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UNSTEADY STRATIFIED FLOW PAST A CYLINDER

1. Introduction.

The main work in inviscid, non-diffusive, stratified fluid flow has
been carried out by Long [3], Yih [7], Kao [2] and Debler [1]. All these
are based on the steady non-linear equations of motion which, with the
assumption of suitable upstream conditions, reduce to a linear equation.
The solutions obtained suffer from the disadvantage that they violate
the assumption of the perturbed motion to vanish at a sufficiently great
distance upstream.

Kathleen Trustrum [5] has shown that the assumption of a uniform
undisturbed upstream flow which has been basic to most theories is not
valid. Thus the steady-state equations which take the linear form with
the above assumption become more difficult to deal with, as one cannot
envisage what corresponding conditions should be taken for the upstream
flow.

In her paper she has pointed out the qualitative resemblances of the
equations governing rotating and stratified flows past an obstacle. For
a perturbation introduced on the plane = 0 as one Fourier component
she has studied the upstream and downstream solutions for R 2 1 (R being
the Froude number for stratified fluids and the Rossby number in the
case of rotating fluids). In the upstream flow for R > 1 the perturbation
flow decays exponentially as # -» —oo and has an irrotational character,
but for R < 1 the solution is independent of x and describes a one-dimens-
ional flow extending to upstream infinity. In the downstream flow for
R >1 the solution has an irrotational character and for R < 1 it gives
rise to waves in the downstream. From the experiments on rotating
fluids [4] it is well known that for low Rossby numbers the wave motion
is observed only downstream.

In this paper we consider the unsteady two-dimensional inviscid
non-diffusive stratified fluid flow past a circular cylinder for small values
of the Froude number. The flow considered here is that which is due to
the slow uniform motion, started impulsively from relative rest, of a circular
cylinder along the horizontal axis of it. The equations are written in non-
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-dimensional form with ¥ = U(gl)"'?, the Froude number, as a dimens-
ionless parameter (U is the characteristic velocity, I — the radius of the
cylinder). After taking the Laplace transforms the governing equations
have been reduced to a single linear equation in N, where N = p5—y, P
being the transform of non-dimensional pressure and y the velocity poten-
tial of the initial irrotational flow. The flow pattern is discussed for various
regions for small and large times. It has been shown that the flow will
never become stready on the cylinder. In general the flow is of oscillatory
type whose amplitude of oscillation decreases to zero as time progresses,
so that the ultimate motion tends to a steady state everywhere except
on the cylinder and on the axis of the cylinder where the perturbation
velocities continue to oscillate indefinitely with small amplitude.

2. Governing equations and solution.

The Euler equations of two-dimensional flow of a stratified fluid
which is assumed to be incompressible, inviscid and non-diffusive are [5]:
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in which «', w’ are the velocity components parallel to Oz’ and 02', respecti-
vely, where 2’ is measured in a direction opposing gravity. Since the fluid
is incompressible and non-diffusive,
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Let us consider the initial stratification of the fluid to be g,—p?,
where g, corresponds to the characteristic density and 8 is the stratifica-
tion constant.

Let a cylinder impulsively start from rest and move along the x-axis
at ' = 0 with a uniform velocity U. If we choose the origin of coordinates
to be in the body, we have in effect superposed a uniform velocity — U
on the system and brought the body to rest. Let the subsequent velocity
components parallel to the 2’ and 2’ axes be (u',w’), the density be
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0o—pP% +o'' and the pressure be p,+p’’, where u', w’, p’, o'’ are assumed
to be small and where

dp,

az = —(go—p2")g.

Introducing the non-dimensional variables as
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and if the equations (2.1)-(2.4) are written in non-dimensional form we
find that U?/gl, the Froude number, is a dimensionaless parameter of
the problem. Here 1 is the characteristic length (radius of the cylinder)
and U the characteristic velocity of the problem.

