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1. Introduction

Let (C, d), (0', ') be free abelian chain complexes and let @ be an
abelian group. We study the homology of C®G®C’ with the standard
tensor product differential in order to investigate the circumstances in
which there exists a natural projection

62 Hypyq (CRGRC) > Hy(C, Hy(GRC')).

In the case where C, ¢’ are singular chain complexes of topological
spaces X, Y respectively, H,(C®G®C') is naturally isomorphic to
H,(Xx Y,Q) and the projection 6, gives rise to a natural map from
Hy o(Xx Y, to H,(X,H,(Y,G). The interpretation of the term
‘natural’ is made clear in the text.

It is proved that when the groups Tor (&, H,_,(C")) and Tor (H,(C)®
G, H, ,(C')) vanish, there exists such a 6, which is described explicitly.
A counterexample is given which shows that in general there does not
exist a natural 6, such that 6,7 = g, where 7: H,(0)®@H,(GRC")
— Hp o((QGRC") and ¢: Hp(C)®Hy(GRC') — Hy(C, Hy(GRC')) are the
well-known canonical monomorphisms.

However, there always exists a natural homomorphism

H,y(C, Hy(GRC @ H,(Hp(C)RGR ()
M ?

where the group M is defined in the text. Then 2 gives rise to a definition
of a product of a class of H,, ,(CQG®C’) with a cohomology class {f}
of H(Hom (C’, F)), where F is an abelian coefficient group, to give
an element of H,(C, G® F). This is done by taking the Kronecker index
of HHom (C', F)} with the coefficient group H,(G®C’) and .with
H,(H,(C)®GQ C’). The resulting group maps canonically to H,(C, G® F).

When C and C' are singular chain complexes of spaces X, Y this
product pairing yields the product

HYY,F)QH, (XX Y,@) > Hy(X, FRG).

2: Hp (0RGR0") -

- Let X = Y. Then combining the pairing with d,: Hp (X, &)
—H,,,(Xx X,q) induced by the diagonal map d: X — X x X, (d(=x)
= (@, #)) gives a product HY(X, F)® H,,((X, ) > Hy(X, F®G), which
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is shown to be the classical cap product. Thus the cap product can be
defined entirely in terms of homology, dispensing with discussion on
the chain level.

Section 2 introduces systems of filtering subgroups D"° and D'*"
respectively for H,(C®G®C'), r+s =mn. Then D~'**' < D"° for all
r+8 = n, and there is an isomorphism D"*/D""**! > H,(C, H,(G® C')’.
The D'*" are obtained from D"° by interchanging the roles of ¢ and C'.
There are also defined subgroups 4™° < D™, A" < D'®". In partic-
ular, D*~3"*! ¢ A’®" and there is a monomorphism 4'%7/D"*""+!
- H,(H,(C)®GRC').

In Section 3 the main theorem is proved, viz. that H,,, ((RGR0’)
is equal to D™?+ A'*?, and hence to D™?+ D'®®, where + is the group
addition in H, ,(C®GX®C’). A full description is given of the cycles of
CRGRC .

Section 4 is devoted to establishing the properties of the groups
D,D’, 4 and A’. The main result is the following exact sequence which
may be thought of as a restriction of the classical Kiinneth exact sequence:

D HAC)®H,(E®0)>> D" > ) Tor (H,,(C), H(GR0").

r<p r<p
r48=D+q r48=D4q

There are also exact sequences for D'®?, A™% A'%? and the inter-
section group D™? ~ D'%?,

The conditions for the existence of the mnatural projection 0, are
established in Section 5. The main theorem and the homomorphisms
D% > H, (C, H(G®C')), A" - H,(H,(C)®GRC(C’) give rise to the
homomorphism

2: H,, ,(C86® ¢’y - Hp(O’ Hq(G®C’))C;3[Ha(Hp(C)®G®U’) .

The required conditions are deduced from 2. There is a related
projection £ obtained by using D'*? in place of A’*? in the main theorem.
The section ends with the counter-example already mentioned.

Finally, Sections 6 and 7 use the projection £ and the homomorphism
2 to obtain the product pairing of HY(C', F) and H,, ,(CRGRC’) to
H,y(C,GQF), and it is proved that when ¢ = ¢’ = C(X) this leads to
the classical cap product. )

Throughout this paper > refers to the direct sum @, the tensor
product is written ®, and Tor denotes the torsion product. The image
of a homomorphism f is written Im f and its kernel Ker f. Let (C, 0) be
a chain complex. Then Z, or Z,(C) denotes the group of n-cycles of C,
and B, or B,(C) is the subgroup of Z, consisting of boundaries. The
homology class of a cycle z is written {2}, and when there is no possibility
of confusion these brackets are algo used to denote cohomology classes.
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In diagrams of groups and homomorphisms >— denotes a momno-
morphism and —»> an epimorphism.

If A, B are subgroups of C, we denote the subgroup of C consisting
of elements common to 4 and B by 4 ~ B.

2. Definitions and preliminaries

Consider the more general case than that described above, namely
the complex C®C’’, where (C, d), (C'',d"') are abelian chain complexes
not for the moment assumed free. Write A = C®C"’. Define the differen-
tial in A to be the tensor product differential given by 9°(z2®y) = dzQy+
(—1)U™* 200"y, xeC,yeC’. The n-th chain group of the complex
(4,0%) is Y C,®C,.

74+8=Nn
We may filter and graduate 4 by defining 4”7 the subgroup of
A consisting of elements of filtration < p and total degree p+gq, to be
Y 0,®C,,r+3=p+q. For a fixed p, (A?, 3°) is a subcomplex of (4, %),

r<p
where AP has A"? as its (p+ ¢)-th chain group. Then H, ,(A") is well-
defined.

The inclusion i: A” — 4 is a chain mapping and induces a homology
homomorphism 4,: Hp, o(47) > H,, g (4). Write Im i, = D™% Then
D™ < H,, ,(A) and clearly D*~9+! < D™ for all p, ¢q. The groups D™?
form a system of filtering subgroups of H,, ,(4).

Now consider the group C,®2Z; + > C.®C;, r+s = p+gq, which

r<p

we denote by «”% Its image in 4 is a subgroup of A™?. If either C or C”
is free the injection 7: «™? - A is monomorphic. Assume the freedom
of at least one of these two complexes. We define a homomorphism from
Z( "% [B(™7) to Hy(C, Hy(C")), where Z( ™) = Z,,4(A) ~ AP*? and
B(s™%) = B,,q(4) ~ A*% Note that when C is free, Z( &™) = Z, ,(4")
and Z(«™%/B(«™% = D™%. However, if only C" is free, it is only
possible to say in general that Z(«%?%)/B(«™% < D™ In this case we
write Z( ™% /B(#™% = 4”9 Then clearly D?~44*! c 4™ ¢ DP9,

An element x of «"?is of the form z = Zc"’@ 29+ 3 3 d'®q0.

1 <P

If z¢Z (™% the following conditions are satlsfled
Sodos+e Ted.o0 ot =0,

1)
Jodad O +e 3do0 d =0, alr<p.

44 17

Here, and throughout this paper, ¢?¢C,, ¢, (), 2P eZ;, and ¢
is the group automorphism in C, defined by ec, = (—1)'c,.
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Define I': ™% - Cp,® H,(C"') by I'(z) = Y ® {27 ?}. Let C® Hy(C"')
7
have boundary d®1. Then it is a chain complex whose p-th chain group
is Cp,@ H,(C"').
LeMMA 1.
(a) If C or "' 1is free, I' induces a homomorphism
Ty: Z( A" [B(P%) — H,y(C, Hy(C")).
(b) Ker I', = DP~ 19+,
(¢) If C is free, I's induces an isomorphism
I: D»DP-14 o |, (0, Hy(C')).
(d) If C" is free, I'y induces a monomorphism
A AP DP-LEEL L HL(C, Ho(C)).
Proof.

