An immersion of a differential space in a Cartesian space

by Hanna Matuszczykowa (Wrocław) and Włodzimierz Waliszewski (Łódź)

Abstract. For an arbitrary set A, the set R^A of all real functions defined on A can be considered in a natural way as a differential space. The concept of a differential space has been introduced by R. Sikorski [2] and, independently, by S. Mac Lane [1]. In the present paper we prove that an arbitrary differential space can be induced from the natural differential space of the set R^A , and in the case when the differential structure separates points it can be immersed in R^A .

1. The natural structure of the set R^A . For every $a \in A$ and for every function x of R^A we set d(x) = x(a). Then we have the projection

$$d: \mathbf{R}^{\mathbf{A}} \to \mathbf{R}.$$

The set R of all reals has the natural differential structure $C^{\infty}(R)$ consisting of all infinitely many differentiable real functions on R. The smallest differential structure R(A) on the set R^A , for which all projections of the form (1), $a \in A$, are smooth will be called the natural differential structure of the set R^A . For any set C of real functions defined on a set M, so C is the set of all real functions of the form

$$\omega(a_1(\cdot), \ldots, a_s(\cdot)),$$

where a_1, \ldots, a_s are elements of C, ω is any infinitely differentiable real function on R^s , s is an arbitrary positive integer. In general, by C_M we denote the set of all functions $\beta \colon M \to R$ such that for every p of M there exist $a \in C$ and a set U such that $\beta \mid U = a \mid U$, U is open in the weakest topology τ_C on the set M for which all functions of C are continuous. For an arbitrary mapping $f \colon M \to N$ we define the mapping $f^* \colon R^N \to R^M$ by the formula: $f^*(\beta) = \beta \circ f$ for $\beta \in R^N$ (see [4]).

We have $\hat{a}: \mathbb{R}^{A} \to \mathbb{R}$. Then

$$A^*: \mathbf{R}^{\mathbf{R}} \to \mathbf{R}^{(\mathbf{R}^A)}$$

is the mapping defined by $\hat{a}^*(\gamma) = \gamma \circ \hat{a}$, where $\gamma \colon \mathbb{R}^A \to \mathbb{R}$. We mean by $\hat{a}^*[\mathbb{C}^\infty(\mathbb{R})]$ the set of all functions $\gamma \circ \hat{a}$, where $\gamma \in \mathbb{C}^\infty(\mathbb{R})$. Then we

have

(2)
$$\mathbf{R}(\mathbf{A}) = \left(\operatorname{sc} \bigcup_{\mathbf{a} \in A} \hat{a}^{*} [\mathbf{C}^{\infty}(\mathbf{R})] \right)_{\mathbf{R}^{A}}.$$

We will prove

1.1. The structure R(A) defined by (2) is the unique differential structure on the set R^A such that for every differential space (M, C) and for every function $f: M \to R^A$ the mapping

$$f: (M, C) \to (\mathbf{R}^A, \mathbf{R}(A))$$

is smooth iff all mappings

(4)
$$d \circ f \colon (M, C) \to (R, C^{\infty}(R))$$

are smooth for $a \in A$.

Proof. Assume that we have smooth mappings (4), $a \in A$. Let $\beta \in \bigcup_{a \in A} d^*[C^{\infty}(R)]$. Then $\beta \in d^*[C^{\infty}(R)]$ for some $a \in A$. Therefore, $\beta = \gamma \circ \hat{a}$, where $\gamma \in C^{\infty}(R)$. Hence it follows that $\beta \circ f = \gamma \circ (\hat{a} \circ f) \in C$. Thus, the mapping (3) is smooth (see [4]).

Now, suppose that D is a differential structure on \mathbb{R}^A such that for any $f: M \to \mathbb{R}^A$ the mapping

$$f: (M, C) \to (\mathbf{R}^A, D)$$

is smooth iff all mappings (4) are smooth for $a \in A$. We have to prove that D = R(A). The mapping (5) is smooth iff the mapping (3) is smooth. Setting f = id and $M = R^A$ we have the smooth mapping

id:
$$(\mathbf{R}^A, \mathbf{R}(A)) \rightarrow (\mathbf{R}^A, \mathbf{R}(A))$$
.