Taking slow motion into consideration for small ¥, the linearized
equations of motion in the non-dimensional form will be
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The boundary conditions are that
(2.9) w—->—1, w—->0 as x-> —oo for fixed 2,1,
and, on the body, that
(2.10) the component of the fluid velocity normal to the body is zero.
Let the velocity potential of the initial perturbed motion be
d(x,2) = —x+y(v,2)

(for an impulsive start the initial motion will be irrotational).
We have at t =0
0y Oy
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Let the Laplace transforms of w,w, p be @, w, p, respectively, i. e.
% ——-f u(x,2)e " dt, ete.
0

Now, taking Laplace transforms and introducing a function [6]
N = p—y, the equations (2.5)-(2.8) can be reduced (by substituting the
values for # and w in the transformed continuity equation) to
0:N 1 0°N

2.11 =
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where o' = 1/Rp, R being the modified Froude number U (gf/p,12)~ 2.
The boundary condition (2.9) becomes

(2.12) 4> ——, w—>0 as x> oco.

Taking the transformation X = 2, Z = 2V1+a’? equation (2.11) reduces to

0*N 02N
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In the transformed coordinates the boundary condition (2.12)
becomes

(2.14) o 0 a8 &—> oo

and the condition on the body (2.10) will reduce to
oON Z 0N _

2.15 —
(2.13) Xox Titar 9z

—X.

(The circular cylinder x'*+2* =1 will become an elliptic cylinder
X2+4+Z72/(14a'?) =1 in the transformed coordinates.)

Now the equation (2.13) is to be solved with boundary conditions
(2.14) and (2.13).

We introduce new coordinates &, n defined by

X = cén, Z = (;(1_1,52)1/2(1_?72)1/2.
YA
(III the (5, ﬂ)'PlaJne the ellipse X2+ '1__?;;? =1 will be given by & = Rp

(constant).)
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The equation (2.13) will take the form
d*N 0:N oN oN

2.16 14 &2 1—nt — — 0.
( ) (+E)6§2 =+ ( 77)07)2—1-565 nan 0
The boundary condition (2.15) will become
oN
(2.17) Y ——(até = Rp) = —ecn, where ¢ = I;—p

In view of the above condition the general solution of the equation
(2.16) can be written as

= (C'1§+02Vﬁ§)n,

O, and C, being arbitrary constants.
Using the boundary condition (2.14) we get C, = —C,. By applying
the condition (2.17) on the body, we find

cVe? +1 1

¢, =—+———, where c¢=-—.
' 1— I/cz-l—l Rp

Thus the appropriate solution of (2.16) is
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Transferring back to the original coordinate system (z,z) we get
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_ V33
(2.21) @ = V2a*apn,
(p— l/p2+a2 [( 1)a?+p2 (a2 +22) )2+ 4a2p222]"? x nl
where a = 1/R and
ny = {(22—?) p?+ (22 —1) @®+[((22—1) a® +p2 (a2 +22))2+ 4a?p222]*}1?,

ny = {(224+-22)p2+ (22 —1 a2+[( 1) a?+p2 (22 422) )2—|—4a2p .'1}2]1/2}1/2
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The velocity at any point in the fluid is given by the inverse transforms
of v and w.

3. General features of the flow.
3.1. On the cylinder.

(3.1.1) ¥ _ Vp2+az’
P
(3.1.2) n = — 1 Vp+a? _ (p?+ a?)a?a?
PP po—Vp+a) (i ted)
(3.1.3) T = —alxz

(p—Vp*+ a?) (p*+ ata?)

Taking the inverse transforms of the above we will get the expressions
for the velocities on the cylinder as
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w = zz(cosaxt4 2 sin awxt) -+

2 2 4 22
f 4aA2cosat ”dl-l-f A(A + a22?)sinat el
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where ' = 12— a2, u’ = 24a and a # 0. (The integrals of the inverse
Laplace transformation have been evaluated by inserting cuts in the
p-plane from p = 7o along lines on which the imaginary part of p is
constant and the real part (4) decreases. The path of integration may
be replaced by a path round the infinite semi-circle Re(p) < 0 and round
the cuts.)