(a) Let 2 be a cycle of ™7, satisfying relations (1).
Then S’acg’@zq ® lies in the image of Cp_,® By in C,_,®Z;. Hence,

by the exactness of the ,sequence C,_,® B; —>Cp_.1®Zq —> Cp_ Q@ H,
(where H, = H,(C")) it is clear that )0c)’®{z;"} =0, ie. I'(z) is
i
a cycle of CQ H,(C").
Now let z be a boundary in A. Then Z‘c“’@z"“' = 26‘”@6" e )+

;ae"‘) ®e, ™ for some e,.eC,., ¢r €0;'. The fu*st sum E is mapped to
7
zero by I

Let ¢ be free. In the following commutative diagram the hori-
zontal sequences are exact and the vertical arrows are monomorphisms
since Z" is a direct factor in C’’. Then, since

26 1®6H(k) C'®Zu A B®0n’
k

it must lie in B®Z" and hence maps to a boundary in 0Q® Hg(C''):

B®Z” . 0®Zu > O/B®Z”

! ! !

BRC"' »—» (C®C" - C/BRC"

In the case C is free but not ¢’', the same result is obtained by noting
that ;e 1,00 e;® = 0, and hence e;®eZ; .

This completes the proof of the first part of the lemma.
(b) Clearly, I',(DP-"**) = 0.
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Let 2 be a cycle of &™? such that I'(%) is a boundary of C® Hy(C"').
Then the fo]lowing commutative diagram shows that x must be of the
form x = >dc%, ®zq'“)—|—20”’ e Q+3 Y de'?:

3 T <P
B®Z;' - B® H;'

| |
¥ v

C®Z, - CRH,

Thus » = 0°(Sha@% "+ e e ) +v, where yea? 1" and
is a eycle.
‘Hence Ker I', = DP~19+1,

(c) Let C be free and let {20("®{z”“’}]eH (¢, Hq(C”)) Then
Z%“’@{z"“’} =0 in Cp_,@H,(C") and hence in Zp_\@H,(C"'). (This

is where the argument breaks down for ¢’ free but not C.) Then
the exact sequence Z, ,®By >—>Z, ®Zq > Z,_,QH, implies that
Y0y ® 2y eZy @By .

B

Let Y ocl®2z/ @ = 32f) @0 ¢, (), and let v = Y@z, — e Y2 ,®
; ; ' 1

cy®). Olearly v is a cycle of AP, and I{v} = {Zcﬁ’@{z&"i’}}. Hence
Iy is an epimorphism and ! is an isomorphism. v
(d) This follows immediately from (b).

COROLLARY 1.1. In the spectral sequence H, associated with the filtra-
tion A® of A, if C is free, then E, = E,.

Proof. It is well known that D™?/DP"%?"!' = E_ and that
B} =~ H,(C, Hy(C")). The isomorphism ! completes the proof.

The roles of ¢ and €'’ may be interchanged to give a second filtration
of A =CRC". Define the subgroup of 4 with filtration < ¢ to be

>'C,®C,, and denote it by A% Its (p+g)-th chain group A'%" is
I<q

) C,®C,,r+s =p+q Then there are defined D", &'*" and 4’7

8<a
exactly analogously to D™, &™° and A4™. Application of Lemma 1
immediately yields

COROLLARY 1.2. When C s free, there is a monomorphism
Az A9P DR 5 H(H(0)RC'))
and when C' is free, there is an isomorphism 1: D'%?|D¢1LP+1
~ H (Hp(0)®C").

Now consider the complex C®G®C’, where (0, d) and (C, ') are
free and G is an abelian coefficient group. Applying the above discussion
to C®(GRC’) defines groups D4, AP D\%® and A%P while (CRG)QC
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yields D%, 439, D® and A4;%®. These groups satisfy the following
relations:

4
DPT — AP9,  A%P < DR 4PN < DR
'q,p __ ‘q,D 0,q __ 4 ,P __ ‘q,p
AP = DEP  DPY — DPY DGP _ DaP

Thus there are only four different groups involved, which will be
written D?9, A% D'%P A'%P where D" = D! = AD? = DP9, AP
= A2?, etec. Then 4% < D™? and 4'%" < D'%?. There are defined
I: DPYDP 5 H(C, Hy(GRC') and A: AP9[DP- 4!, H (C,6®
H,(C")), also corresponding homomorphisms U, A'. Let gu: Hp(C,G®
H,(C')) - Hp(C, H(GRC')) be induced by the canonical monomorphism
o't GRH,(C') > Hy(GRC'), and let v: AP > AP DP-Le+1 4. DPa
—> DP?|D?~"%*! be the canonical projections, while ¢: A% > DP9
iy AP DPhAtY ., pPADP-L9FL are the canonical embeddings.

COROLLARY 1.3. The following diagram commutes:

AP 5y AP.Q/DP—I,H-I >_‘_> p(C, G@HQ(C'))

I ‘ I Iy l 9'.
D% —> DPDPTHLE Ho(C, Ho(GRC')

Proof. This is immediate from the above definitions since At = I,
for (CR®)®C’ while It =TI, for CR(GRC’).
There is an obvious analogue to this corollary for D'“? and 4'%".

3. Main Theorem

We recall the proof of the Kiinneth formula for the tensor product
of chain complexes ¢ and C'', where C is free.

Let Z®C'' be the tensor product complex obtained by regarding
Z as a chain complex with zero boundary. Then the embedding of Z in O
induces a chain monomorphism i: ZQC"” - CRC". Let BRC"’ be the
chain complex with the usual graduation and with boundary —e®d".
Then the epimorphism @ = d®1: C®C”’ — B®C" is a chain map, and
there is an exact sequence of chain complexes and chain maps, ZQC''
> 00" - BRO".

By a well-known theorem ([4], p. 196) this gives rise to an exact
homology sequence

$

5 H.(Z0C") 5 H,(09C") % H, ,(B®C") 2 H, ,(28C") > ...
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Here 2, is induced by the embedding B < Z (see [4], p. 212), and

Las 9. are induced by ¢, P respectively. Since C is free then H,(Z®C'')
= Y Z,@H,(C"), and H, (BRC"')= 3 B, :®H,(C"). The cokernel

r+8=n r+8=n

of i: 3 BOH,(C")> 3 Z,@H,(C") is 3 H,(C)®H,(C"), and i
r+s=n r+8=n 7r+8=7
induces : Y H,(C)® Hy(C")>~> H,(C®C"’), the classical monomorphism

r48="n

induced by ®¢': Z®Z"' — C®C"’. Thus there is an exact sequence

(2) D) H(CO)®H.(C")»> Ha(CRC")

r+8="1

L Y Ba®H(0) S Y 2 @H,(C") >

ri4s=n r+s=n

Since Ker A4, = Im 5,.., the image of 0. can be identified with
> Tor (H,_,(C), Hy(C")), and denoting by & the homomorphism

r+a—
defined by 0.., we have the Kiinneth exact sequence

(3) Y HACO®H,(C")"> Hy(C®C") 3> ' Tor (H, ,(C), H,(C").

r4-8=n r+8=n

We now prove the main theorem upon which the subsequent discussion
is based. Let ¢ and C'' be the usual chain complexes and let C be free.
There is defined a subgroup D™?+ A'%" of H,.,(C®C"'), where + is the
group addition in H,,, (C®C”'). The main theorem is as follows:

THEOREM 2. Let C, C"' be chain complexes and let C be free. Then, with
the notation for D, A’ established in section 2, D*94 A'%? = H, ,(0®C")
for any integers p, q.