Hence we get the smooth mapping

id:
$$(\mathbf{R}^{\mathbf{A}}, \mathbf{R}(\mathbf{A})) \rightarrow (\mathbf{R}^{\mathbf{A}}, D)$$
.

Then $D \subset R(A)$. Similarly, the smoothness of id: $(R^A, D) \to (R^A, D)$ yields that the mapping

id:
$$(\mathbf{R}^A, D) \rightarrow (\mathbf{R}^A, \mathbf{R}(A))$$

is smooth. Consequently, we have the inclusion $R(A) \subset D$.

1.2. If card A = card B, then the differential spaces $(\mathbf{R}^A, \mathbf{R}(A))$ and $(\mathbf{R}^B, \mathbf{R}(B))$ are diffeomorphic. More exactly, if φ is a one-to-one mapping A onto B, then the mapping $\varphi^{\bullet} \colon \mathbf{R}^B \to \mathbf{R}^A$ gives a diffeomorphism $(\mathbf{R}^B, \mathbf{R}(B))$ onto $(\mathbf{R}^A, \mathbf{R}(A))$.

Proof. Suppose $\varphi \colon A \to B$ is one-to-one. Then $\varphi^* \colon R^B \to R^A$ is one-to-one. Let $\beta \in \hat{a}^*[C^\infty(R)]$, where $a \in A$. Thus $\beta = \hat{a}^*(\gamma)$, $\gamma \in C^\infty(R)$. Hence it follows $\beta \circ \varphi^* = \hat{a}^*(\gamma) \circ \varphi^* = \gamma \circ \hat{a} \circ \varphi^* = \gamma \circ \hat{b} = \hat{b}^*(\gamma) \in \hat{b}^*[C^\infty(R)]$, where $b = \varphi(a)$, b(y) = y(b) for $y \in R^B$. Therefore, $\beta \circ \varphi^* \in R(B)$ when

 $\beta \in \bigcup_{a \in A} \hat{a}^*[C^{\infty}(\mathbf{R})]$. Then we have the smooth mapping

(6)
$$\varphi^*: (\mathbf{R}^B, \mathbf{R}(B)) \to (\mathbf{R}^A, \mathbf{R}(A)).$$

Similarly, we prove that the mapping inverse to (6) is smooth.

Now, for any cardinal n we define the n-th power of R, R^n , as a differential space of the form $(R^A, R(A))$, where A is the set of all ordinals less than ν , ν being the smallest ordinal of cardinality n. From 1.2 it follows that every differential space $(R^B, R(B))$, where card B = n, is diffeomorphic to R^n .

2. The inducing of a differential space from \mathbb{R}^n . Let (M, C) be any differential space and let $n = \operatorname{card} C$. For every $p \in M$, i(p) denotes the function defined by the formula

(7)
$$i(p)(a) = a(p)$$
 for $a \in C$.

We have the mapping

$$i: M \to \mathbf{R}^{C}.$$

We will make use of the concept of the differential space induced by a mapping, which has introduced in [4]. First we prove the lemma:

2.1. The differential space induced from $(\mathbf{R}^C, \mathbf{R}(C))$ by the mapping (8) coincides with (\mathbf{M}, C) .

Proof. Let us denote by \tilde{C} the differential structure induced from $(\mathbf{R}^C, \mathbf{R}(C))$ by (8). We have (see [4]) $\tilde{C} = (\operatorname{sc} i^*[\mathbf{R}(C)])_M$. We will prove that $\tilde{C} = C$. It is easy to see that $C = \tilde{C}$ and that the weakest topology $\tau_{\tilde{C}}$ for which all functions of \tilde{C} are continuous consists of the counter-images of the members of the topology $\tau_{\mathbf{R}(C)}$ under mapping (8). In other words, a set is open in $\tau_{\tilde{C}}$ iff it is of the form $i^{-1}[U]$, where U is open in $\tau_{\mathbf{R}(C)}$. We set

$$C_0 = \bigcup_{\alpha \in C} \hat{\alpha}^* [C^{\infty}(\mathbf{R})].$$

Then we have (see [4]) $\tau_{R(C)} = \tau_{C_0}$. We will prove that the topology τ_{C_0} coincides with the Tichonov topology of the product