Thus we see that the flow does not become steady on the cylinder.
At any time ¢ the pressure on the cylinder will be

t
1
awf—t—Jl(at)dt.
0
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Hence the drag on the cylinder will be
t
1
—nal2f—t-J1(at)dt
0
(when a =0, w = —22%, w = 222, which corresponds to the case of

ordinary flow without stratification).

3.2. On the axis of the cylinder (z = 0).

(3.2.1) @ = — —— Voo 2Vpr+ a?
4. p (p—Vp2:+a®)p (p_,/pg_{_az)'/png_l_az .

% should satisfy the boundary condition at infinity, namely that # — —1
as & — oo,
When 2 is large

(322) 7= ——— vt | pu/p=+(a2 ,).
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Expanding the integrand (3.2.1) in a series of descending powers
of p we get for small ¢ after inversion

. 1 1 n a?t? n ¢
U = por m T ete.
(For a = 0 we have v = —(1—1/2%) which corresponds to the case of
ordinary fluids).
Using the asymptotic expansion method to (3.2.2) we get for large
times

3
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Here w = 0, i. e. there is no velocity in the z direction for the fluid
particles lying on the z-axis.

Thus the motion here is of an oscillatory type and the velocity will
continue to oscillate indefinitely with small amplitude.
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Similarly, we find the flow pattern on the planes z = 4-1. It is found
that on 2 = +1 for small time

v — (1__ x2—1 a2x?(a®+ 4o +100%4-3) 2 N .
= T T 5 Toee  ete.
2% a?xd(x%—2)
W= p— 2y ete.

(@2-+1)? (x2+41)
For large time the flow will be singular (‘).

3.3. Flow at any general point of the fluid. The velocity components
at any point of the fluid are given by (2.20) and (2.21) as

v4-100

1 Vp2+ at ™
- —1— T 7 4
! 2ri fm V—pian P
. ”f” (p*+ a?)nie® dp
2ni S pp—V(p*+a? W (22 —1) a2 +-p? (a2 +22)]2+ 4ap 252,
w = V242 trw pn, e dp
2ni J (p—Vpr+ @)V [(P—1)ai+pP(a? 42 P+ daPpiat xnl

The above integrals are having 4%a, +4%al,, 4¢al, as their branch
points, where
+ (=1 eVar+22 41 1

— d —_ T
l; prgpe an a =

Thus for large values of ¢ the integrals may be evaluated by inserting
cuts in the p-plane from p = +ial,, p = 4-4al, and p = J-¢a along lines
on which the imaginary part of p is constant and the real part decreases.
The path of integration may now be replaced by a path rougd the infinite
semi-circle Re(p) < 0 and round the six cuts. The contribution from each
branch point can be evaluated separately.

(1) ,,The longitudinal velocity u increases indefinitely with time and is of the
order O(t1/2), whereas the vertical component w tends to zero as ¢ tends to infinity.
Thus ultimately the parallel planes z = +1 behave as singular surfaces separating
the fluid into two regions wherein the fluid between the planes is completely block-
ed by the cylinder (the phenomenon of Taylor column) and the fluid outside the
planes possesses a finite horizontal velocity.”
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For large time ¢ the contribution from the branch points p = +ial,
to u is found to be

Bl -1~ Bl +elsin (P—atr 5]

LB B (@ D)~ BT Yt

+ (terms of higher order in 1 /ﬂ),
ly

Vi—B

The contribution from the branch point +ial, to u will be

where @ — tan™'

z(l‘f—l)[(z*—l)—lf(w2+z2>]sin(¥'—am+{—) )

B @ A=) (@11 Vi

+ (terms of higher order in 1/Vt),
L

Vi-4
The contribution from the branch point +ia to « will be
— T 3 71 b
— —) I'l— 4Y 2zsin| at — — —
21/200s(at+ 4) (2) l/—zsm(a 4) I‘(2)
a®? . nt’? o (13/2(032—1)3/2 ' wt? +

where ¥ = tan™!