Proof. Let 2= 3 Y d"®c,® be a (p+gq)-cycle of CRC”. Then
— r,s i
6( ;60("®c,','(” is an (n—1)-cycle, n = p+q, of B®C", since

®1 is a chain map. It follows, since C is free, that 2260“’@0"”’

Y B,®Z/, ie. Y Yoc'®e = Y 3 oe)®2 for some é,<C,
r{8=n rs 1 rs 7

and 2, ¢Z,. This equality holds in both B®(C" and C®C'’. Hence

5(2—20"')®z"(’)) —0. It follows, since Z®C' »>C®C" 2> BRC"

is exact that there exist 2 eZ,, e;®eC; such that
= S50t s ST 0dn
r8 7 T8 k

Since z is a cycle, then in each dimension 7,
(4) Zaem,@ YA+ (—1) Y 0" 6™ = o.
%
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Write
T = 224”®z”m+ 22z""®e"""
r<p r<p
_ m "(f) V (k) ”(k)

Then %eZ,,,(AP), veZ(d"-"), and %--7 =z Thus {Z} = {@}+ {7},
{u}eD™9, and {v}e4'®P, and the theorem is proved.

COROLLARY 2.1, If C, C" are chain complexes such that C, = 0 = C;
for r < 0,and C is free, then each n-cycle z of CRC" is equal to a sum Zzw
0 < i< n, where %, is a cycle of the group C,QC,_,® 0,1 1QCh ;.

Proof. Using the notation of the theorem, define z, = 26‘”@ 2, +

) #4996 ®. Then from (4), 8%, = 0,7 =0,1,...,n—1. There is no
%
difficulty in dimensions 0 and n—1. Thus Z = Z’Ei, 0<i< m.

COROLLARY 2.2. If C or C" is free, H,, 4(C®C") = D>+ D™

Proof. Let C be free. Since 4'%? < D'??, the result follows immedia-
tely from the theorem.

Since D™?4- D'*? is symmetric in ¢ and C", the corollary is also
true for C'' free.

Let X, Y be topological spaces, and consider a singular homology
theory such that there is a chain equivalence y: C(X)®C(Y)—>C(X X Y),
where C(T) is the singular chain complex of T (T =X, Y, X x Y), and
X X Y is the cartesian product space with the usual product topology.
Then o induces an isomorphism ,: H,,+,,(0(X)®G® C(Y)) = Hp4o(X X
Y, @), where G is as usual an abelian coefficient group. Using the
notation of Section 2 for the groups D, A’ associated with a complex
CRGRC', with C(X) =C, 0(Y) =C, let ys (D™ = 2™ y,(447) = AP,
The following corollary is then an immediate consequence of the theorem:

- COROLLARY 2.3.

Hp o XX Y, Q) = 9P+ A9P,

4. The groups D, D', 4 and 4’

All the necessary information about these groups may be deduced
from their Kiinneth-type exact sequences.

THEOREM 3 (Restricted Kiinneth formula). Let (C, d), (C",d") be
chain complexes and let C be free.

Let n, be the restriction of the monomorphism n of the Kiinneth sequence

to 3 H,(C)QH,(C"), and let &, be the restriction of & to D™. Then
r<p
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(a) Imn, € D™ (b) Im &, = 2 Tor (H,-,(C), He(C"')), and (c) there is
a short exact sequence
(5) N H(O)@ Ho(C") % D" ‘s, > Tor (H,—.(C), Ha(C")).
<D r<p
Proof.
(a) It is immediately clear from the definition of D* ‘4 that Im 7, < D%
(b) &, is induced by 8 on 4™ so £,(D"9) < Z Tor (H,_1(C), Hy(C")).

Now let 8¢,®{zs }eKer (Ae: B, ,®@H, (C") —>Z,._1®H (C'")). Then
there exists an integer k > 0 such that de¢, = kz,_,, kz; = dc,,, for some
Zr_y € Zyp_y, Cgyy € Cgyy (see [4], p. 226). Hence c,.®z,',’—|—(r 1) 21 ®¢Cay
is a cycle of A™® whose homology class is mapped by 0. to dc,® {2z, }.
Thus &, is onto.

(e) 7p i8 2 monomorphism, &, is an epimorphism, and since &7 =0;
then &,mp, = 0. It remains to show that &'(0) < Im 5,. Let &,{z} =0,
% € Zy,q(AP). Then from the exactness of the Kiinneth sequence, {z}eIm 7.
So x = Z-Zz“’@ )@ 03220“)® ce). In particular, 26 o 2@ cg )+

i 78 1 78

ezcg ®6” J Ez( 1®z”_11), ie. 20(” ®0" ¢y lies in the inter-

sectlon of the images of O,,+1®Bq_1 and Z,,,®Cg_; in Cp+1®0 —
It follows from the diagram that 2 (100" ¢;eIm Z,,® By ;:

p+1®Bq_1 lane Zp+1® Oq—l —>> Zp+1® 0”_1/3:1,_1

0p+l®B;1’—-1 > 0p+1® 0”_1 —>> Cp+1® O:—,IIB;'—I
Thus Zc( 1®0"6;® is a boundary under 9%, so ) 3 2®2z'" is

iT>P
also a boundary under 9%, and {z}eIm 7,.
CoROLLARY 3.1. The following diagram, in which (g, {, {u are the

canonical inclusions, is commutative for all positive integers p’

N B,(0)@H,(0") > DP? 25> Y Tor (H,_,(0), H,(C")
r<p IC IC <P IC
S .

H(C)QH,(C") »—s DPHP-P 5 2 Tor (H,_,(C), Hs(C"))
p ’

g ’
r<p+p’ +P PP v otp

Al

Proof. This follows immediately from the definitions of &, ., r = p,
p+p'.

The inclusion {: D*? > Hy,, ,(C®C"') also gives rise to a commuta-
tive diagram similar to that of the above corollary. When C" is a posi-
tive complex this is simply a special case of the corollary since DP*%°
= Hp,o(C®C").
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CoROLLARY 3.2. Let C be a free complex.
(a) There is a short exact sequence

H,(O)® Hy(C') =2 s proypr-tast 2L, mor (11,_,(0), Hy(C™)),

where [np], [&p] are induced by ny,, &, respectively on the appropriate factor
groups.

(b) The following diagram commutes. The upper sequence is that defined
in (a), the lower sequence is the classical universal coefficient sequence, and 1
is the isomorphism of Section 2

H (C)@H (C”) [7p] DPQ/DP 1,441 [ TOI‘ (HP_I(C),HG(C”))

gll g‘ gll
Y

H,(0)® Ho(C)——> H,y(C, Hy(C")) —— Tor (H,_,(C), Hy (C')

Proof.

(a) This follows by a well-known theorem on exact sequences ([4],
p- 207) from Corollary 3.1 with p’' = 1.

(b) Let t: D?? - D™?/DP~19+! be the canonical projection. Then
[9p] = tnp restricted to H,(C)@H,(C"). Let zeZ,, 2z ¢Z; and let [ ]
denote equivalence class modulo D*~%*! Then I[5,] ({2}®{z""}) = I[{¢®
2'}] = [2@{2"}} = o({#}®{2’}), i.e. the left-hand square commutes.

