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Absolute Cesaro summability of infinite series
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Abstract. Let of denote the #-th Cesiro mean of order @, a > —1 of a given
series Xa, The series Xa, is said to be summable |0, alg, k > 1 if Xak—1|¢2 —
—0%_4|¥ < co. In this note the following theorem has been proved.

THEOREM. A serica Xa, is summable |C, a+1|p, a > —1, k > 1 if and only if

2lby, 18 summable |C, aly, where
(=)

_— av ]
by = 2 g (0 o

v=n

It may be remarked that the above theorem is an analogue of a theorem of
Hardy and Littlewood (Math. Z. 19 (1924), p. 67-96) for ordinary Cesiro summa-
bility and that of Chow (JL.MS 14 (1939), p. 101-112) for summability |0, o, a > 0.

1. Let Ya, be a given infinite series with s, as its nth partial sum
and let {0y} and {#;} denote the nth Cesiro means of order a (¢ > —1)
of the sequences {s,} and {na,} respectively. A series )a, is said to be
(C, a)-summable to s if o,—s, as n—>oo0. It is said to be |0, al-summable,
if Y |og—oh_y] < oo, and |C, al-summable, k> 1, if Y'n*"|of — of_; |, < oo.
By virtue of the well-known identity ; = n(o, — 0,_,) the last condition

ltat
n

oQ
can be written as 2 < 00
1

2. The following theorem concerning absolute Cesiro summability
of an infinite series was established by Chow [4].

THEOREM A. In order that the series Y'a, be |C, a+1|-summable (a > 0)
it 18 mecessary and sufficient that the series Db, where

o

a”
bn =2 v+1 (€ a)

o=n

should be |C, a|-summable.

The above theorem is an analogue of a theorem of Hardy and Little-
wood [6] for ordinary Cesaro summability. The object of this note
is twofold: firstly, to prove that there exists an analogue of Theorem
A for generalized absolute summability, namely |C, a|-Summability;
secondly, to extend the range of a from a> 0 to a> —1.
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Our theorem is as follows: . '
'THEOREM. A series Ya, is |C, a+1|-summable a> —1, k>1 if
and only if Db, is |0, aly-summable, where

(2.1) ba= > —2(C, a).

3. The following lemmas will be required for the proof of our theorem.
LeMMA 1. A series Y'a, is |C, a+1|-summable, a > —1 if and only

i .
z‘fz T’;— 8 |C, 1|-summable, &> 1.

Proof. Suppose that DYa, is |C, a+1|-summable, a> —1, k> 1,
Then it is easy to see that

n—1

(a—|—9b+1)
u+1 u:+1
Zt"— a+1 Zt  a+l G

and therefore

n~1

N 1 1 v '1+1 u+1k
Zn n O.A.Jn""" i +OZ it
1 Y=l n=1
- o(gﬁz |t;+1|")+0(1)
N lt:“l")
= +0(1) =0
o(g 1) +ow = o),

ta
by virtue of the hypothesis. Thus Z—ni is |0, 1|,-summable. Similarly,

we can prove the converse part.

LevmA 2 [4]. If a> —1 and a, = (n+1)(b,—b,,,), then
+1 +1
= (a+2)
where Ty, is the n-th (C, a) mean of {nb,}.
LeMwma 3 ([1], [10]). Let
o0 _A_u
8, = _"'—'”U’}_, a0,

a
Ny 'Aﬂ

where Y |U,| < oo. Then 6, = 0(1), 4°3, = O(n™%) and

n+1
—(a+1) 2,

(-]
D0t 4°715,] < oo
1

() 0 is a constant not necessarily the same at each occurrence.
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LeyyA 4 [3]). Let k>0, 7, be non-increasing and positive and
&, = O(4,). Then A¥e,= O(n*1,) if ‘and only if A* (%) = 0(n~*12,).
LeMyMA 5 [3]. If A> 0 and ¢, = 0(1), then

Are, = (n+ 1) A (;—") — A4 (i) :

n

LeMyma 6. If Jla, is |C, a+1], -summable, a> —1, k=1, then
2 B i (C, a)-summable.

n—+

For a > 0 this a special case of a more general result due to Mehdi [9].
However, he states and proves his result for integral values of « only.
Since a proof of the above lemma for non-integral values of a is slightly
more difficult, it seems desirable to include one here. A proof seems to
be all the more appropriate in view of the fact that we take a > —1 in
place of a> 0.

It may be observed that for £ =1, a> 0 the following stronger
result is known [7]

a’n
n+1

8

LEMMA 7. If a> 0 and Da, is |C, a +1|-summable, then 2

|C, al-summable.