$$\mathsf{X}_{a\in C}|R_a,$$

where, for each $a \in C$, R_a denotes the set R with the natural topology. Indeed, for any $a \in C$, any reals a < b and for every real function $\beta \in \hat{a}^*[C^\infty(R)]$ we have

$$\beta^{-1}[(a;b)] = \hat{a}^{-1}[\gamma^{-1}[(a;b)]],$$

where $\gamma \in C^{\infty}(R)$. A subbase of the topology τ_{C_0} is then contained in the set of all sets of the form $\hat{a}^{-1}[H]$, where H is an open subset of R, a is an arbitrary function of C. Thus, this subbase is contained in the Tichonov

topology of product (9). Now, let us take any set of the form $\hat{a}^{-1}[(a;b)]$, where a < b and $a \in C$. Then we have

$$\hat{a}^{-1}[(a;b)] = (\hat{a}^*(\mathrm{id}_R))^{-1}[(a;b)],$$

 $\hat{a}^*(\mathrm{id}_R) \in C_0$. Therefore, the subbase of the topology of the product (9) is contained in τ_{C_0} . Consequently these topologies coincide.

To prove the inclusion $\tilde{C} \subset C$, let us take any $a \in i^*[R(C)]$. Then $a = \gamma \circ i$, $\gamma \in R(C)$. Let $p \in M$. Then $i(p) \in R^C$. There exists $U \in \tau_{C_0}$ such that $i(p) \in U$ and $\gamma \mid U = \gamma_0 \mid U$, where $\gamma_0 \in \operatorname{sc} C_0$. Therefore, for some $\gamma_1, \ldots, \gamma_s \in C_0$, $\gamma_0 = \omega(\gamma_1(\cdot), \ldots, \gamma_s(\cdot))$, where $\omega \in C^{\infty}(R^s)$. There exist $a_1, \ldots, a_s \in C$ such that $\gamma_j \in \hat{a}_j^*[C^{\infty}(R)]$, $j = 1, \ldots, s$.

Thus, $\gamma_j = \hat{a}_j^*(\eta_j) = \eta_j \circ \hat{a}_j$, where $\eta_j \in C^{\infty}(\mathbf{R})$. For any $x \in \mathbf{R}^C$ we get

$$\gamma_0(x) = \omega \left(\eta_1(\hat{a}_1(x)), \ldots, \eta_s(\hat{a}_s(x)) \right) = \theta \left(x(a_1), \ldots, x(a_s) \right),$$

where $\theta(u^1, \ldots, u^s) = \omega(\eta_1(u^1), \ldots, \eta_s(u^s))$ for $(u^1, \ldots, u^s) \in \mathbb{R}^s$. Thus we have

$$a(q) = i^*(\gamma)(q) = (\gamma \circ i)(q) = \gamma(i(q)) = \gamma_0(i(q))$$

= $\theta(i(q)(a_1), ..., i(q)(a_s)) = \theta(a_1(q), ..., a_s(q))$

for $q \in i^{-1}[\overline{U}]$.

The set U being open in the topology of the product (9) is of the form $X_{\delta \in C} U_{\delta}$, where the sets U_{δ} are open in R and there are only finitely many $\delta \in C$ for which $U_{\delta} \neq R$. Call then $\delta_1, \ldots, \delta_r$. Then we get

$$p \in i^{-1}[U] = \bigcap_{h=1}^r \delta_h^{-1}[U_{\delta_h}] \in \tau_C.$$

The function $\theta(a_1(\cdot), \ldots, a_s(\cdot))$ belongs to C. Hence it follows that $a \in C_M = C$.

As a corollary we get the following theorem.

2.2. Every differential space has a differential structure induced from \mathbb{R}^n , n being a suitable cardinal, by some mapping. If the topology of the differential space is Hausdorff, we may require this mapping to be one-to-one.

References

- [1] S. MacLane, Differentiable spaces, Notes for Geometrical Mechanics, Winter 1970, p. 1-9.
- [2] R. Sikorski, Abstract covariant derivative, Colloq. Math. 18 (1967), p. 251-272.
- [3] Wstęp do geometrii różniczkowej (Polish), Warszawa 1972.
- [4] W. Waliszewski, Regular and coregular mappings of differential spaces, Ann. Polon. Math. 30 (1975), p. 263-281.

Reçu par la Rédaction le 28. 4. 1976