Now &, is induced by 0. in sequence (2), and o is induced by d®1
on C®H,C'). Let ¢ = 2Zef)®z,','("’+2Zz‘,"’@e;""’ be a cycle of

<P 7§ f_<p k
AP (see proof of Theorem 2), and let [04] denote the homomorphism

induced by . on DP9 D19+ Then [d,][{z}] = 263(”®{z”(7)} But
(0®1):1[{a}] = (38 1) {Z‘eg@{z;'m}} - Zaeg)®{z;'(’)}.

Identifying Im[d,] and Im (0®1), with Tor (Hp_1(C), Hy(C™))
completes the proof.

The above corollary furnishes an alternative demonstration that [
is an isomorphism.

There is a sequence similar to that of Theorem 3 for the group 4%".

THEOREM 3. Let C, C”' be chain complexes such that C is free. Let nq
be the restriction of 5 to Y H,(C)QH.(C"), and &, the restriction of £ to

I<q
A%®, Then Imn, < A% Im & = 3 Tor (H,(C), H,_(C")), and there
is a short exact sequence, o<t

(6) Z H.(0)® H,(C") ,i, 4190 _fa 2 Tor (H,(C), H,_,(C")).

8<q 8<q
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Proof. Clearly 7, is a monomorphism, and Im 7, = 4*". Let
z= Yo"+ Ez(k)®e”"‘) be a cycle of «/'%? (see proof of Theorem

8<q -

2). Then 9z = 2 ae(“@z,,’(’) Thus £(4'%%) = Y Tor (H,(C), He_1(C")).
8<q 8<q

The proofs that £, maps onto Y Tor(H,(C), H,_,(C")}, and that the
s<a

sequence is exact follow exactly the argument of the corresponding parts
of Theorem 3.

There are obvious analogues to Corollary 3.1 and to Corollary 3.2
(a), but not to Corollary 3.2 (b) since the universal coefficient theorem
cannot be applied to H,(C)®C"’ when O is not free.

In the next section it will be necessary to be able to describe the
intersections of the groups D with the 4.

LEMMA 4. Let C be free, and let n: Hp(C)QH,(C"') — Hp, o(CRC”)
be the canonical monomorphism. Then D™~ A'%P = n(H,(C)® He(C")).

Proof. Let xe D»* ~ A'%", Since ze¢D™? then &(x)e ZTor( —1(0),
H,(C")}, by Theorem 3.

But zed®? so by Theorem 3', &(x)e Tor (H.(C), H,_1(C")).

8y
Hence &(x) = 0 and so, by the exactness of sequences (5) and (6),

zeng( 3 HH(OSHNC) s 3 HACDHAC)) = n{Hp ()R H(C)).

=
Clearly 7(Hp(C)®QHy(C"')) = D™? ~ A'*?, and the lemma is proved.
LEMMA 5. When C is free, D*% ~ AP+ = 0 = DP-Ha+ o A'9P
Proof. Let zeD?? ~ A%+ Then again £(x) = 0, and

Tenp (KZ; H,(C)QH,(C")) ~ n;_l(sgilﬂ,w)@m (€")) =o.

Similarly D~ 1%+ A 4'%? = 0.
LEMMA 6. For all positive inlegers t there is an exact sequence

P4t _
H,(O)@HE(C”): ) D13+¢.G ‘h A'G.P
P<r<Pp+t
r48=D4+q .
PSP 4L
—_—

Tor (H,(C), Hs(C")).

PLTSP+1-1
T+8=p+q—1

olpsty ppyt are the restrictions of the Kiinneth sequence maps.

Proof. This is an immediate consequence of Theorems 3 and 3'.

Now let C be free and ¢’ = G®C’, where ¢’ is free, and let D™
A% D'%?, A'%P be the subgroups of H,,,(CQG®C’) defined in Section
2. Then Lemma 4 shows that D™7 ~ A" ~ H,(C)Q H,(GR ('), while
A% A D'V ~ H, (C, §)Q H,(C'). Clearly A™? A A'%? ~ H,(C)QGR H,(C').
We complete the description of these (p, ¢)-intersections by obtaining
an exact sequence for the remaining intersection, viz. D™? ~ D%?,
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LeMMA 7. There is a short exact sequence

()  Hp(O)@H(GR0C')+H,(C,G)QH,(C') |
>27, DP9 ~ D'%P 25> Tor (H,_,(C), Tor (&, Hy_y(C").

Here 7, ' are the canonical embeddings in H,. ,(C®GRC’) while £,
is described in the course of the proof, where it will also be seen that
the term Tor (H,,_,(O’), Tor (G,H _1(0'))) is not in fact asymmetrical
in ¢ and €' since it may be replaced by the canonically isomorphic group
Tor (Tor (Hy_,(C), G), Ho_1(C)).

Proof. Write C®GQC' = 4, ) C,G®C; = A®, and ) C,QGRC,

<P s<a
= A'Y. The filtrations A%, A" give rise to D% D'?? respectively.

Let zeZy,,(A") be written z = ) Y d'®¢"®¢?. Then

T s<q
(8) Z R gV e = 0.
7
Now let {z}eD™? Then, for some ¢,¢C,, €,¢Cyy 2+0°)Y 3 A
i 7 F8=P+¢
9@ 6, eZp,q(4%). Hence Y Y '®@¢"@c0+0°Y 3 e“’@g‘"@ eah +

1 8<q 1 8<q—-1

e §e§11®g“’®6’e;‘f —0. S0 z= YR @c"—e 260) Y O

1
0%y for some yeAd, 4., and, since 0% = 0, we ha.ve

9 (=17 D @0 ¢~ (— 1)+ ) 065),09900'¢" = 0.
i 1

Thus (o) = S0 ¢+ S0 00 0 d).
1

Relations (8) and (9) show that each class of the group D™?~ D'%?
has a representative cycle of the form 2 DR gVRfY, foCpy fr<Cq With
the relations

(10) 2 I RIRfiN = 0 = Z 904900 f10.
[

i

The class of each such cycle clearly belongs to D™? ~ D'%?.

We now obtain the required exact sequence (7). First, n and #’ are

monomorphisms, and clearly Imy < D ~ D'%?, Im 4 < D% ~ D"

Define a homomorphism &: (,G®0C; - B, , @GR B,_, by 8(cx®

gQ¢;) = 96,@g®d'c;. Then & maps boundaries in C,®GRC, under 9°

to zero and induces 8,: D*? ~ D'%? > B, ,@G® B,_,. Clearly d&,n =0

= 8yn’. Let du{z} =0, 2 = Y fPR49xf,Y, satisfying relations (10).
T
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Then ;af;f)@g(i)@a'f;@ =0 in B, ,®G®B,.,. Hence z¢Z,0Gx0;+

C,RG®7Z, then {x}eIm y, 5. _
It remains to deseribe Im 8,(D™? ~ D'*P), Again let = Y fI®
. . i
df,) be a cycle such that {#}eD”? ~ D'%P. Then by (10), 2¢C,®
Z,(G®C'). Hence éreB, @K, where K is the subgroup of G®B,_,
which is the image under 8" of Z,(GR(C’). Thus K may be identified
with Tor (¢, H,-1(C')). From (10) again clearly éze Im 9(Z,(C®K))
in B, @K, ie. Imd, may be identified with a subgroup of
Tor (H,-,(C), Tor (G, Hyi(C)). Now let y = Yaf'® Y g @0 )
7 7

«Im (Tor (H,, 1(C), Tor (@, H _,(0’)))) in B, ,®G®B,_,. Let =Y f9®
Seef. ’

From the classical properties of torsion product ([4], p. 226), f‘”
= kel y, k3 g0®0 f*) = 0 for some integer k > 0 and cycle 2,_,€Z,_,.
7

But B’ is free, so kg™ = 0 for all 7, j, and hence kz gIRfHN = 0.
Thus 26_}"“@29“ DR = 0. And since Zg" N@a’ f, J)ef[‘or (G, Hq_1(C"))
clea,rly Zf‘"@Zg” "@d'f;* —= 0. Hence a: satisfies relations (10), i.e.