However, for k> 1 it is not possible to obtain such a result for the
|C, @ +1];, -summability. In other words, the statement “If }'a,, is |C, a 1],
an
+1
we know [9] that a necessary condition for the series 'a,z, to be |C, al-
summable whenever Y'a, is |C, a+1|,-summable is Y n* e, [f'< oo,

%+% = 1. Thus in Lemma 6 the (C, ¢)-summability cannot be replaced

by the |C, a|-summability.
Proof. We take a; = @, = 0. Let

summable, a > 0, k > 1, then 2 ~ is |d, a|-summable” is false, for

n
1 1 a
z, = o —A;’“ZA“'”M’” nzl,

m=l

and
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Expressing ¥, in terms of x, we have

n

1 n A=o=2 40 ©
- E' 1k ga+1 §| m—y “n-m _ § '
Yn A;‘ v A'u Ty m (m +‘1) 1 Cn,vmm
m=y =

v=1 .

where
,Ullk A:+1

Cow =1 43

n
AR A
1<K
2 m(m+1) ’ SUSh

0 D> N,

Now the sufficient conditions for the limy, to exist whenever
Ylwn¥ < 00, 1 < k< oo are [9]: n>to

(3.1) lim C,,, exists for »> 1,
n—+-00

(3.2) 20,,‘,,U,, converges for all U, such that ZIU,,I < o021,

n=y

o0 oo
(3.3) 2' EC’M U, Ik < co whenever ZIU,,] < o0,
=1 n=v
Proof of (3.1). Since 2 425 < o0, 921, a> —1, it follows

-—a—23 m=v
-Am—-v

that ,g,,m 8 (C, a)-summable, a > —1, for every v> 1. Thus
) zullk_AnH L A—a—zﬁa oo A=a-2
IimC, , =1 v Z men o™ ik fat+l m—uv
oo ™Y e A m{m—+1) v g’ m(m +1)

1
— llkAa-I-]Aa-]-l . >
v (v<v+1))’ v=d
Proof of (3.2).

a:

llkAa+1 IA—a—-IA _
Z‘ Cn,o Ul < i) !
__J An m(m+1)
n=v ne=p 7= Y
IA"’_‘2 _A"_ |U|
<'01”‘.A“+1 m 2 n—ml!Znl

A5
It can easily be seen that —— A —2"™js decreasing for —1 < a< 0. Hence
for a> —1 n

oo 0o
3
D0, T < Gv‘"‘A““V‘ ; Aa PRLARE
n=v 'm=1 Rl

< R4, v 1,a> —1.
Hence (3.2) is satisfied.

(2) When a > 0, the factor 1/435, is omitted.
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Proof of (3.3). We have

g \ﬁ DR Gkt 1 = Age2AS
rd a ,f‘
d n:-: AS mg_v m(m+1)

Case (i). Let —1 < a< 0. Then by Abel’s transformation

SVADeR A 1 S
- n — A—a—2_Aa
Z m(m-+1) (')1:+1)(1L—!—2)2J r=o An-rt

1 —a—-2\a -
+1§A(m(m+l) );A,_., Ay, = I,+1,, say.

Now
1
I, = A
T (a4l (n42) T
and
7l 1 m n
Iz g CEW’ ZA;:—z‘l?t—r CZ n—v-A-;z:;l
M= r=1v Mme=v
(see [2]).
Hence
N o U, 1
1/k+a+1 n —A__l
‘ NomP " - ’ Ne=Y A?l. "’2 nov +
RS AR
_|_0,vllk+ +124 A: 2;@7‘4 Am-vl
nmy N ey
- *-a N —a— A‘l— IU |
S AR W P E o
M=y n=nt
iy et N1 e VN Annl Ul
— 0(,0 1/k |Uv|)+0(‘l)llk+ +1 mEl Am—oIZ n;:az n )
m=v n=mn
® A—a—l
— —1iK 1k-a+1 m—v
—O(v |U,,|)+0(q; > maA;;‘)
me=9
— O(,D-]Ik' |U,,|)-|—O(‘vl’k_"_2),
50 that
31 Sl = o[ Siwk)ro(Sorr) = o)
=1 Nn=v y=1

—1l<a<x 0.
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Case (ii). @ = 0. It is easy to see that

2 On,v Uu = O('D”k_2)

n=v

and hence the result follows.
Cage (iii). a> 0. In this case

- Az® A°
— llkAa+1 v m-—v v n—m “n
2, O =0 ,,f’:,,mmﬂuém a
— AZo=25 P)
— 11k 4a+1 m—v _m __ I/kAa+1Aa+1 v .
AT 2 im0 (v(v+1))

From Lemmas 3 and 4 we deduce that

a _6_7‘& — —a-—1 ' a 691 — —a—2
Y| (ﬂ)—O(n ) and 4 (—n(n+1))—0(n ).

