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) Abstract. For an arbitrary set A4, the set R4 of all real functions defined on A
can be considered in a natural way as a differential space. The concept of a differential
space has been introduced by R. Sikorski [2] and, independently, by 8. Mac Lane [1].
In the present paper we prove that an arbitrary differential space can be induced
from the natural differential space of the set R4, and in the case when the differential
structure separates points it can be immersed in R4,

1. The natural structure of the set R4, For every a € 4 and for every
function  of R4 we set d(x) = #(a). Then we have the projection

1) d: R* > R.

The set R of all reals has the natural differential structure C*(R) consist-
ing of all infinitely many differentiable real functions on R. The smallest
differential structure R(A) on the set R4, for which all projections of
the form (1), a € A, are smooth will be called the natural differential struc-
ture of the set R4. For any set C of real functions defined on a set M, sc C
is the set of all real functions of the form

a’(‘h(’)! cery as'('))a

where a,, ..., a, are clements of C, w is any infinitely differentiable real
function on R? s is an arbitrary positive integer. In general, by C, we
denote the set of all functions 8: M — R such that for every p of M
there exist a €0 and a set U such that 8|U =a|U, U is open in the
weakest topology 7o on the set M for which all functions of C are con-
tinuous. For an arbitrary mapping f: M — N we define the mapping
*: RY — R¥ by the formula: f*(8) = fof for § e RY (see [4]).
We have d: R4 - R. Then

a*: R® -~ R®h

is the mapping defined by d"(y) = yod, where y: R* - R. We mean
by 4*[C*(R)] the set of all functions yod, where y € C*(R). Then we
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have
(2) R(4) = (sc Lj 4*[C*(R)])ga.

We will prove

1.1. The structure R(A) defined by (2) is the unique differential struc-
ture on the set R such that for every differential space (M, C) and for every
Sfunction f: M — R4 the mapping

(3) f: (M, C)~ (R4, R(4))
18 smooth iff all mappings
(4) dof: (M, C)— (R, C*(R))

are smooth for a e A.

Proof. Assume that we have smooth mappings (4), ¢ € A. Let
f e Ua'[C™(R)). Then g € 4*[C™(R)] for some a € 4. Therefore, § = yod,

acA

where y € C*(R). Hence it follows that fof = yo(dof) e 0. Thus, the
mapping (3) is smooth (see [4]).

Now, suppose that D is a differential structure on R4 such that
for any f: M - R4 the mapping

(8) f: (M, C) -~ (R4, D)

is smooth iff all mappings (4) are smooth for-a € A. We have to prove
that D = R(A). The mapping (5) is smooth iff the mapping (3) is smooth.
Setting f = id and M = R“ we have the smooth mapping

id: (R4, R(4)) - (R4, R(4)).
Hence we get the smooth mapping
id: (R4, R(4)) - (R4, D).

Then D c R(A4). Similarly, the smoothness of id: (R4, D) - (R4, D)
yields that the mapping

id: (R4, D) (R4, R(4))
is smooth. Consequently, we have the inclusion R(A) < D.

1.2, If card A = card B, then the differential spaces (R4, R(A)) and
(R?, R(B)) are diffeomorphic. More exactly, if @ is a one-to-one mapping A
onto B, then the mapping ¢*: R® — R4 gives a diffeomorphism (R, R(B))
onto (R4, R(4)).

Proof. Suppose ¢: A — B is one-to-one. Then ¢*: R® > R4 is one-
to-one. Let fed*[C*(R)], where ac A. Thus B = d*(y), y € C°(R).
Hence it follows fog" = &*(y)og* = yodog* = yob = b*(y) € b*[C*(R)],
where b = ¢(a), b(y) = y(b) for y € R®. Therefore, fo¢* € R(B) when
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g eJa*[C*(R)]. Then we have the smooth mapping

acd

(6) ¢": (R® R(B))—~ (R4, R(4)).

Similarly, we prove that the mapping inverse to (6) is smooth.

Now, for any cardinal » we define the n-th power of R, R", as a dif-
ferential space of the form (R“, R(A)), where A is the set of all ordinals
less than », » being the smallest ordinal of cardinality ». From 1.2 it follows
that every differential space (R?, R(B)), where cardB = n, is diffeo-
morphic to R".

2. The inducing of a differential space from R". Let (M, C) be any
differential space and let n = cardC. For every p € M, ¢(p) denotes the
function defined by the formula

(7) i(p)(a) = a(p) for aeC.
We have the mapping
(8) i: M —> RC.

We will make use of the concept of the differential space induced
by a mapping, which has introduced in [4]. First we prove the lemma:

2.1. The differential space induced from (RS, R(C)) by the mapping (8)
coincides with (M, O).

Proof. Let us denote by € the differential structure induced from
(R°, R(C)) by (8). We have (see [4]) ¢ = (sci*[R(C)]). We will prove
that ¢ = C. It is easy to see that C = € and that the weakest topology 7z
for which all functions of ¢ are continuous consists of the counter-images
of the members of the topology g, under mapping (8). In other words,
a set is open in 7z iff it is of the form ¢<~'[U], where U is open in tp(,.
We set

= Leg'&'[C“(R)]-

Then we have (see [4]) Tp(, = 7c,- We will prove that the topology 7,
coincides with the Tichonov topology of the product

(9 ) xaeCl'Ra ?

where, for each a € C, R, denotes the set R with the natural topology.
Indeed, for any ae€ C, any reals a <b and for every real function
g ea®[C®(R)] we have

A7 (a;0)] = a~ [y~ Ua; BYY],

where y e C*(R). A subbase of the topology Tc, is then contained in the
set of all sets of the form a~![H], where H is an open subset of R, a is
an arbitrary function of C. Thus, this subbase is contained in the Tichonov
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topology of product (9). Now, let us take any set of the form a~((a; b)),
where a < b and a € C. Then we have

a”'[(a; b)] = (a*(idg))~"' [(a; b)],

a*(idg) € C,. Therefore, the subbase of the topology of the product (9)
is contained in 7g, . Consequently these topologies coincide.

"To prove t.he inclusion ¢ < C, let us take any aei*[R(C)]. Then
a = yoi, y € R(0). Let p € M. Then ¢(p) € R°. There exists U € 7, such
that i(p)e U and y|U = y,|U, where y,escC,. Therefore, for some
Y1y oo Ve € Coy Yo = @(p1(*)y ...y ¥5(*)), where w e C®(R®). There exist
dyy ...y a, € C such that y,eaf[C°(R)], j=1,...,8

Thus, y; = a; (7;) = n;0a;, where ; € C*(R). For any x € R® we get

70(@) = 0(n(@1(@)), ---) 0s(@(2))) = 0(8(ay), ..., 2(a,)),

where 0(ul, ..., u") = w(n(u'),...,n,(4°)) for (u!,...,u")eR°’. Thus
we have
a(g) =*(y)(q) = (yoi)(@) = v (i(9)) = yo(i())

= e(i(Q)(al)’ ceey ":(Q)(aa)) = O(GI(Q)r ceey aa(Q))
for qei'[U] '
The set U bemg open in the topology of the product (9) is of the
form X, U,, where the sets U, are open in R and there are only finitely .
many 8 € C for which U, # R. Call then é,, ..., .. Then we get

et [T} = ,Q'G,II[U,h] € 174.

The function 6(ay(),..., a,(*)) belongs to C. Hence it follows that
aeC, =C.

As a corollary we get the following theorem.

2.2. Every differential space has a differential structure induced from R",
n being a suitable cardinal, by some mapping. If the topology of the differen-
tial space i3 Hausdorff, we may require this mapping to be one-to-one.
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