{w}eD” ~ D"' and y = 6x{x}. Im 6, may therefore be identified
with Tor (H,,_I(C), Tor (@, Hq_l(O'))), and letting &, be the epimorphism
induced by J, completes the proof of exactness.

Finally, it is easy to see that if we first consider z<Z,(C, @)®C,
and proceed to dx eTor (H,_,(C), G)® B;_, we may identify Im 8, with
Tor (Tor (H,-1(C), G), Hg_1(C")).

CoroLLARY 7.1. If Tor (G, H,,(C')) =0, then D™ ~ D" =
= 7' (Hp(C, G)® Hy(C")).

Proof. This is immediate from the above lemma and the universal
coefficient theorem.

In general D% ~ D'9""P*! and D"~"*' ~ D'%P? are mnot zero, but
Lemma 7 enables us to establish conditions under which these groups
are zero.

LEMmMA 8. When Tor (G, Hy,(C')) =0 = Tor (G, Hq(O")), then
DP—I.Q+1 . D'Q.D = 0.

Proof. Let #eD?~ %! A D'"?, Then zeD™ ~n D'*" = 5 (H,(C, )®
H,(C"), and zeD" 1%9+! A D'¢*WP~1 = g (H, ,(C, G)@H,,,(C')). Hence
DrLerl | D'YP — 9,

Clearly all the homomorphisms defined in the sequences of this
section, together with I, A of Section 2, are natural with respect to chain
mappings o: ¢ - K,d"': ¢ -~ K', where K, K' are assumed free

Dissertationes Mathematicae LXVII [’ [/T 2
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whenéver it is necessary to assume this of ¢ or ¢’ respectively, i.e. these
homomorphisms commute with the homomorphisms of H,(C®C0C"),
D* 3'H, (C)® Hy(C"'), ete. induced by o and ¢”. In the case ¢’ = GRC’
a chain map o’ is of course induced by a chain map ¢': ¢ — K’ and
a homomorphism f: ¢ — F, where F is an abelian group.

We complete the discussion of the groups D, D', 4 and 4’ by showing
that all the exact sequences of this section split, but not necessarily
naturally.

LeMMA 9. Let (C, 0), (C”, 8") be chain complexes, not necessarily free,
and let D™ < H,,,(CRC"") be defined as usual. Then whenever the follow-
ing exact sequence exists it splits:

D H(C)® Hy(C") »2-» D" oy, D Tor (H,_,(C), Hs(C")).
<P TP
Proof. This lemma is already known for the Kiinneth sequence
([6], p- 168) and it is necessary only to adapt the argument there given.
Let K, K'' be free chain complexes. Then the following exact sequence
(whose existence is assured) splits:
D H(K)@H,y(K") > DR* "> Y Tor (H,_,(K), Hy(K")).
r<p T<D
The notation D%Y #, X is clear. The splitting is obtained from
inverses ¢,: K, > Z,(K), s: Ky —Z,(K'') of the embeddings :: Z,(K)
— K,y v': Zy(K"') — K, respectively. These induce a map ¢Qy: ) K,®

r<p
Ky - Y Z,(K)®Z;(K") - Y H,(K)®H,(K") which in turn induces

<p r<p

(p@p): DR — 3 H,(K)@Hy(K") such that (p@v)enp = 1.

r<p

But there exist free chain complexes K, K’ and chain maps ¢: K — C,
0': K" —C" such that oy Hy(K) > Hy(C), ou: Hy(K'') - H,(C")
are isomorphisms in all dimensions (see [3], p. 169). Then the following
diagram commutes:

124 ',f E;{ rr
D H (K)@H,(K") >—> Dg* > Y Tor (H, ,(K), H/(K"))
<D *<p
1 0,80, (089"} Tor ()
Y Y .
D H(C)®H,(C") > D! > Y Tor (H,,(C), Ha(C"))
r<p P p <D

The five-lemma ensures that the two sequences are isomorphic,
hence since the top sequence splits the bottom sequence also splits.

The inverses ¢, y, are not in general natural, i.e. they do not com-
mute with chain maps of K, K" and hence the splittings are also not
natural.



4. The groups D, D’, 4 and A’ 19

Exactly similar reasonings show that the sequences of Theorem 3’
and Lemma 6 split.

In order to see that sequence (7) splits it is only necessary to define
#: By_y = Cpy %' By_| > C, as left inverses of a, 8’ respectively. Then
*®@1Qx': B, ,GRB,_, > C,®GF®C, is a right inverse of 4 and it
is not difficult to see that it induces a right inverse of 8: Z(C,QG®Q C,)
— Tor (H,_,(C), Tor (&, Hy_,(C"))), where Z(C,®G® C,) denotes the group
of cycles in CRGRC’ of elements of C,®G®C,. This gives a right inverse
to &. and hence a splitting, again not natural, of the sequence.

The following corollary is an immediate consequence of Lemma 9:

COROLLARY 9.1. Let C be free, and let C®C"', D™ be defined as usual.
Then
(a) there is a nmon-natural isomorphism D™' ~ 3' H,(C, H,(C")),
r<p
(b) there is a non-natural projection 8y: Hp o(CRC”) - Hy(C, Hy(C"))
in each dimension q.

5. The projection 0,: H, ,(CR®GQC’) -> Hy(C, H(G®C"))

We prove a preliminary lemma.

Let (C, +) be an abelian group, A and B subgroups of C, and write
A ~ B =D. Then D is a subgroup of A, B and C. There is also defined
a subgroup A+ B of C.

Let A® B be the direct sum of A and B, and let E be the subgroup
of A®B generated by clements (d, —d), deD.
ADB

LeEMMA 10. There is a canonical isomorphism m: — A+ B.

Proof. Consider the sequence D >“> A@QB 5> A+ B, where u(d)
=(d, —d) and e(a,b) = a+b, aed, beB and deD, Then eu(d) = d-
(—d) =0; and if &(a,b) =0, then b = —a, i.e. aeD, and (a, b)euD.
Clearly x is a monomorphism and ¢ an epimorphism. The sequence is
therefore exact, and since uD = K the lemma is proved.

Now consider again the complex C®C’’ where C is free. Use the
notation of Section 2 for D, 4’ ete. By Lemma 10 there is a canonical
DTJ,0® A'Q,p

isomorphism D%+ A'%? ~ , where F is generated by elements

(d, —d), deD™ ~ A'VP,

Let 1: D™?/DP~“+! o H,(C, H,(C"")) be the isomorphism of
Lemma 1 (¢) and A': 4*7/D"" 4P+  H (H,(C)®C") the monomorphism
of Corollary 1.2, while t: D??— D™?DP~19+1 gnd 7/: 4% — A'W?|D'T 1P+
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are the canonical projections. Then &, A't’ define a map ¢: D™?@A*?
— H,(C, Hy(C"))®Hy(Hp ()R 0"), g(, ) = U(2), A7 ('), e D", ' e A7,
Then ¢ induces a homomorphism
DM@ A Hy (0, Hy(C)OH,(H, () ")

Ty el Ml Mo ,

U 5 M
where M is generated by elements (it(d), —A'z’(d)), deD™? ~ A'?P,
Combining ¢ with the isomorphism m of Lemma 10, and applying Theorem 2
gives.
THEOREM 11. If (C, d), (C", 8") are chain complexes and C is free there

is a homomorphism, natural with respect to chain maps C - K, C"' — K",
where K" is free, namely

N Hy (0, Ho(C))® H, (H,(0)®C”)
I :

Proof. Since H, ,(C®C") = D"+ A'%", then 2 = Qm™'.