+ (terms of higher order in 1 /l/t—)
when |z| >1, and

—2V2cos (at + %) ]’(E) 2V 2 cos (at—— z_) p(i)

2 2

" il P(1—ar) P

+ (terms of higher order in 1 /l/i)
when |z| < 1. .
Similarly, for large time the contribution from the branch point
p = +ial; to w is found to be

2a[(22—1) — 12 (22 —22) /212 cos (@—}— al2-t+ %) X

TE_ B (1) —B@ 1] Yo |

+ (terms of higher order in 1/1/5).
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The contribution from the branch point +-ial, will be

2012 (22 — %) — (2 —1) ¥ 142 cos (sv+ alyt+ %) .

PE B P A1) —B@ )] Vet

_|_

+ (terms of higher order in 1 /ﬂ),
and the contribution from 4-7a to w will be

T 3
22 cos (at— Z) r (—2—)

P Y + (terms of higher order in 1/V%)

when |2| > 1, and
) T 3
2'/528111 (at—l— Z) r (E)

dP(1—a?) P + (terms of higher order in 1/V1)

when |2]<1. @ and ¥ have the same meaning as before.

. For small ¢, formulae for 4 and w can be found by expanding the

integrals into a series of descending powers of p, as in section 3.2.
Thus we find that, in general, the amplitude of the oscillatory motion

decreases to zero so that the ultimate flow is steady except in the regions

considered in sections 3.1 and 3.2.

In conclusion, I wish to thank Dr. L. V. K. V. Sarma for his kind
guidance throughout the preparation of this paper.
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NIESTACJONARNE PRZEPLYWY WOKOL WALCA PORUSZAJACEGO SIE
W CIECZY

STRESZCZENIE

W pracy badane sa za pomocy transformaty Laplace’a niestacjonarne prze-
plywy wywolane ruchem walca kolowego w cieczy o gestodci zaleznej od wspélrzednej z.
Stwierdzono istnienie dwu wyrdéznionych plaszezyzn stycznych do walca, wzdluz
ktérych skladowe predkoéci staja si¢ nieskoneczone, oraz niestacjonarno&é przepltywu
na powierzchni walca. Wynika stad wniosek, Zze przeplyw w tych rejonach nie dopusz-
cza linearyzacji odpowiednich réwnan rzadzacych przeptywem. Lepsza aproksymacje
przeplywu mozna uzyskas, uwzgledniajac w réwnaniach przeplywu, przynajmniej
czedciowo, nieliniowe wyrazy inercjalne.

———m e

A. B. KPHUIIHA (Maapac)

HECTALIMOHAPHBIE TIOTOKH BOKPYI' LIMWJIMHAPA ABUXVYIUETOCS
B XKMAKOCTI

PE3IOME

B craTthu paccMaTpuBAIOTCA C MOMON[I0 mpeobpasoBamua Jlammaca Hecrauuo-
HApHHe IOTOKM, BH3BaHHHE ABMKEHHEM KDPYTJIIOro HUIMHAPA B MHUJKOCTH C IIFIOTHO-
CTHIO 3aBHCHMOi OT KOOPAUHATH 2. J[OKA3aHO CyIeCTBOBAaHUE NBYX CHHIYJAAPHHX IJIO-
CKOCTeli, KacaloMmUXCA NUAMHAPA, HA KOTODHX HKOMHOHEHTH CKOPOCTH CTpEeMATCH
K (GeCKOHEYHOCTH, a TaKe HEeCTAMOHADHOCTh NOTOKA HA HOBEPXHOCTH UMIUHAPA.
OTciofa ciefyer, 4To NMOTOK B 3TMX 0O6JacTAX He ROMYCKaeT JWHeapusanuud COOT-
BETCTBYIOUNX YPAaBHEHHUH, OnpeReNAONNX TOTOKH. JIyuliyl0o annpoKCHMAIUI0 MOKHO
HOJYYHTh, YYUTHBAA B yPaBHEHMAX HOTOKA, XOTAGH YacTHYHO, HeJIMHeHHHe WHEp-
HUAJNbHEE YJEeHH.
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