From Lemma 5 we have
8
a+1 n — 0 Aa+15 O —a—3
4 (~——n(n +1)) (07?147 8,1) +0 (0™ )
and therefore
Oy ”"

o
< ,D(ll-l-ﬂ)k -1
- ? v(v+1) |

n,v
=1 a=
o

2 —lldu+161k -}-CZ‘U—L -1

=] v=1
_ 0{(Z”Iva_1/l;'|Aa+l 5v|)"'} +0(1) = 0(1),

by virtue of Lemma 3.
This completes the proof of Lemma

Leamwa 8. If D'a, is |C, 1|;-summable and

-

i.

(-]

a
d,=2r; > 1, k>1
3 (v+1+a)7 a ? 3

r=n

then > d, is |C, O|-summable.
For - =1 we get a result of Chow [4].

Proof. By virtue of the hypothesis and Lemma 86, Zm
a

is convergent. Thus d, exists for every ». Also D) a, is |C, 1],-summable
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M

if and omly if ) < oo, Using the identity

1
a, = ;{(n +1)t}l _ntftz—l}y

we get
—_ N Qo % 1 1_ 41 1
dn_‘; +1 +a mﬂ'ﬁ 'D('U-]-1+a) [’D(t,_. tv—-l)"'tv]
N ty - 1
-5 ) e
=~ (v+14a)(v+24a) =~ 'v(v+1+a) Cm+tl+ta
Therefore
1 e N0 1l \¢ N
n* 1 d,|* = 0(1) n"“( —"—) + 0(1) !
b B b ltllk o 1 k—1
= k—1 v _ i
= 0(1);1‘71, ;: - (;{’ ,,2) +0()
SEulAy
= 0(1) --l-0(1)

09 tlk
1 > o) = o),

=1

by virtue of the hypothesis. Thus }'d, is [0, 0|, -summable.

229

4. Proof of the theorem. The method of proof is similar to that of

Chow.

Sufficiency. Since }'b, is |0, al;-summable, it follows from a\li.no\wn
congistency theorem ([b]) that it is also |C, a+1|,-summable. Using
condition (2.1) we deduce that a, = (n+1)(b, —b,,) and then, applying

Lemma 2, we have

a1 a4-1

= (a+2)

n+1
—(a+1) 2

Therefore

.t:+lk ind T:+lk
S oSBT o[ ) oy

Thus > a, is |C, a+1|,-summable.
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Necessity. Using the well-known identities ([7]; [8])
tn = n(0h—0u_1),

ot = (a+1) (0}~ 0i"),

we have
- 1 nta+l
(4.1) n—::;-l = n+1 Tn+1—T;’ a> ‘_‘1, a #Oa
By virtue of Lemma 6, 2 n(f:l is (C, a)-summable. Hence b,

defined by (2.1) exist for all » and a, = (n+1)(b,—b,,). Using Lemma 2
with (a—1) in place of a, we have
-1

1 U o
(4.2) 7? =,-(a+1)-f-—a n’_‘:i, a> —1, a #0.

Combining (4.1) and (4.2) we get

b Tn TZH) 3
(4.3) —n——('n+a+1)(n n+1 for a> —1(°%).
Let
Y&
Pn —g v(v+1+a)’

(==

tﬂ
From Lemma 1, 2 ?: is |0, 1|,-summable and applying Lemma 6 we

1

that — . ist for all

observe tha 21: mmtlta) is convergent. Thus y, exist for n and
tn ‘

(4.4) = (n+1+ @) (ya—yana)-

Comparing this result with (4.3) we infer that

Vn =f+da

where d is some constant.

Now y,—0. By hypothesis {b,} is (C, a)-summable, a > —1, to zero
and therefore, by virtue of the consistency theorem it is also (O, a+1)-
summable to zero. Using the following identity

rm a 1 S 1 o '
-n _ _ A? ___2 a—1
n a-}-n 'A':L—l ;: n—l—ubv+ A; £ An—vbm

(®) It can eagily be verified that this identity is also true for @ = 0.
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T
it follows immediately that —n?—:» 0. Hence d =0 so that y, = E"—
n

. m t . > »
Since by Lemma 1, Z—i is |0, 1|;,-summable we conclude in view of
1
o0 [ -]
Lemma 8 that 'y, is |0, 0],-summable, that is to say > o~} |TE[F < oo.
1 1

Thus D b, is |0, al-summable, a > —1.
1

This completes the prbof of the theorem.
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