This theorem is obviously applicable to C®GRC’, where C, C’
are free, simply by taking € =GQC". Let g.: HH,(C)®GRC')
— H,(H,(C,@)®C') be induced by the canonical monomorphism
o: Hy(C)®G — H,(C, G). Let P be the homomorphism of

H,(0, Hy(G®C))@H,(Hp()®GR ()
M

2: Hp 4(CRC")

to
H,(C, H(GRC))®Hy(Hy(C, B)RC')
L

induced by the identity on the first summand and by g« on the second
summand. Then L is generated by elements (1(d), — gx4't’(d)), deD™? A
A%, But by Corollary 2.2, H, ,(C®G®C’) = D™+ D*?, and since
¢ is free there is defined the map I't": D'?? — H (Hp(C, )QC’), using
the notation of Section 2. Then It and 1't' define an epimorphism

H,(C, Hy(G®C))@®H,(H,(C, H®C)
LI ?
where L' is generated by elements (i#(d'), —Ut'(d')), d’«D™? ~ D'*?,
2 is clearly onto since [, I’ are isomorphisms and ¢, ¢ are epimorphisms.

Now apply Corollary 1.3 to D' and A’. Then p.A'tv" = U't's', where ¢/
is the embedding of 4" in D’. So v induces a map 4 of

H,(C, Hy(G® ') ®H,(H,(C, HRC)
L

H,(C, H(GRC)®Hy(Hy(C, HRC')
L )

P: Hp ((CRGRC') —

onto
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COROLLARY 11.1. #F P2 = 2,
Proof. This is immediate from the above definitions.

The projection 2 gives rise to the conditions for the existence ot
bg: Hyp o(CQGRC') — Hp(C, H(GRC')).

THEOREM 12. Let C, C' be free chain complexes, G an abelian coefficient
group. Then there exists a natural projection 6g: H, (CRG®C')—H,(C,
Hy(G®C')) whenever Tor (G, Hy_y(C")) =0 and Tor (H,(C)®G, Hy_,(C')) = 0.

Here the term natural applies in the category of chain complexes
and maps such that the two torsion groups vanish.

Proof. The vanishing of the torsion groups implies that H,(H,(C)®
GRC) = Hy(C)®G®H,(C') and that D™ ~ A% = 5(H,(0)Q6G®
H,(C')) (see Lemma 4). Let ¢: Hy(C)QGQH,(C') - H,(C, GR H,(C"))
= H,(C, Hy(G®C')) Dbe the canonical monomorphism. Then o = liy
(Corollary 3.2).

Define R: Hy(C, Hy(GR () O H,(C)QGR H,(C') — H,(C, Hy(GRC"))
by R(x,y) = z+ oy, W‘-Hm(o’ Hy(GRC)), yeHp(C)RGQ Hy(C'). Let
d =n(e), eeH,(C)®GRH,(C'). Then M 1is generated by elements
(itn(e), — A't'n(e)). But Uty = o and A't'p = A'v'y’ = 1. Hence R and M
satisfy the conditions of Lemma 10 so that R induces the isomorphism

H,(C, Hy(GR (")) ®Hy(Hy(C)RGR ')
M

#: > H,(C, Hy(GRC").

Combining #Z with 2 gives the required projection
0g: Hp,o(CRGRC) — Hy(C, Hy(GRC')).

Clearly 6, is an epimorphism and is natural with respect to chain maps
of free chain complexes ¢, — C,, C; — O; and homomorphisms G, - @, such
that Tor (Gi, He—,(C)) = 0 and Tor (H,(C:)®G:, Hy_y(07) =0, i =1, 2.

An attempt on similar lines to obtain conditions for the existence
of 6, from the projection Z in fact produces the same conditions. In order
to be able to project the second summand Hy(H,(C, ®)®C') to Hy(C,
H,(G®C')) we need Tor (H,(C, @), H,_,(C'))=0; and in order that L'
should be mapped to zero by the induced homomorphism of the direct
sum it is necessary that D™ A D'%" = y'(Hp(C, G)® He(C')), which
requires that Tor (G, Hg,(C')) = 0 (see Lemma 7). These two conditions
are equivalent to those of Theorem 12. They are the conditions for D™?
to be a natural direct summand of H, +,,(G@G‘@C'). Then 6, may be
defined by projecting to D™? followed by li: D™? — H,(C, H,(GRC")).
The projection yx,: Hp, o(CRGRC’) — D™ is given by

D AP 11y DPOHL(C)QRGRHL(C') T

Hp (0QGRC') =~ % ¥ — DP9,
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Here let t(x, y) = x+7ny; N is generated by elements (y(d), —d)
deH,(0)QGQH,(C'); so t(N) = 0 and the induced map 7 is an iso-
morphism.

DM@ H GRH,(C') =
H,y,,(006a¢) - 2 2H O8G0 H(C) 1,
0 (lt,l)i N lu
H C H G®Cr H C G H C’ Y 12
p( y Ho( ))i)l '-"( )RG® q( ) —>Hp(07 Hq(G®C ))

The diagram commutes.

COROLLARY 12.1. When Tor (G, H,_,(C’)) = O there is a natural pro-
jection 0: Hp, ((C®GRC’) — H,(C, Hy(GRC')) if the following universal
coefficient exact sequence splits naturally

Hy(C)QG® Hy(C') > Hy(H,(C)®GR® (') —> Tor(H,(C)®G, Hy_,(C")).

Proof. Again D™? ~ A4"%? = 5(H,(C)®GQ H,(C')). Let o': Hy(Hy(0)®
GRC') > Hy(C)®GQ H,(C') be a splitting homomorphism, ie. o'p’ = 1.
Then with the notation of the theorem define E by R(z, y) = x+ po'y.

In order that M should be mapped by R to zero we need ¢ = gad'ty
= po'p’. This is satisfied, so 6, is defined.

CoROLLARY 12.2. Under the conditions of Theorem 12 the projection 6,
satisfies the relation 0 = o, where 7: H,(C)QGQ Hy(C') - Hy q(C®
GRC') and ¢: Hy(C)QGR Hy(C') - Hy(C, G®Hy(C')) are the canonical
monomorphisms.

Proof. This follows at once from the definition of 6, and the relation
o = lty (Corollary 3.2).

If X,Y are topological spaces with a singular homology thcory
as in Corollary 2.3, then Theorem 12 and Corollary 12.2 imply

COROLLARY 12.3. Let Tor (H,_,(Y), G) = 0 = Tor (H,(X)®@G, H,_,(Y)).
Then there ewists a natural projection 6,: H,, (XX Y,q) — H,(X,
H,(Y, G)) such that 6,1 = o, where o: Hy(X)QH,(Y, @) - H, (X, H (Y, @)
and n: Hy(X)QH,(Y,G) > Hy (XX Y,@) are the canonical mono-
morphisms.

Naturality here is in the category of topological spaces X;, Y; and
continuous maps X, - X,, ¥, - ¥, such that

Tor (Hy—,(Y;), @) = 0 = Tor (Hp(X:)®G, Hyy(Yy)), i=1,2.

