Ihy= =3[ +h@)]™!, Tl = —4h @) +h@)]

Consider a covector field (X;) defined by X, =4, X, =0 at every point of V.
One can verify that for g;; = Lyg;; = X; ;+ X;;, where Ly is the Lie deriva-
tive with respect to X = (X' = g¢* X,), we have

(6.1) ayy,, = —40 (W) [u' +h(u?)] 73,

and a;;, = 0 in other cases. Define in V covector fields ¢ and ¢ by
1
62) ¢ = Eh'(“z) [w'+h@)]™ % @,=0, ¢;=-3¢,i=1,2.

In view of (6.1) and (6.2) it is not hard to see that (g;;) fulfils equality (2.13),



58 Z. OLSZAK

that is, X is a GNC in (¥, g). Since ¢ is not a gradient (even local), X is an
essential GNC.

7. Quadratic first integrals of null-geodesics. Let (M, g) be a pseudo-
Riemannian manifold, and 4 a symmetric tensor field of type (0, 2) on M.
Consider the geodesic of (M, g) written in the parameter-dependent form
Dp _
ds
with p' = du'/ds and (4, ..., u") as local coordinates in M.

The tensor field A is said to be a quadratic first integral of geodesics in
(M, g) if A;;p'p’ =const along any geodesic (7.1) (cf. [2], pp. 128-129).
A necessary and sufficient condition for 4 to be a quadratic first integral
of geodesics in (M, g) is

(7.1) 0

Aij,k + Ajk,l' + Akl',j = 0

Define a quadratic first integral of null-geodesics in (M, g) as a sym-
metric tensor field A of type (0, 2) such that 4;; p' p = const along any null-
geodesic (7.1). In virtue of our Lemma 2.1, a necessary and sufficient
condition for A to be a quadratic first integral of null-geodesics in (M, g) is

Aijut+ Ajpi+ Ay = Ui G+ Ui gui + Wi G
for certain covector field w.

Suppose that X is a GNC in (M, g). Then, by means of Proposition 2.1,
for a=Lyg we have

Gjxtaita; =220 +¥)gu+2Q20;+¥) g+ 220+ Y1) gij.
This shows that a is a quadratic first integral of null-geodesics in (M, g). If,
moreover, 2¢+y =0, then a is a quadratic first integral of geodesics in

(M, g).
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