The following counter-example serves to show that there does not
always exist a natural projection 6,: H,,o(CR®G®C') - H,(C, Hy(G®C'))
such that 6, = p.
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COUNTER-EXAMPLE. Denote by P" real projective r-space. Let C be
the chain group (for some homology theory) of P* and let ¢’ = C(P?)®
C(P?. Let @ = T, the integers, and let T, denote the integers modulo 2.

The homology groups of P* are

Ho(P"):T, HI(P“):H:!(P‘)=T2’ Hr(P4)=O, r+#0,1,3.

The homology groups of P%x P2 may be calculated from the Kiinneth
formula

Hy(P:xPY) =T, H,(P*xP% =T,®T,, H,(P*xP?)="T,,
Hy(P*x P =T,, H.(P*xP?)=0, r>3.

Consider H(C®C') o~ H¢(P* x (P?x P?)) filtered in the two ways
described in Section 2. The groups D, D" may be calculated from Theorem 3.
Since (' is free D' = A'. Then

D0-6 — Dl’s — D2’4 = 0, D3 = 7)( (C)®H (G )J
DIO'G _ _D’I'S _ D'2_4 — 0’ Dl3,3 — l,_l (1’{3(E[3

)

®C)

Here 7 is the canonical monomorphism D** < H;(C®C’) and I’ is
the isomorphism of Lemma 1. Let ¢’: Hy(C)®@H,(C') — Hy(H3(C)®C') be
the canonical monomorphism. Note that H,(0)® Hy(C') = H,(C, Hy(C")).
Apply Theorem 2 to H¢(C®C') with p = q = 3. Since D*® < D'*?
(I'n = p’, see Corollary 3.2), then Hi(CRC') =D =1~ ‘( o Ha(C ®C')).
So the required natural projection 6,: H¢(C®C') — Ha(O, H,(C )) exists
if and only if there is a natural projection

0: U™ (Hy(H{(0)®C')) ~ Hy(O)0 Hy(C')

such that @l' o' =1 on H,(C)®QH,(C'), i.e. we require a natural left
inverse of o': (P2 X P*)® H3(P*) — Hy(P* x P°, Hy(P*)). We show that
no such map exists. This serves also to demonstrate that the universal
coefficient exact sequence has in general no natural splitting, for a natural
left inverse of o’ provides a natural splitting of the sequence

H,(P* X P*)® Hy(P*) > Hy(P* X P, Hy(P*)) —>> Tor (H,(P* x P*), Hy(P*%).

Let £, be a cycle whose class generates H,(P?). Then 9{, = 0. Let
£,€C,(P?) be a chain such that 9¢, = 2{, (see [4], p. 215). Consider the
chain {,®¢,4 (i ®L,eC(P)QC(P?). Then 0%°((,Q¢4,4+41®E,) = 2(L, Q85—
—6®8) = 0, and 9°(£,®0:) = 2({i:® e+ Ce®&y). Thus {LL,®8,+ Li®Ls}
generates H,(C(P*)@C(P*)) o= H4(P* X P*). Now H,(P*) = T, and it is
clear that with this coefficient group 0%({,®¢%,) = 2(0,®¢,) =0 =
0°(5,®8,)- 80 {£.®(4} and {£,® (.} generate Ha(C(P2)® C(P?), Tz)—_- T,0T,.
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In terms of these generators

o': Hy(C(PHQRC(PY))RT, — Hy(C(PHQC(P?), T
is defined by

o' {800, + 6:®0:}0) = {£.00,0)} +{{,i®L:8j}, jeTs,

i.e. it is the diagonal map T, -» 7,07,

Let @: C(P?)QC(P?) — C(P?)®C(P?) be the chain equivalence which
interchanges the factors C(P?). Obviously the induced homology auto-
morphism &,: Hy(C') — H,(C') is the identity, while &,: H,(C',T,)
— H,(0', T,) interchanges the generators of H,(C',T,) = T, @®T, The
situation is illustrated by the diagram

T, > 1,1,

@ interchanges generators

-

v .
T,—~—>T,®T,

1=
"

Any left inverse of p’ must be trivial on one factor of T,®7', and
non-trivial on the other, and therefore cannot commute with @,. Thus ¢’
has no natural left inverse.

6. Products

The maps £, 2 of Section 5 are used in this section to define a product
H(Hom (C', F))@ Hp4(C®G®C') — Hy (0, G® F), where F is an abelian
coefficient group-and Hom (C’, F) has the standard coboundary operator ¢’
induced by o'

Let f,: C; = F be a cocycle of Hom (C', F); i.e. f,0 (Cqyy) = 0.
Define a chain complex (#,0,) by #,=F, F;, =0, ¢ * ¢, and 0, =0
in all dimensions. Then there is defined a chain map f: ¢’ =& such
that f;(C;) = 0, ¢ # q, and f; is the cocycle defined above.

Now consider the chain complex 4, = CQGERF with standard
tensor product differential #°. Filtering A, as usual we define Dy, 4,
and since C is free, H, ,(4,) = DP®+ 4,%%. But clearly Dy~ =0
= D-'P* and DP? = Hp,o(4y), 4% = n{Hp(C)®GRF) < D" Then
there is a canonical isomorphism I;: Hp,.(4,) => Hy(C, G® F), where [
is defined as in Lemma 1.

A chain map 1®f: CRGRC — (RGRF is induced by f and hence
a homomorphism from H, ,(C®G®C’') to Hy, .(4;). Combining this
homomorphism with I, gives

Fy: Hy o(CRGRC') - Hy(0, GRF).
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Then
F (2 Y Peetent) =Y dosefa).

LemMMA 13. The homomorphism F, depends only on the cohomology
class of f,.

Proof. Let f; be a coboundary, i.e. there exists fac1: Oqgy > F
such that f; = f;_,0". Let # = Y Y @¢%®¢," be a cycle of CQRGRC'.
]
Then
€ 2 PRg000"¢) + 2 de 1@ g9Re? = 0.
7 7

Hence
F* {13} = {Z cg)®g(i)®ch’q(i)} — {2 Cg)@)g(i)@f;_ 1610;(7:)}

— {— £ Zac;j;@gu)@fé_lc;g)l} 0.
3

The lemma follows.
Using the above notation for f,, Fy and {z}, and writing {f,} for
the cohomology class of f,, we have the following corollary:

COROLLARY 13.1. There is a pairing of H*(C', F) and H, 4(CQRGRC)
to H,(C,GRF) defined by {f}®{x} = Fyi}.

Denote this pairing by ¢: HY((', F)Q@ Hp,(CRGR (') - H,(C,GRF).

The main theorem of this section is then

THEOREM 14. The product pairing € may also be defined by mapping
H, (CRGRC’) by 2 to

Hy(C, Hy(GRO)) @ H, (H, ()26 ()
: o ,
then taking the Kronecker index of {f,} with the coefficient group Hy(GRC')

of the first summand, and of {fy} with Hy(H,(C)®G®C'). The resulling
group maps canonically to H,(C, GRF).

Proof. Since 2 is natural the following diagram commutes, where ¥,
is induced by f: ¢’ -F

’ H H ! H Y ’
Hp+q(C®G®C)£-> (0, dG@O))i «Hp (CO)RGR ()

(1eh), Lﬁ.
, Hy(C, 6 P)QH,(C)RGRF

Y
H, (CQRGRF) 7

The notation @, M, is clear. M, is generated by elements (I;7;(z),
—Amy(2)), 2eHy(C)®@G®F, where clearly iyny = 1 and Iy = o: Hp(0)®
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GRF - Hy(C,GRF). Then by Lemma 10 there is an isomorphism

Hyp(C,GRF)DHp (C)RGRF
M,
defined by 2(a,b) = a+ ob. 2, is obviously an isomorphism induced
by l;, and .%.Qf = l,«: Hp_l_q(A,) —>Hp(0, G®F)
Then € is given by Fy = [;(1®f)s = Z2/(1Qf)x = Z F+«2. 1t remains
only to comment that &, is obtained by taking the Kronecker indices
described, and that # is the canonical map to H,(C,GRF).

COROLLARY 14.1. The pairing € may be defined by projecting Hy,  4(C®
GRC') by Z to

X

H,(C, Hy(G®C') @ H,(H,(C, HRC)
IR
followed by taking the Kronecker index of {f,}e HY(C', F) with the coefficient
group Ho(GRC") and with Hy(Hy(C,G)RC'). The resulting group maps
canonically to H,(C, GRF).

Proof.
H,(C, Hy(GRC))@ H(Hp(C)RGR (') ” H,(C, H(GRC" ) H(H,(C, G)RC")
M L
%.V i
Y
H,(C,GRF)@H,(C)RGRF sp, H,(C,GRF)®H,(C,RF
M, L

The above diagram commutes. The subscript f is used to denote
groups and homomorphisms associated with the complex A4;. # and P
are defined in Corollary 11.1. Let # be as in Theorem 14.

Then # = &' #,P;, where

Hy(C,GR F)DHp(C,G)QF
Ly
is the canonical isomorphism (see Lemma 10).

Hence &2 = B F1PiFu2 = B FuIP2 = R FP by Corollary
11.1. Then %’ is the required canonical mapping to H,(C, G® F) and the
corollary is proved.

Note that the product ¢ can be defined by any chain map f of ¢’
to a complex F whose ¢-th chain group is ¥ and whose g-th and (g1 1)-st
differentials vanish, where f is f, in dimension ¢ and satisfies the condi-
tions for a chain map in other dimensions. Then the pairing is defined
by mapping H,,,(CRGRC’) to H, (CR®GRF) followed by projecting
v H0:(CBGOF)

_D')l)—l.q+l+D;q—l.P+l
and its corollary remain unaltered.

17 4

- H,(C,GQF)

which is isomorphic to H,(C, GQ F). Theorem 14
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7. Cap product

Now let X, Y Dbe topological spaces with a singular simplicial homo-
logy theory. Let ¢ = C(X), C' = C(Y). Then C, C' are free so Theorem 14
and its Corollary are applicable. Combining these with the isomorphism
vt Hp (XX Y, Q) > Hp o(C(X)®GQRC(Y)) whose inverse is induced
by the chain equivalence y: C(X)®C(Y) - C(X X Y) of Section 3 gives
a product pairing HY(Y, F)QHp (X X Y, G) - Hp(X, FQG).

Let X, Y, be subspaces of X, Y respectively (X,, ¥, are such
that (X xY,, Y XxX,) is an excisive couple in X XY) and then take
C =C(X,X,),0 =C(Y, Y,). Cand C are again free, so &, 2 are defined.
Also y induces a chain equivalence y': C(X, X,)®C(Y, ¥,) > C(X X ¥,
Xx Yy X,x Y). There is therefore a product pairing

HY Y, Yo; F)IQHp o (XX Y, XX Yy v X, X Y¥;G) > Hyp(X, Xo; FRG).

Nowlet X = Y, i.e.C = (' = C(X). There is a chain map D: C(X)
- (0(X)®C(X) (see [4], p. 365) which induces the homology homo-
morphism D,: H,(X, G) — n(C(X)@G@C(X)). Let d: X - XXX be
the diagonal map d(z) = (z, z), xeX. Then w«Dy = ds ([4], P. 365).
We do not mention explicitly the inversions G®C(X) - C(X)RG,
GRF - FRQEG, e.g. the map D induces C(X)RG — C(X)®C(X)®QG, and
inverting C(X) and @, maps to C(X)®G®C(X), hence giving rise to D,.

Combining D, with F, of Lemma 13 gives a product H?(X, F)®
H, (X,G) - H,(X, FRQG).

LeEMMA 15. The above product HY (X, F)\Q Hp (X, G) > H,y (X, FQG)
ts the classical cap product.

Proof. The homomorphism D: C(X) — C(X)®C(X) maps a singular
(p+g)-simplex w,., to 3 0,®v,¢C(X)®C(X), where v, is the first

dd
7+3=p+g

r-face of u,,, and v, is its last s-face (see [4], p. 365). Then the product
defined by D, and F, is by definition the cap product for singular simpli-
cial homology ([4], p. 364).

When X is a polyhedron the cap product structure of its singular
simplicial homology theory is isomorphic to the cap product defined
simplicially ([4], p. 153, 154).

We have thus produced the following definition of cap product
formulated solely in terms of natural homomorphisms of homology
groups. Compare it with the classical definition of cap produect, viz.
H?(X,R)@HY(X,R) => HP M (C(X)®C(X), R) ', gP*9(X,R), where n* is
induced by »: Hom (C(X), R)® Hom (C(X), R) - Hom (C(X)®C(X), R)
defined =(d®e) (fRg) = d(f)-g(e), (d, ecHom (C(X), R),f, geC(X)), D*
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is induced by D, and R is a coefficient ring. The definition is stated as
a theorem.

THEOREM 15. Let X be a topological space with the standard singular
simplictal homology theory. Then the classical cap product H'(X, F)®
Hy o(X,G) > Hy(X, FRG) may be defined by the following sequence of
homomorphisms

-1
d, Ve
Hpio(X, 6) = Hpyo(X X X, G) — H,,,o(C(X)®GRC(X))
# H,(X,H,(X,Q)®H,(X, H,(X, Q)
> T

The homomorphisms, d., y. are defined above, while #, F, and X’
are as in Corollary 14.1.

This statement has been given in terms of # because of the symmetry
of Im Z but it could equally well be given in terms of 2.

The relative cap product is defined in the same way. The diagonal
map d: X - X x X applied to (X, X, v Y,), where X, ¥, c X, (X,,Y,)
is an excisive couple in X induces d': X, X, v Y, > X X X, (X, v Yy X
(Xow Y,), and X X X, (X, v Y,) X (X, v Y,), may in turn be mapped
by inclusion to X X X, X x(X,uv Y)) =X XX, XXX, v XX Y, De-
note by d* the composite of d' and the above inclusion. Then the cap
product for relative homology is given by

COROLLARY 16.1. Let X be a topological space with subspaces X, Y,.
Then in the above singular simplicial homology theory the cap product
H(X,Y; F)IQH, (X, X, v Yy;G) > Hy(X, Xo; FOQ) may be defined
by the sequence of homomorphisms

X
> Hp g XXX, XX X,v XX Y5 G)

2% H (X, FQG).

Hp+q(X; Xov Yy @)
r—~1

Ve
——> Hp ,(C(X, X)®GRC(X, T,))
2 HP(X’ Xy, Ho(X, Yo; G))@(HQ(X’ Yo; Hp(X, Xo; G))

—
L

2% H,(X, X,; FRQ):

The homomorphisms da and v, are defined above, while 2, F, and &’
are as in Corollary 14.1 with ¢ = (X, X,), C' = C(X, Y,).

There is a corresponding situation in cohomology which will be
described separately.

In conclusion, I wish to thank Doe. S. Balcerzyk, Dr. I. M. James

and Professor P. Hilton for their advice and suggestions on the prepa-
ration of this paper.
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